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Abstract

We propose an optimization and generalization of OT extension of Ishai et al. of Crypto
2003. For computational security parameter k, our OT extension for short secrets o↵ers O(log k)
factor performance improvement in communication and computation, compared to prior work.
In concrete terms, for today’s security parameters, this means approx. factor 2-3 improvement.

This results in corresponding improvements in applications relying on such OT. In particular,
for two-party semi-honest SFE, this results in O(log k) factor improvement in communication
over state of the art Yao Garbled Circuit, and has the same asymptotic complexity as the recent
multi-round construction of Kolesnikov and Kumaresan of SCN 2012. For multi-party semi-
honest SFE, where their construction is inapplicable, our construction implies O(log k) factor
communication and computation improvement over best previous constructions. As with our
OT extension, for today’s security parameters, this means approximately factor 2 improvement
in semi-honest multi-party SFE.

Our building block of independent interest is a novel IKNP-based framework for 1-out-of-n
OT extension, which o↵ers O(log n) factor performance improvement over previous work (for
n  k), and concrete factor improvement of up to 9 for today’s security parameters (n=k=128).

Our protocol is the first practical OT with communication/computation cost sublinear in the
security parameter (prior sublinear constructions Ishai et al. [IKOS08, IKOS09] are not e�cient
in concrete terms).

Keywords: OT extension, 1-out-of-2 OT, 1-out-of-n OT.

1 Introduction

Our main contribution is an asymptotic and concrete e�ciency improvement of Oblivious Transfer
(OT) extension of Ishai et al. [IKNP03]. Our improvement applies to OT transfers of short secrets.
In this Introduction we first motivate the problem, and then give intuition behind our approach.

Oblivious Transfer (OT) [Rab81, EGL85, BCR87, Kil88, NP05] is a fundamental cryptographic
primitive that is used as a building block in a variety of cryptographic protocols. It is a critical piece
in general secure computation [Yao86, GMW87, GV88, Kil88], as well as in a number of tailored so-
lutions to specific problems of interest, such as contract signing [EGL85]. OT performance improve-
ment directly translates into that of secure function evaluation (SFE). In turn, SFE performance is
the subject of major research e↵ort in cryptography [IKNP03, BDNP08, MNPS04, KS08, CHK+12,
HKE12, PSSW09, KSS09, IPS08, HEKM04, AJLA+12, SS11, BCD+09, LOP11, NNOB12, LP07].
Our work can be plugged into several existing candidate solutions, resulting in factor 2� 3 perfor-
mance improvement, which is a major step forward in the state of the art of secure computation.
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1.1 Secure Computation

SFE allows two (or more) parties to evaluate any function on their respective inputs x and y, while
maintaining privacy of both x and y. SFE is justifiably a subject of an immense amount of research.
E�cient SFE algorithms enable a variety of electronic transactions, previously impossible due to
mutual mistrust of participants. Examples include auctions, contract signing, set intersection, etc.
As computation and communication resources have increased, SFE of many useful functions has
become practical for common use. Still, SFE of many of today’s functions of interest carries costs
su�cient to deter would-be adopters, who instead choose stronger trust models, entice users to give
up their privacy with incentives, or use similar crypto-workarounds. We believe that truly practical
e�ciency is required for SFE to see use in real-life applications.

The current state of the art of SFE research is quite sophisticated. Particularly in the semi-
honest model, there have been very few asymptotic/qualitative improvements since the original
protocols of Yao [Yao86] and Goldreich et al. [GMW87]. Possibly the most important development
in the area of SFE since the 1980’s was the very e�cient OT extension technique of Ishai et
al. [IKNP03], which allowed to evaluate an arbitrarily large number of OTs by executing a small
(security parameter) number of (possibly ine�cient) “bootstrapping” OT instances, and a number
of symmetric key primitives. This possibility of cheap OTs made a dramatic di↵erence for securely
computing functions with large inputs (relative to the size of the function).

As secure computation moves from theory to practice, even “small” improvements can have a
significant e↵ect. Today, even small factor performance improvements to state-of-the-art algorithms
are quite hard to achieve, and are most welcome. This is especially true about the semi-honest
model protocols, where the space for improvement appears to be much smaller than in the malicious
model.

In this work, we propose an improvement to OT extension of Ishai et al. [IKNP03], for the
case of OT of short secrets. As we will describe below, this will result in a new multi-party SFE
protocol, which is approximately factor 2 (and, asymptotically factor O(log k)) more e�cient than
state of the art. Our constructions also improve on standard two-party garbled circuit protocols
in asymptotic (O(log k)) and concrete terms, and o↵er performance in line with the recent work
of [KK12].

1.2 Secure Computation via OT

We note some of the results that show how to e�ciently construct protocols for general secure
computations when given black box implementation of OT.

Garbled Circuit. Probably the most well-known approach is the Garbled Circuit (GC) ap-
proach of Yao [Yao86]. The GC construction can be viewed as encryption of the boolean circuit
implementing the computed function. The circuit encryption includes encrypting all of the gates’
truth tables and the signals on each of the circuit’s wires, including input and output wires. The
circuit encryption has the property that each of the encrypted circuit gates can be evaluated “under
encryption” given encryptions its inputs. Clearly, this allows to compute the encryption of the out-
put, which can then be decrypted among the two players, achieving secure computation. Relevant
to our work, in this approach OT is used to deliver the encryptions of the circuit evaluator’s input
to him. The cost of the protocol is linear in the size of the circuit.

GMW. The approach of Goldreich, Micali, and Wigderson (GMW) [GMW87] is also based on
secure evaluation of a boolean circuit representing the computed function. In their construction,
the two players secret-share the values of the circuit wires, starting from the input wires. Then they
evaluate the circuit, gate by gate (or, rather, layer by layer), as follows. For the boolean addition
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gate (XOR), the parties simply locally add the shares of the gate’s input that they hold. It is
not hard to see that this will result in the two players secret-sharing the output of the XOR gate.
However, in case of the boolean multiplication gate (AND), the players need a round of interaction,
and one execution of OT to secret-share the the output of the AND gate. The cost of the protocol
is linear in the size of the circuit.

Kilian [Kil88] was the first to show a one-round IT reduction (of complexity ⇥(4d)) of SFE to
OT, where d is the depth of the boolean circuit. Kilian relies on Barrington’s [Bar86] representation
of NC1 circuits as permutation BPs. It is possible to replace Barrington’s representation in Kilian’s
construction with a more e�cient construction of Cleve [Cle90] (see, e.g. Cramer et al. [CFIK03]).

The resulting complexity is ⇥(2d2⇥(
p
d)), which is the best previously known for NC1 circuits and

(re)balanced formulas. As in Yao [Yao86], OT is used to transfer the encoding of the evaluator’s
input to him.

Ishai and Kushilevitz [IK00, IK02] suggested a way of representing a circuit as a predicate
on a vector of degree 3 randomizing polynomials (degree of the input variables x

i

is 1). Their
construction assigns an (exponential in d in size) polynomial representation to each wire of the
corresponding fan-out 1 circuit, and implies a one-round SFE-to-OT reduction, of complexity ⇥(4d).
As in Yao [Yao86] and Kilian [Kil88], OT is used to transfer the encoding of the evaluator’s input
to him.

Kolesnikov [Kol05] proposed another, more e�cient, one-round information-theoretic SFE-to-
OT reduction. His Gate Evaluation Secret Sharing (GESS) scheme is designed to match with the
circuit gate function g, so that the two secrets corresponding to the inputs of the gate allow to
reconstruct the secret of the output wire of the gate. Because the wires’ secrets are allowed to have
a lot of common information, the secret sharing scheme can be made very e�cient. As in above
works, the OT is used to transfer the encoding of the circuit evaluator’s input to him.

1.3 Secure Computation and OT E�ciency Considerations

As we briefly mentioned above, the e�ciency of OT plays a critical role in the overall e�ciency
of secure computation. It is so to the point that OT performance determines which is the most
e�cient approach. Until recently, in the semi-honest model, Yao’s Garbled Circuit was a clear
winner. With the work of [KK12] and our improved OT extension technique, the GMW approach
will outperform Yao with a factor of ⇡ 2 for today’s security parameters. Asymptotically, the
performance improvement is logarithmic in security parameter compared to GC.

