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ABSTRACT
We describe a lightweight protocol for oblivious evaluation of
a pseudorandom function (OPRF) in the presence of semi-
honest adversaries. In an OPRF protocol a receiver has
an input r; the sender gets output s and the receiver gets
output F (s, r), where F is a pseudorandom function and s
is a random seed. Our protocol uses a novel adaptation of 1-
out-of-2 OT-extension protocols, and is particularly efficient
when used to generate a large batch of OPRF instances.
The cost to realize m OPRF instances is roughly the cost
to realize 3.5m instances of standard 1-out-of-2 OTs (using
state-of-the-art OT extension).

We explore in detail our protocol’s application to semi-
honest secure private set intersection (PSI). The fastest state-
of-the-art PSI protocol (Pinkas et al., Usenix 2015) is based
on efficient OT extension. We observe that our OPRF can
be used to remove their PSI protocol’s dependence on the
bit-length of the parties’ items. We implemented both PSI
protocol variants and found ours to be 3.0–3.2× faster than
Pinkas et al. for PSI of 128-bit strings and sufficiently large
sets. Concretely, ours requires only 4.6 seconds to securely
compute the intersection of 220-size sets, regardless of the
bitlength of the items. For very large sets, our protocol is
only 5.2× slower than the insecure näıve hashing approach
for PSI.

1. INTRODUCTION
This work involves OT, OPRF and PSI constructions. We

start by reviewing the three primitives.

Oblivious Transfer.
Oblivious Transfer (OT) has been a central primitive in
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the area of secure computation. Indeed, the original proto-
cols of Yao [28] and GMW [7, 8] both use OT in a critical
manner. In fact, OT is both necessary and sufficient for se-
cure computation [15]. Until early 2000’s, the area of generic
secure computation was often seen mainly as a feasibility
exercise, and improving OT performance was not a priority
research direction. This changed when Yao’s Garbled Cir-
cuit (GC) was first implemented [20] and a surprisingly fast
OT protocol (which we will call IKNP) was devised by Ishai
et al. [12].

The IKNP OT extension protocol [12] is truly a gem; it
allows 1-out-of-2 OT execution at the cost of computing and
sending only a few hash values (but a security parameter of
public key primitives evaluations were needed to bootstrap
the system). IKNP was immediately noticed and