On the cost of SFE rounds. One common consideration in SFE protocol design is the number
of rounds. Indeed, in some scenarios the latency associated with the communication rounds can
more than double the total execution time. This holds, e.g., when the evaluated circuit is small;
with the GMW evaluation, where we need a round of communication per layer of the circuit, the
latency may be costly for deep and narrow circuits. This may cause somewhat increased latency of
an individual computation – a possible inconvenience to the user of interactive applications.

At the same time, many SFE protocols allow for a significant precomputation and also for
streaming, where message transmission may begin (and even a response may be received) before
the sender completes the computation and transmission of the message. Thus, round-related latency
will usually not be a wasted time and will not cause extra delays. Most importantly, with the speed
of the CPU advancing faster than that of communication, the true bottleneck for SFE already is
the channel transmission capacity, even for high-speed gigabit LAN.

In sum, we argue that in many scenarios, the number of communication rounds in SFE often
plays an insignificant role in practice, and round-related latency either has no impact on perfor-
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mance, or it can be tolerated in exchange of achieving higher throughput.

1.4 Our Contributions

Our main contribution is an asymptotic and concrete e�ciency improvement of Oblivious Transfer
(OT) extension of Ishai et al. [IKNP03]. Our improvement applies to OT transfers of short secrets.

1-out of-2 OT extension. For a security parameter k, our O(log k) asymptotic improvement
results in concrete e�ciency improvement of about factor 2 for today’s security parameters (k =
240). This immediately translates in same asymptotic and concrete improvements in multi-party
computation in the semi-honest setting, when applied to state of the art solutions, which are based
on GMW protocols.

1-out of-n OT extension o↵ers O(log n) factor performance improvement over previous work
(for n < k), and concrete factor improvement of up to 9 for today’s security parameters.

Further, our protocol is the first OT sublinear in the security parameter other than the non-
black-box construction of Ishai et al. [IKOS08], and is the only practical OT with this property.
Our resulting secure computation protocols can also be viewed as a significant generalization of
the technique of [KK12], which o↵ered logarithmic in k improvement over state-of-the-art Yao’s
GC, but, in particular, did not extend to multiparty setting. We work in the RO model, but, like
in [IKNP03], we can also use a variant of correlation-robust hash functions (cf. Appendix F).

1.4.1 Applications and Practical Performance Impact

As noted above, our 1-out of-2 OT construction immediately o↵ers approximately factor 2 im-
provement in nearly all multi-party protocols – GMW and its variants1. In two-party computation,
a similar, but more limited in scope, improvement was recently achieved [KK12]. In particu-
lar, [KK12] didn’t work well on very shallow circuits, such as inner product computation. For such
circuits, we have O(log k) improvement over 2PC state of the art, including [KK12].

As noted, our 1-out of-n OT gives logarithmic performance improvement in transferring one in
n random secret keys. This is a common use of OT (cf. Garbled Circuits). However, in some cases,
where the OT of specific secrets is required, the improvement factor may be smaller due to the
fact that all n secrets encrypted with the n keys need to be transferred. In this case, logarithmic
improvement applies only to the o✏ine phase, where the secrets are not available.

Another application which immediately benefits from this work is string-selection OT (SOT),
a variant of 1-out of-n OT and a building block of [KK12]. In SOT, the receiver selects one of the
sender’s two secrets based on his n-bit selection string.

1.5 Related Work

OT is a critical and heavily used component in much of cryptography, and in particular in secure
computation protocols. Naturally, a lot of e↵ort went into optimizing its performance. Unfortu-
nately, there are fundamental limits to OT e�ciency. Impagliazzo and Rudich [IR89] showed that a
black-box reduction from oblivious transfer to a one-way function or a one-way permutation would
imply P 6= NP. It is further not known whether such non-black-box reductions exist.

1We note that additional small factor improvement is possible by using PRG to compress the m⇥k matrix in OT
extension (see Appendix D). This, combined with our improved OT, brings the total improvement to our claimed
factor 2� 3. Because our PRG compression also applies to standard IKNP, we did not include it in our performance
tables for fair comparison of the two approaches.
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Beaver [Bea96] was the first to propose OT extension, a non-black-box scheme where a large
number of OTs can be obtained from a small number of OTs (possibly executed by using public-
key primitives) and one-way functions. Lindell and Zarosim [LZ13] recently showed that one-way
functions are in fact needed for OT extension.

Ishai, Kilian, Nissim, and Petrank [IKNP03], in their breakthrough work showed a black-box
OT extension, which is truly practical. Its cost, in addition to the security parameter number
of base OTs, is only two random oracle (RO) evaluations and output transfers. By dramatically
changing the cost structure of two-party SFE, especially in the semi-honest model, this work en-
abled greatly improved SFE for functions with large inputs, previously considered too costly due
to the need of a large number of public key operations. It also started a rise in the study of
GMW-based SFE protocols, where an OT is needed per multiplicative node. Indeed, recent (yet
unoptimized) GMW-based and multiple-round protocols began to outperform traditional GC pro-
tocols. In particular, [NNOB12] outperforms state-of-the-art GC protocols in the malicious model,
and [KK12] outperforms state-of-the-art GC protocols in the semi-honest model. In addition to
considering the semi-honest model, [IKNP03] presents a construction secure against malicious par-
ticipants. In a few follow-up works [Nie07, HIKN08], the performance of the malicious setting of
the IKNP OT extension was substantially improved. We present the high-level idea of the basic
IKNP construction in Section 3.2.

By employing a more e�cient pseudorandom generator in Beaver’s non-black-box OT ex-
tension protocol, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08] obtained an asymptotically
more e�cient (but expensive in concrete terms) construction for oblivious transfer extension,
and consequently for secure computation. In fact, their protocol enjoys a constant computa-
tional/communication overhead over an insecure evaluation of the function to be evaluated. In order
to obtain these strong e�ciency results, Ishai et al. [IKOS08] make strong complexity-theoretic as-
sumptions on pseudorandom generators. Specifically, they assume that there exists an (arbitrary
stretch) pseudorandom generator in NC0 [AIK04, App12].

In this work, we show logarithmic in the security parameter improvement for black-box OT
extension transfer of short secrets. In other words, we improve e�ciency of the black-box OT
extension protocol of Ishai et al. [IKNP03] asymptotically by a log(k/`) factor when the length
of the transferred secrets is `. This has important practical applications for secure computation
solutions, such as GMW, that require precisely 1-out-of-2 OT of 1-bit secrets. We calculate both
asymptotic and concrete performance of the resulting protocols. Our constructions are presented
in the semi-honest model.

We stress that in contrast to the non-black-box techniques of Ishai et al. [IKOS08], our exten-
sion protocol makes only black-box use of a (non-programmable) random oracle (or a C-correlation
robust hash function, see Section F). Also, unlike [IKOS08, IKOS09] who mainly focus on asymp-
totic complexity, we calculate also the concrete e�ciency of our construction, and demonstrate a
factor of approximately 2 improvement over state-of-the-art protocols [IKNP03, CHK+12].

Finally, we mention PIR work (e.g., [Lip08]) that construct communication e�cient 1-out of-n
OT protocols but perform O(n) computationally intensive (e.g., public-key operations) per instance.
We perform a fixed number of public-key operations independent of the number of OT instances.

2 Overview of Our Approach

We give a high-level overview of our solution prior to presenting its technical details in Section 4.
We aim that the reader somewhat familiar with the IKNP construction should understand the main
idea of our construction from this overview.
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Consider the random m⇥k matrix designed by [IKNP03], which is transferred column-wise via
k 1-out-of-2 base OTs from the receiver R to the sender S. In [IKNP03], each row of this matrix
is used to implement a 1-out-of-2 OT, as it has the randomness from which a random OT can be
constructed.

Our main observation is that, for the same communication cost, each row of this matrix can
be instead used to perform a 1-out-of-n OT, but of shorter secrets. Further, a 1-out-of-n OT of
log n-bit long secrets can be trivially used to construct log n 1-out-of-2 1-bit OTs, which is precisely
the kind of OT needed in the GMW protocol and its variants. Thus, e↵ectively, we trade the
length of the OT-transferred secrets for the number of OTs, which results in significant gain for
MPC applications.

The intuition for our 1-out-of-n OT is as follows. First, recall that in IKNP, for each column
of the m⇥ k matrix, S randomly selects (via OT), whether he receives the random column, or the
random column XORed with the m-bit long input of R. Viewed row-wise, this e↵ectively means
that for each row j, S either receives (via OT) the j-th row of the randomly chosen m⇥ k matrix
(if R’s j-th selection bit is 0), or that row XORed with his k-bit selection vector to the OT (if R’s
j-th selection bit is 1). Then S masks each of his two j-th input secrets with (RO hashes of) vector
received as output from OT and the same vector XORed with its k-bit selection vector respectively
and sends both to R, who is able to take the mask o↵ one of the two messages. The second masked
message remains hidden since R does not learn the selection vector provided by S.

In the following, let C denote a binary code, and let r
j

denote the input of R to the j-th instance
of 1-out-of-n OT. In our 1-out-of-n OT, we modify the scheme presented above such that for each
row j, S receives (via OT) the actual j-th row of the m ⇥ k matrix XORed with a vector that is
the result of the r

j

-th codeword in C bitwise-ANDed with the k-bit selection vector. This allows S
to generate n random pads from each row of the matrix—the i-th such pad being the j-th row it
received (via OT) XORed with a vector that is the result of the i-th codeword in C bitwise-ANDed
with the k-bit selection vector. These n random pads may then be used by S to carry out a 1-out-
of-n OT with R. The security of this construction naturally depends on the underlying code. The
exact property that we need is that C must contain at least n codewords, each of length at most k,
such that the codewords in C are spaced as far apart as possible from each other. This, combined
with the fact that R does not learn the selection vector provided by S, will ensure that R can
e�ciently recover only one of the n pads used by S. The above is presented in detail in Section 4.

Using Walsh-Hadamard code for C gives a 1-out-of-n OT for n equal to the security parameter
k. This OT is suitable for generation of log n 1-out-of-2 OTs (Section 5.1). Using a higher-rate
code with similarly high distance results in 1-out-of-n OT for any n polynomial in k (Section 5.3).

3 Preliminaries and Notation

3.1 Notation

We use the notation OTm

`

to denote m instances of 1-out-of-2 string-OT where the string is ` bits
long. Let S denote the sender, and let R denote the receiver. In 1-out-of-2 OT, the sender’s input
is {(x

j,0, xj,1)}
j2[m], i.e., m pairs of strings, each of length `, and the receiver holds input {r

j

}
j2[m],

where each r
j

is an integer which is either 0 or 1. Note that if S provides input {(x
j,0, xj,1)}

j2[m] to
OTm

`

, and if R provides input {r
j

}
j2[m] to OTm

`

, then R receives back {x
j,r

j

}
j2[m], while S receives

nothing.
In Section 4, we construct protocols for 1-out-of-n OT, which is a straightforward generalization

of 1-out-of-2 OT. We explain this further. We use the notation
�
n

1

�
-OTm

`

to denote m instances
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of 1-out-of-n string-OT where the string is ` bits long. In 1-out-of-n OT, the sender’s input is
{(x

j,0, . . . , xj,n�1)}
j2[m], and the receiver holds input {r

j

}
j2[m], where each r

j

is an integer which
between 0 and n� 1. Note that if S provides input {(x

j,0, . . . , xj,n�1)}
j2[m] to

�
n

1

�
-OTm

`

, and if R
provides input {r

j

}
j2[m] to

�
n

1

�
-OTm

`

, then R receives back {x
j,r

j

}
j2[m], while S receives nothing.

Following the convention in IKNP, we denote vectors in bold, and matrices in capitals. For
a matrix A, we let a

j

denote the j-th row of A, and ai denote the i-th column of A. If a =
a1k · · · kap and b = b1k · · · kbp are two vectors, then we define � and � operations as follows. We
use the notation a�b to denote the vector (a1�b1)k · · · k(ap�bp). Similarly, the notation a � b
denotes the vector (a1 · b1)k · · · k(ap · bp). Finally, suppose c 2 {0, 1}, then c · a denotes the vector
(c · a1)k · · · k(c · ap).

Our constructions assume the existence of a random oracleH. We denote the security parameter
by k, and assume (without loss of generality) that it is a power of 2.

3.2 IKNP OT Extension

In this section, we present the OT extension protocol of Ishai, Kilian, Nissim, and Petrank [IKNP03].
The protocol will reduce OTm

`

to OTk

m

. As described in Appendix B.3, this implies a reduction
to OTk

k

with some additional cost. The security of the protocol holds as long as the receiver is
semi-honest. (Note: the sender may be malicious.)

We now describe the protocol that realizes OTm

`

given ideal access to OTk

m

.

Input of S: m pairs (x
j,0, xj,1) of `-bit strings, 1  j  m.

Input of R: m selection bits r = (r1, . . . , rm).
Common Input: a security parameter k.
Oracle: a random oracle H : [m]⇥ {0, 1}k ! {0, 1}`.
Cryptographic Primitive: an ideal OTk

m

primitive.

1. S chooses s {0, 1}k at random. Let s
i

denote the i-th bit of s.

2. R forms m⇥ k matrices T0, T1 in the following way:

• Choose t
j,0, tj,1  {0, 1}k at random such that t

j,0�tj,1 = (r
j

k · · · kr
j

).

Let ti0, t
i

1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTk

m

in the following way:

• S acts as receiver with input {s
i

}
i2[k].

• R acts as sender with input {ti0, ti1}i2[k].
• S receives output {qi}

i2[k].

S forms m⇥ k matrix Q such that the i-th column of Q is the vector qi. (Note qi = ti
s

i

.) Let
q
j

denote the j-th row of Q. (Note q
j

= ((t
j,0�tj,1)� s)�t

j,0. Simplifying, q
j

�t
j,0 = r

j

· s.)

4. For j 2 [m], S sends y
j,0 = x

j,0�H(j,q
j

) and y
j,1 = x

j,1�H(j,q
j

�s).

5. For j 2 [m], R recovers z
j

= y
j,r

j

�H(j, t
j,0).

7



Efficiency. The protocol makes a single call to OTk

m

. As described in Appendix B.3, the cost
of OTk

m

is the cost of OTk

k

(which is independent of m) plus a generation of 2k pseudorandom
strings each of length m. Other than this call to OTk

m

, each party evaluates at most 2m times (an
implementation of) a random oracle. It is easy to see that the total communication cost of OTm

`

is the communication cost of implementing OTk

m

plus 2m` bits transferred between S and R in
Step 4. Thus we conclude that the communication cost of OTm

`

is O(m(k + `)) bits. (The exact
communication cost is 2mk + 2m` bits.) Note that the total computational cost of the protocol is
proportional to its communication cost.

3.3 Walsh-Hadamard (WH) Codes

For ↵ 2 {0, 1}q, let WH(↵) = (h↵, xi)
x2{0,1}q , where the inner product between the two vectors

is taken modulo 2. That is, WH(↵), also known as the Walsh-Hadamard encoding of ↵, is the
2q-bit string consisting of inner products of each q-bit string with ↵. For each k, Walsh-Hadamard
codes, denoted by Ck

WH, are simply defined as the set {WH(↵)}
↵2{0,1}log k

. Note that Ck

WHcontains
k strings (or, codewords) each of length k bits. In our constructions, we will use the well-known
fact that the relative distance of Ck

WH is 1/2 when k is a power of 2.

4 Extending 1-out-of-n OT

Recall, k is a security parameter. We present a natural generalization of 1-out-of-2 OT extension
protocol given in [IKNP03]. We consider 1-out-of-n OT for any n  k.2 First, recall that it is
easy to construct a 1-out-of-n OT protocol from O(log n) instances of a 1-out-of-2 OT protocol
in the semi-honest setting. (See Appendix B.1 for an explicit construction.) The communication

cost of m instances of 1-out-of-n OT on `-bit strings would be the cost of OTmlogn
k

plus the cost
required to transmit at most mn masked secrets each of length `. Thus, the communication cost of
obtaining m instances of 1-out-of-n OT on `-bit strings is at most O(m(klog n+n`)) bits. Further,
its computational cost is proportional to the communication cost.

Our main contribution, formally presented in this section, is showing how to generalize IKNP’s
technique to directly obtain (i.e., without going via a construction for 1-out-of-2 OT) an extension
protocol for 1-out-of-n OT when n  k. For the same security parameter and the same size of
setup matrix at IKNP, the concrete security of our construction corresponds to that provided by
security parameter kIKNP ⇡ k/2 (cf. Appendix A). If exactly same concrete security as IKNP
is desired, this can be achieved by setting our security parameter k ⇡ 2kIKNP, which results in
a multiplicative factor 2 overhead compared to IKNP. However, because we do 1-out-of-n OT at
this cost, our construction will still result in asymptotic and concrete performance improvement of
1-out-of-n OT.

Let
�
n

1

�
-OTm

`

denote m instances of 1-out-of-n OT on `-bit strings. As in [IKNP03], we will

reduce
�
n

1

�
-OTm

`

to OTk

m

(which can be trivially e�ciently reduced to OTk

k

, cf. Appendix B.3). As
the [IKNP03] basic protocol, our protocol is secure against a malicious sender and semi-honest
receiver. Our protocol will use Walsh-Hadamard codes, denoted by Ck

WH = (c0, . . . , c
k�1).

We now describe our protocol that realizes
�
n

1

�
-OTm

`

given ideal access to OTk

m

.

Construction 1 (1-out-of-n OT Extension).
Input of S: m tuples (x

j,0, . . . , xj,n�1) of `-bit strings, 1  j  m.

2We discuss how to extend 1-out-of-n OT for n = poly(k) in Section 5.3.
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Input of R: m selection integers r = (r1, . . . , rm) such that 0  r
j

< n for 1  j  m.
Common Input: a security parameter k such that k � n, and Walsh-Hadamard codes Ck

WH =
(c0, . . . , c

k�1).
Oracle: a random oracle H : [m]⇥ {0, 1}k ! {0, 1}`.
Cryptographic Primitive: an ideal OTk

m

primitive.

1. S chooses s {0, 1}k at random. Let s
i

denote the i-th bit of s.

2. R forms m⇥ k matrices T0, T1 in the following way:

• Choose t
j,0, tj,1  {0, 1}k at random such that t

j,0�tj,1 = c
r

j

.

Let ti0, t
i

1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTk

m

in the following way:

• S acts as receiver with input {s
i

}
i2[k].

• R acts as sender with input {ti0, ti1}i2[k].
• S receives output {qi}

i2[k].

S forms m⇥ k matrix Q such that the i-th column of Q is the vector qi. (Note qi = ti
s

i

.) Let
q
j

denote the j-th row of Q. (Note q
j

= ((t
j,0�tj,1)�s)�tj,0. Simplifying, q

j

�t
j,0 = c

r

j

�s.)

4. For j 2 [m] and for every 0  r < n, S sends y
j,r

= x
j,r

�H(j,q
j

�(c
r

� s)).

5. For j 2 [m], R recovers z
j

= y
j,r

j

�H(j, t
j,0).

This concludes the description of the protocol. It is easy to verify that the protocol’s outputs
are correct (i.e., z

j

= x
j,r

j

) when both parties follow the protocol.

Efficiency. The protocol makes a single call to OTk

m

. As described in Appendix B.3, the cost
of OTk

m

is the cost of OTk

k

(which is independent of m) plus a generation of 2k pseudorandom
strings each of length m. Other than this call to OTk

m

, each party evaluates at most mn times (an
implementation of) a random oracle. It is easy to see that the total communication cost of OTm

`

is
the communication cost of implementing OTk

m

plusmn` bits transferred between S andR in Step 4.
Thus we conclude that the communication cost of OTm

`

is O(m(k + n`)) bits. Note that the total
computational cost of the protocol is proportional to its communication cost. Recall that n  k,
and thus when ` = 1, the asymptotic cost of our

�
n

1

�
-OTm

`

protocol is O(mk) which is the same as
the asymptotic cost of Ishai et al.’s OTm

`

protocol described in Section 3.2. In terms of concrete
performance, as mentioned above, we need to use a security parameter k ⇡ 2kIKNP, resulting in
a factor 2 overhead compared to IKNP’s OTm

`

execution. Because we are performing the more
powerful

�
n

1

�
-OTm

`

, this corresponds to asymptotic (and concrete!) performance improvement.

Theorem 1. Construction 1 is a secure protocol for evaluating
�
n

1

�
-OTm

`

in the semi-honest model.

Proof of security of Theorem 1 is presented in Appendix A for the lack of space.

Remarks. In Construction 1, one can replace Ck

WH with an encoding map enc : {0, 1}logn ! {0, 1}k
that has the property that for r, r0 2 {0, 1}logn with r 6= r0, the Hamming distance between enc(r)
and enc(r0) is at least ⌦(k). It is instructive to see that when n = 2 and when enc is the k-bit
repetition encoding of the input bit, i.e., enc(r) = (r, . . . , r) 2 {0, 1}k, then we get exactly the IKNP
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construction. Note that for r 6= r0, the Hamming distance between enc(r) and enc(r0) is exactly
k. As we saw in Construction 1, using the encoding map enc(r) = c

r

, where c
r

is the r-th Walsh-
Hadamard codeword, gives us an log k e�ciency improvement. Since the Walsh-Hadamard code
is a low-rate code, the maximum value of n is restricted to be less than or equal to k. A natural
question that arises is whether a code with a better rate enables us to remove this restriction.
Indeed, in Section 5.3, by using more sophisticated codes (cf. Claim 2) we show an improvement in
the (o✏ine) communication complexity of 1-out-of-n OT extension for arbitrary n = poly(k).

5 Resulting E�ciency Improvements

We evaluate performance improvements of Construction 1, and corresponding two- and multi-party
SFE improvements. Recall that in the semi-honest model, a single instance of 1-out-of-n OT may
be used to generate log n instances of 1-out-of-2 OT over slightly shorter strings but with no
additional cost (see Appendix B.2 for an explicit construction). More precisely, the cost of OTm

`

is

exactly equal to the cost of
�
n

1

�
-OTm/logn

`logn . This observation will allow us to leverage our e�cient

construction of
�
n

1

�
-OTm

`

to obtain improved e�ciency for 1-out-of-2 OT, and consequently for
secure computation.

5.1 E�ciency Improvements for 1-out-of-2 OT

In this section, we demonstrate a log k asymptotic improvement in the e�ciency of 1-out-of-2 OT
when sender’s secrets are just bits (i.e., length of sender’s secrets, ` = 1). As observed previously,
we do this by constructing 1-out-of-2 OTs via 1-out-of-n OTs (cf. Appendix B.2).

Recall that the cost of our
�
n

1

�
-OTm

`

protocol described in Section 4 is O(m(k+n`)). Using the

fact that the cost of OTm

`

is exactly equal to the cost of
�
n

1

�
-OTm/logn

`logn , we conclude that OTm

`

may be

reduced to OTk

k

while incurring an additional cost at most O((m/log n) ·(k+n`log n)). By choosing
n such that nlog n = k/`, we see that this additional cost is asymptotically O(mk/ log(k/`)). In
summary, we have shown a reduction from OTm

`

to OTk

k

with cost O(mk/ log(k/`)).
Contrast our result above with the result of [IKNP03], where the cost of the reduction from

OTm

`

to OTk

k

was O(m(k + `)). Observe that for the important case when ` = 1, our construction
o↵ers a logarithmic factor improvement in the e�ciency of the reduction.

As noted in Section 4, to achieve concrete security equal to that of IKNP, we need a security
parameter approximately twice theirs, which results in a factor 2 overhead of our protocol. Even
with this e�ciency loss we have both asymptotic and concrete performance advantage over IKNP.

Concrete E�ciency. We perform an exact calculation of the communication cost of our OTm

`

construction. We begin with a concrete cost analysis of
�
n

1

�
-OTm

`

. Recall that the exact cost of

reduction from OTk

m

to OTk

k

is 2mk. Then, in Step 4, S transmitsmn` bits toR. Thus, the concrete
cost of

�
n

1

�
-OTm

`

is m(2k+n`). Using the fact that the cost of our OTm

`

is exactly equal to the cost

of
�
n

1

�
-OTm/logn

`logn , we conclude that OTm

`

may be reduced to OTk

k

with cost (m/log n) ·(2k+n`log n)
bits. The minimum cost can then be obtained by choosing a suitable value of n.

In contrast, the concrete communication cost of IKNP’s construction of OTm

`

is 2m(k+ `) bits.
As described earlier, there’s a small gap between the security guarantees between our consruction
and IKNP’s. We take that into account in our cost calculation, and present the results in Table 1.
We refer the reader to Appendix C and D (in particular to Tables 3, 4, 5) for more details on the
concrete e�ciency of (some variants of) our constructions.

10



level of security our cost IKNP cost
50 74 102
112 130 226
238 227 478

Table 1: Comparison of (amortized) communication cost (measured in bits) of 1-out-of-2 bit OT for a given
security level. The costs are computed assuming parties are semi-honest. The performance improvement
ratio betwen our work and IKNP represents the resulting improvement factor for MPC protocols.

level of security our cost per gate [PSSW09] cost per gate [KK12] cost per gate
50 148 100 66
112 260 224 112
238 454 476 196

Table 2: Comparison of (amortized) communication cost (measured in bits) per gate of the circuit for
various semi-honest secure two-party protocols. We note that protocols of [KK12] do not extend to multi-
party setting, while ours do.

5.2 E�ciency Improvements for Secure Computation

In this section, we will discuss applications of our OTm

`

protocol to secure two-party and multi-party
computation. As pointed out in the Introduction, e�cient OT forms a criticial component of secure
computation protocols, and improvements in the e�ciency of OT translates to an improvement in
the e�ciency of secure computation protocols built on top of OT.

In the previous section, we saw how our construction asymptotically outperforms the extension
protocol of [IKNP03] by a factor of O(log(k/`)). Clearly, this improvement factor is maximized
when ` = 1, i.e., for 1-bit OT. Thus, our construction has maximum benefit for secure computation
protocols that extensively rely on 1-bit OTs. One such example is the well known GMW proto-
col [GMW87] where each AND gate of the circuit is evaluated using (two invocations of) 1-bit OTs
(and negligible additional cost). Until now, e�cient implementations of the GMW protocol in the
semi-honest setting (e.g., [CHK+12]) relied on the OT extension protocol of [IKNP03]. Because OT
costs dominate the protocol costs, simply by using our extension protocol (instead of [IKNP03]),
the semi-honest GMW protocol will enjoy an asymptotic log k e�ciency improvement (and im-
provement in concrete terms as well).

Secure Two-Party Computation. The concrete improvements for the specific case of two-party
computation are shown in Table 2. From the table, it is evident that our protocol begins to out-
perform state-of-the-art constant round protocols (e.g., [PSSW09]) for reasonable levels of security.
However, for practical values of the security parameter, it performs worse, in concrete terms, when
compared to [KK12], a non-constant round protocol that generalizes both Yao garbled circuits and
GMW. We point out that the approach of [KK12] can be viewed as somewhat related to ours (but
more narrow; in particular, it is not applicable to multiparty comptuation), and the communication
cost of our protocol is asymptotically the same as theirs. Furthermore, while our improvements are
independent of the topology of the circuit being evaluated, this is not the case in [KK12] where in
the calculations it is assumed that the width of the circuit is constant.

Secure Multi-Party Computation. Today, practical protocols for secure multi-party computation
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are based on the GMW approach (e.g., [NNOB12, CHK+12]).3 GMW-based secure computation
protocols for t parties, in the semi-honest setting, operate in almost the same way as in the two-party
case except that now parties compute pairwise OTs (more precisely, a total of 2t2 OTs) to securely
evaluate each AND gate. That is, for each AND gate of the circuit parties evaluate a total of
2t2 1-bit OTs (with negligible additional cost). Therefore, simply by using our extension protocol
(instead of [IKNP03]), we will improve the asymptotic complexity by a log k factor. Concrete
improvements in this setting are the same as those found in Table 1. Specifically, for “50-bit
security” we obtain an improvement of 102/74 = 1.378 in the communication cost. Similarly, we
obtain an improvement factor of > 2 for “238-bit security”.

5.3 E�ciency Improvements for 1-out-of-n OT

Recall that the cost of extending 1-out-of-n OT from [IKNP03] is O(m(k log n+n`)) bits. Our main
construction presented in Section 4 reduces the cost of 1-out-of-n OT extension to O(m(k + n`)).
However, this improvement holds only when n  k. In this section, we show how to modify
Construction 1 to support n = poly(k). In the resulting protocol, the (o✏ine) communication cost
of the generating 1-out-of-n OT correlations will be O(mk) bits, i.e., completely independent of
n. (We demonstrate how to adapt our protocol to the preprocessing model in Appendix E.) This
improves over the best known o✏ine communication complexity (which was O(mk log n) bits).

The total complexity (i.e., both online and o✏ine) of our construction will asymptotically
outperform existing constructions only for n  ck where c is an arbitrary constant. For n = !(k),
the online cost of our protocol O(mn`) dominates the total cost, but is still as e�cient as existing
constructions.

The main idea of our construction is to replace Ck

WH with a code from a family of linear er-
ror correcting codes with the following special properties. (Our claim below is taken verbatim
from [IKOS09].)

Claim 2 ([IKOS09, CC06, GS96]). There exists a finite field F of characteristic 2 and an e�-
ciently constructible family of linear error-correcting codes C

K

: FK ! FN

K with the following
properties: (1) N

K

= O(K); (2) The dual distance of C
K

is �
K

= ⌦(K); (3) The linear code C 0
K

spanned by all pointwise-products of pairs of codewords in C
K

has minimal distance �
K

= ⌦(K)
and supports e�cient decoding of up to µ

K

= ⌦(K) errors. (The pointwise product of (c1, . . . , cN )
and (c01, . . . , c

0
N

) is (c1c01, . . . , cNc0
N

).)

The last property implies that C
K

also has minimal distance d
K

= ⌦(K).
Setting N

K

= k and K � log n is enough to provide the desired improvements stated above.
The security level provided by this construction will be log(2dK/n2) = ⌦(k) for n polynomial in k.
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A Proof of Theorem 1

The proof of security of our construction closely follows that of the basic IKNP protocol described
in Section 3.2. As in [IKNP03], we prove that the protocol described above is secure against a
malicious sender and against a semi-honest receiver. We will demonstrate a perfect simulator for
any malicious sender S⇤ and a statistical simulator for (semi-honest) R. In the latter case, the
output of the ideal process involving the simulator is indistinguishable from that of the real process
even if the distinguisher is allowed to adaptively make 2k/2/k!(1) additional calls to H. (Contrast
this with [IKNP03], where the distinguisher is allowed to adaptively make 2k/k!(1) calls to H.)

We let TP denote the trusted party for the OTm

`

functionality in the ideal function evaluation
process.

Simulating S⇤. It is easy to argue that the output of an arbitrary S⇤ can be perfectly simulated.
Indeed, all S⇤ views throughout the protocol is a k-tuple of uniformly random and independent
vectors, received from the OTk

m

primitive in Step 3. This guarantees that the receiver’s selections
remain perfectly private. A simulator for a malicious sender S⇤ may proceed as follows:

• Run S⇤ with a uniformly chosen random input ⇢. Let s⇤ be the input S⇤ sends to OTk

m

primitive in Step 3. Generate a random m⇥ k matrix Q, and feed S⇤ with the columns of Q
as the output from the OTk

m

primitive.

• Let (y⇤
j,0, . . . , y

⇤
j,n�1) be the messages sent by S⇤ in Step 4. Call TP with inputs (x⇤

j,0, . . . , x
⇤
j,n�1)

for 1  j  m where x⇤
j,r

= y⇤
j,r

�H(j,q
j

�(c
r

� s⇤)).

• Output whatever S⇤ outputs.

Correctness: It is easy to verify that the joint distribution of ⇢, s⇤, Q, the values (y⇤
j,0, . . . , y

⇤
j,n�1),

and all values of H queried by S⇤ in the ideal process is identical to the corresponding distribution
in the real process. It remains to show that, conditioned on all the above values, the receiver’s
outputs x⇤

j,r

j

in the ideal process are distributed identically to these outputs in the real process.
This follows from the way the output of R is defined in the Step 5 of the protocol and from the
fact that (in the real process) t⇤

j

= q
j

�(c
r

j

� s⇤)). Note that the above simulation remains perfect
even if the distinguisher makes an arbitrary number of calls to H. Thus we have:

Claim 3. The protocol is perfectly secure with respect to an arbitrary sender.

Simulating R. The semi-honest receiver R can be simulated as follows:

• Call TP with input r. Let z
j

denote the j-th output received from TP.

• Run the protocol between R and S, substituting the values z
j

for the known input x
j,r

j

of S
and the default value 0` for the unknown inputs {x

j,r

}
r 6=r

j

. Output the entire view of R.

In our protocol, the pads used for masking the sender’s inputs in the j-th iteration are
{H(j,q

j

�(c
r

� s))}0r<n

. Since q
j

= t
j,0�(cr

j

� s), we see that the pads are exactly the set
{H(j, t

j,0�((cr�cr
j

)� s))}0r<n

. (Contrast this with IKNP, where the pads used for masking the
sender’s inputs hidden input in the j-th iteration are {H(j, t

j,0), H(j, t
j,0�s)}.)

Suppose 0 represents the all-zero vector. It is clear from the discussion above, and the
description of the simulator that, conditioned on the event 0 62 {(c

r

�c
r

0) � s}0r<r

0
<n

, the
simulated view is distributed identically to the receiver’s view in the real process. Indeed, if
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0 62 {(c
r

�c
r

0) � s}0r<r

0
<n

, the values of H used for masking the unknown inputs {x
j,r

}
r 6=r

j

are uniformly random and independent of the receiver’s view and of each other. Since Ck

WH is a
code with relative distance 1/2, we have that for any r 6= r0, the Hamming weight of c

r

�c
r

0 is at
least k/2. Thus by means of a simple union bound we conclude that the simulator’s output is (at
least) n22�k/2-close to the real view.4 However, to make a meaningful security statement in the
random oracle model, we must also allow the distinguisher to (adaptively) make additional calls to
H, where the answers to these calls are provided by the same H that was used in the process (real
or ideal) generating the distinguisher’s input.

Now, if the distinguisher can “guess” the oracle query used in the real process to mask secret
x
j,r

for some r 6= r
j

which R is not supposed to learn, then it clearly wins (i.e., it can easily
distinguish between any two values for this unknown secret). On the other hand, as long as it does
not guess such a critical query, the masks remain random and independent given its view, and so
indistinguishability is maintained. The crucial observation is that from the distinguisher’s point of
view, each of these (n� 1) ·m o↵ending queries is (individually) distributed uniformly at random
over a domain of size (at least) 2k/2. This follows from the fact that (1) for any 0  r < r0 < n, the
Hamming weight of c

r

�c
r

0 is at least k/2, and since s is picked at random from {0, 1}k, the value
(c

r

�c
r

0)� s is uniformly distributed over a domain of size at least 2k/2, and (2) the distinguisher
has no information about s as long as it makes no o↵ending query. Hence, the distinguisher can
only win the above game with negligible probability. This is formalized by the following lemma.

Lemma 4. Any distinguisher D which makes at most t calls to H can have at most a (t+n2)·2�k/2-
advantage in distinguishing between the output of the real process and that of the ideal process.

Proof. Define the extended real (resp., ideal) process to be the real (resp., ideal) process followed
by the invocation of D on the output of the process. The output of the extended process includes
the output of the original process along with the transcript of the oracle calls made by D. For each
of the extended processes, define an o↵ending query to be a call to H on some input in the set
{(j, t

j

�((c
r

�c
r

0) � s))}0r<r

0
<n

for some 1  j  m, and define B to be the (bad) event that an
o↵ending query is ever made by either R or D. (Actually, we need not iterate over r and r0... just
over r0 is enough, since r is fixed for a semihonest receiver.) It is easy to verify that, as long as no
o↵ending query is made, the outputs of the two extended processes are perfectly indistinguishable
from one another. Thus, the event B has the same probability in both extended processes, and the
outputs of the two extended processes are identically distributed conditioned on B not occurring.
It remains to show that Pr[B]  (t+n2) · 2�k/2. This, in turn, follows by noting that: (1) R makes
an o↵ending query only if 0 2 {(c

r

�c
r

0) � s}0r<r

0
<n

, and (2) as long as no o↵ending query is
made, D’s view is completely independent of the value of s.

Thus, we have:

Claim 5. As long as n  k and m = 2o(k), the protocol is statistically secure with respect to a
semi-honest receiver and a polynomial-time distinguisher having access to the random oracle.

B OT Reductions

For completeness, we present several simple reductions among the OT primitives.

4We remark that it may be possible to obtain a more precise bound on the “closeness” between the ideal and real
processes by a careful analysis of the codewords in Ck

WH.
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B.1 Reducing 1-out-of-n OT to 1-out-of-2 OT

Here we show a simple idea [NP05] how to implement a 1-out-of-n OT, given a log n number of
1-out-of-2 OTs on strings of length k in the semi-honest model.

S and R perform log n 1-out-of-2 OTs, where S’s input consists of 2 log n random k-bit strings,
and R’s input consists of log n bits representing its selection. S then generates and sends to R
the n inputs, each encrypted with the RO hash (or, applying PRF to the k-bit strings [NP05])
of the corresponding sequence of OT-transferred secrets. Implementing these m log n instances of
k-bit string OTs using IKNP would cost (2m log n) · (k+ k) = 4mk log n bits. In the final step, the
encryptions for each of n strings of length ` would cost a total of mn` bits. Thus, the total cost of�
n

1

�
-OTm

`

based on IKNP is (4mk log n+mn`) bits.
Contrast the above with our constructions in Section 4 where the total cost of

�
n

1

�
-OTm

`

is
m(2k + n`) bits. It is easy to see that for k = n and for ` = 1, we improve e�ciency by a factor
(4 log k + 1)/3. For k = 128, this corresponds to a factor 9.67 improvement in the communication
complexity.

B.2 Reducing OTm

`

to
�
n

1

�
-OT

m/logn
`logn

log n 1-out-of-2 1-bit OTs can be obtained from a 1-out-of-n log n-bit OT as follows. The sender S
from his input of log n pairs of bits generates n log n-bit secrets, each corresponding to a log n-bit
long selection string. Then S and R execute 1-out-of-n log n-bit OT. R interprets his received
output as the bits received in log n 1-out-of-2 OTs.

B.3 Reducing OTp

m

to OTp

k

Oblivious transfer of long strings can be e�ciently reduced to oblivious transfer of shorter strings
(of length at least equal to security parameter) using any pseudorandom generator. The simple
idea is use OTp

k

to send one of two short random strings, and use them as keys for encryption of
the two longer strings sent later. We describe the reduction below.

Input of S: p pairs (x
i,0, xi,1) of m-bit strings, 1  i  p.

Input of R: m selection bits r = (r1, . . . , rp).
Common Input: a security parameter k.
Oracle: a PRG G : {0, 1}k ! {0, 1}m.
Cryptographic Primitive: an ideal OTp

k

primitive.

• S initializes n pairs of random k-bit seeds (u
i,0, ui,1).

• The parties invoke the OTp

k

primitive, where S acts as a sender with inputs (u
i,0, ui,1) for

1  i  n, and R as a receiver with input r.

• For 1  i  n, S sends (y
i,0, yi,1), where y

i,b

= x
i,b

�G(u
i,b

).

• For 1  i  n, R outputs z
i

= y
i,r

i

�G(u
i,r

i

).

The security of this reduction is straightforward to prove. Its complexity overhead is O(mp)
bits obtained via 2p evaluations of a PRG that produces m bit outputs. We note that the use of
the PRG G can be emulated using calls to the random oracle H.
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kIKNP IKNP cost our cost in terms of n min n our cost improvement factor
20 42 n+ 8 + 80/ log n 8 43 0.976744
30 62 n+ 8 + 120/ log n 11 54 1.14815
40 82 n+ 8 + 160/ log n 15 64 1.28125
50 102 n+ 8 + 200/ log n 16 74 1.37838
60 122 n+ 8 + 240/ log n 16 84 1.45238
80 162 n+ 8 + 320/ log n 21 102 1.58824
100 202 n+ 8 + 400/ log n 22 120 1.68333
120 242 n+ 8 + 480/ log n 27 136 1.77941
160 322 n+ 8 + 640/ log n 32 168 1.91667
200 402 n+ 8 + 800/ log n 35 199 2.0201
240 482 n+ 8 + 960/ log n 43 228 2.11404
300 602 n+ 8 + 1200/ log n 48 271 2.2214
500 1002 n+ 8 + 2000/ log n 66 405 2.47407
1000 2002 n+ 8 + 4000/ log n 110 708 2.82768

Table 3: Comparison of (amortized) communication cost (measured in bits) of 1-out-of-2 bit OT for a given
security level. The costs are computed assuming parties are semi-honest.

C Concrete Performance Analysis

We provide more details on how the calculations in Tables 1 and 2 were performed.
Cost of IKNP. In order to perform a reduction from OTm

`

to OTk

k

, the communication cost of
IKNP is given by 2mk + 2m`. The amortized cost per instance is 2k + 2`. For transmitting 1-bit
secrets, we see that the amortized cost per instance is 2(k + 1). The security of their reduction
is 2�k (assuming that m � k, and that their reduction from OTk

m

to OTk

k

uses a random oracle
instead of a PRG).
Cost of our protocol. The analysis is slightly more complicated in our protocol. First, note that
the cost of our

�
n

1

�
-OTm

`

protocol is m(2k + n`). By using a communication preserving reduction

from
�
n

1

�
-OTm/ logn

` logn to OTm

`

, we derive the cost of our protocol as (m/ log n)(2k + n` log n). The
amortized cost per instance is therefore n` + (2k/ log n). For transmitting 1-bit secrets, we see
that the amortized cost per instance is n+ (2k/ log n). Under the same assumption as IKNP, the
security of our reduction is n22�k/2.

In order to make a meaningful comparison of e�ciency, we first choose values of k and n such
that n22�k/2 = 2�kIKNP , where kIKNP is the security parameter used in IKNP. That is, we need
to compare the cost functions of our protocol, i.e., (n + (2k/ log n)) with the IKNP protocol, i.e.,
(2kIKNP + 2) under the constraints n22�k/2 = 2�kIKNP , and n  k (imposed by our use of Walsh-
Hadamard codes).

Simplifying the constraint we have 2 log n � (k/2) = �kIKNP, i.e., k/2 = kIKNP + 2 log n, i.e.,
k = 2kIKNP + 4 log n. Substituting for k in our cost function now yields (n+ (4kIKNP/ log n) + 8).
Thus, our task simply reduces to choosing the right value of n for which our cost function is
minimized while satisfying k = 2kIKNP + 4 log n � n. The results are presented in Table 3.
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D Optimizing the Reduction from
�n
1

�
-OTm

` to OTk
k

In our OT extension protocol, the OTk

m

primitive is reduced to OTk

k

. Further, the roles of R and S
are reversed in our application of the reduction in our protocol. We provide an optimization that
exploits this fact. This optimization was independently discovered by us and by Schneider and
Zohner [SZ12].

The main idea of the optimization is that inside the OT extension protocol of IKNP (as well
as our protocol) 1-out of-2 OT of very long (m-bit long) random-looking correlated strings is
executed. We cut the communication almost in half by OT-sending a PRG seed used to generate
the strings. In other words, we obtain e�ciency improvements by employing pseudorandom additive
sharing [CDI05] instead of a completely random additive sharing. Because the strings need to be
correlated in a specific way, a “correction” string needs to be sent so that exactly the right secret
is recovered. See below for details.

Construction 2 (Optimized 1-out-of-n OT Extension).
Input of S: m tuples (x

j,0, . . . , xj,n�1) of `-bit strings, 1  j  m.
Input of R: m selection integers r = (r1, . . . , rm) such that 0  r

j

< n for 1  j  m.
Common Input: a security parameter k such that k � n, and Walsh-Hadamard codes Ck

WH =
(c0, . . . , c

k�1).
Oracle: random oracles H : [m]⇥ {0, 1}k ! {0, 1}`, and G : {0, 1}k ! {0, 1}m.
Cryptographic Primitive: an ideal OTk

m

primitive.

1. S chooses s {0, 1}k at random. Let s
i

denote the i-th bit of s.

2. R forms a (m⇥ k) matrix D by setting d
j

= c
r

j

. R then forms m⇥ k matrices T0, T1 in the
following way:

• Set ti1 = G(v
i

) for a randomly chosen v
i

 {0, 1}k.
• Set ti0 = di�ti1.

In the above, ti0, t
i

1 denotes the i-th column of matrices T0, T1 respectively. (Note that T0, T1

form a pseudorandom sharing of the matrix D.)

3. S and R interact with OTk

k

in the following way:

• S acts as receiver with input {s
i

}
i2[k].

• R acts as sender with inputs {u
i

, v
i

}
i2[k], where each u

i

is chosen uniformly at random

from {0, 1}k. (Note v
i

was already chosen by R in Step 2.)

• S receives output {ai}
i2[k].

S forms k ⇥ k matrix A such that the i-th column of A is the vector ai.

4. For each i 2 [k], R sends w
i

= G(u
i

)�ti0.

5. S forms m⇥ k matrix Q such that

• if s
i

= 0, then qi = w
i

�G(ai),

• else if s
i

= 1, then qi = G(ai).

22



Let q
j

denote the j-th row of Q. (Note qi = ti
s

i

. Note q
j

= ((t
j,0�tj,1)�s)�tj,0. Simplifying,

q
j

�t
j,0 = c

r

j

� s.)

6. For j 2 [m] and for every 0  r < n, S sends y
j,r

= x
j,r

�H(j,q
j

�(c
r

� s)).

7. For j 2 [m], R recovers z
j

= y
j,r

j

�H(j, t
j,0).

The amortized cost per instance of the
�
n

1

�
-OTm

`

protocol above is (k+n`). This yields a OTm

`

protocol whose amortized concrete cost per instance is n`+ (k/ log n) bits.
Note that our pseudorandom secret sharing technique can be applied to the IKNP construction

as well. Such an application would reduce the IKNP cost of OTm

`

from m(2k + 2`) to m(k + 2`).
Observe that the reduced costs also have an impact on the oblivious key transfer phase (by constant
factor 4/3) of garbled circuit based constructions where ` = k.

D.1 Concrete Performance Analysis

We analyse the concrete performance improvements resulting from the observation above.
Cost of IKNP. In order to perform a reduction from OTm

`

to OTk

k

, the communication cost of IKNP
is given by 2mk+2m`. Using the optimization described above, this can be reduced to mk+2m`.
The amortized cost per instance is k+2`. For transmitting 1-bit secrets, we see that the amortized
cost per instance is k + 2. The security of their reduction is 2�k (assuming that m� k, and that
their reduction from OTk

m

to OTk

k

uses a random oracle instead of a PRG).
Cost of our protocol. Recall that the amortized cost per instance of our protocol with 1-bit secrets
was derived as (n + (2k/ log n)) under the constraints n22�k/2 = 2�kIKNP , and n  k (imposed by
our use of Walsh-Hadamard codes). Using the optimization described above, our amortized cost
for

�
n

1

�
-OTm

`

can be reduced to k+n` (from 2k+n`). This implies that the cost of our OTm

`

can be
reduced to (n+(k/ log n)). Substituting k = 2kIKNP+4 log n, we obtain the cost of our protocol as
(n+ (2kIKNP/ log n) + 8). Thus, our task simply reduces to choosing the right value of n for which
our cost function is minimized while satisfying k = 2kIKNP +4 log n � n. The results are presented
in Table 4.

We also present a comparison between the performance of variants of IKNP protocol and our
protocols depending on inclusion of optimization in Table 5.

E 1-out-of-n OT Extension in the Preprocessing Model

We present our extension protocol in the preprocessing model. We do this by using a straightforward
generalization of Beaver’s circuit randomization technique [Bea95, Bea92, IKM+13]. The resulting
construction has o✏ine communication complexity O(mk), and online communication complexity
O(m log n+mn`). We present our construction assuming the existence of a suitable code C.

The storage complexity of our o✏ine phase is O(mn`) bits on the sender side, and O(m`) bits
on the receiver side. Observe that no cryptographic operations are performed in the online phase.

Construction 3 (1-out-of-n OT Extension in the Preprocessing Model).

OFFLINE PHASE.
Common Input: a security parameter k such that k � n, and a suitable code C = (c0, . . . , c

k�1).
Oracle: a random oracle H : [m]⇥ {0, 1}k ! {0, 1}`.
Cryptographic Primitive: an ideal OTk

m

primitive.
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kIKNP Optimized IKNP our (optimized) cost min n our cost improvement factor
20 22 n+ 8 + 40/ log n 6 30 0.733333
30 32 n+ 8 + 60/ log n 8 36 0.888889
40 42 n+ 8 + 80/ log n 8 43 0.976744
50 52 n+ 8 + 100/ log n 11 48 1.08333
60 62 n+ 8 + 120/ log n 11 54 1.14815
80 82 n+ 8 + 160/ log n 15 64 1.28125
100 102 n+ 8 + 200/ log n 16 74 1.37838
120 122 n+ 8 + 240/ log n 16 84 1.45238
160 162 n+ 8 + 320/ log n 21 102 1.58824
200 202 n+ 8 + 400/ log n 22 120 1.68333
240 242 n+ 8 + 480/ log n 27 136 1.77941
300 302 n+ 8 + 600/ log n 32 160 1.8875
500 502 n+ 8 + 1000/ log n 40 236 2.12712
1000 1002 n+ 8 + 2000/ log n 66 405 2.47407

Table 4: Comparison of (amortized) communication cost (measured in bits) of 1-out-of-2 bit OT for a given
security level. The costs are computed assuming parties are semi-honest.

kIKNP Unopt. Opt. our un- imp over imp over our opt imp over un- imp over
IKNP IKNP opt cost unopt IKNP opt IKNP cost opt IKNP opt IKNP

20 42 22 43 0.976744 0.511628 30 1.4 0.733333
30 62 32 54 1.14815 0.592593 36 1.72222 0.888889
40 82 42 64 1.28125 0.65625 43 1.90698 0.976744
50 102 52 74 1.37838 0.702703 48 2.125 1.08333
60 122 62 84 1.45238 0.738095 54 2.25926 1.14815
80 162 82 102 1.58824 0.803922 64 2.53125 1.28125
100 202 102 120 1.68333 0.85 74 2.72973 1.37838
120 242 122 136 1.77941 0.897059 84 2.88095 1.45238
160 322 162 168 1.91667 0.964286 102 3.15686 1.58824
200 402 202 199 2.0201 1.01508 120 3.35 1.68333
240 482 242 228 2.11404 1.0614 136 3.54412 1.77941
300 602 302 271 2.2214 1.11439 160 3.7625 1.8875
500 1002 502 405 2.47407 1.23951 236 4.24576 2.12712
1000 2002 1002 708 2.82768 1.41525 405 4.94321 2.47407

Table 5: Comparison of (amortized) communication cost (measured in bits) of 1-out-of-2 bit OT for a given
security level. The costs are computed assuming parties are semi-honest.
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1. S chooses s  {0, 1}k at random. Let s
i

denote the i-th bit of s. R chooses m selection
integers r = (r1, . . . , rm) at random such that 0  r

j

< n for 1  j  m.

2. R forms m⇥ k matrices T0, T1 in the following way:

• Choose t
j,0, tj,1  {0, 1}k at random such that t

j,0�tj,1 = c
r

j

.

Let ti0, t
i

1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTk

m

in the following way:

• S acts as receiver with input {s
i

}
i2[k].

• R acts as sender with input {ti0, ti1}i2[k].
• S receives output {qi}

i2[k].

S forms m⇥ k matrix Q such that the i-th column of Q is the vector qi. (Note qi = ti
s

i

.) Let
q
j

denote the j-th row of Q. (Note q
j

= ((t
j,0�tj,1)�s)�tj,0. Simplifying, q

j

�t
j,0 = c

r

j

�s.)

4. Parties perform the following operations locally:

• S locally computes h
j,r

= H(j,q
j

�(c
r

� s)) for j 2 [m] and r 2 [n].

• R locally computes g
j

= H(j, t
j,0) for j 2 [m].

ONLINE PHASE.
Input of S: m tuples (x

j,0, . . . , xj,n�1) of `-bit strings, 1  j  m.
Input of R: m selection integers b = (b1, . . . , bm) such that 0  b

j

< n for 1  j  m.

1. For j 2 [m], R sends a
j

= r
j

� b
j

(where the subtraction is done in the ring Z
m

) to S.

2. For j 2 [m] and for every 0  r < n, S sends y
j,r

= x
j,r

�h
j,r+a

j

.

3. For j 2 [m], R recovers z
j

= y
j,b

j

�g
j

.

F On Instantiating the Random Oracle

In this section we define explicit primitives that may be used to replace the random oracle in
our constructions. We define C-correlation-robust hash functions as the following generalization of
correlation-robust hash functions [IKNP03].

Definition 1 (C-Correlation-Robust Hash Functions). Suppose k is a security parameter. Let
C = {c0, . . . , cn�1} be a set of k-bit strings such that n = poly(k) and for i 6= j, the Hamming
distance between c

i

and c
j

is ⌦(k). Then, H : {0, 1}⇤ ! {0, 1}`out(k) is C-correlation-robust if for
any polynomial p(·) and any non-uniform polynomial-time distinguisher A provided with input C,
the following is negligible in the security parameter k:

8
><

>:
R {0, 1}`in(k) :

{(i, j,H(1, w1�((ci�cj)�R)))}0i,j<n,i 6=j

,
...

{(i, j,H(p, w
p

�((c
i

�c
j

)�R)))}0i,j<n,i 6=j

,

9
>=

>;
w1, . . . , wp

2 {0, 1}`in(k)

is computationally indistinguishable from the uniform distribution over {0, 1}p·`out(k). (In both cases,
p = p(k).)
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Observe that for C = {0k, 1k}, the definition above exactly captures the notion of correlation
robust hash functions from [IKNP03].

When C is the set containing the first n codewords of the Walsh-Hadamard code with codelength
k, then we can replace the random oracle in Construction 1 with C-correlation-robust hash functions.

For the implicit construction in Section 5.3, setting C to be the first n codewords of the code
given by Claim 2 allows us to replace the random oracle with C-correlation-robust hash functions.

The reduction of security of our construction to C-correlation-robust hash functions (for the
appropriate C) is straightforward, and will appear in the full version.

Note that C-correlation-robustness is a simple property enjoyed by a random function. Hence,
any evidence that hash functions such as SHA1 or RC5 violate this property can be considered as
a valid attack against these functions.
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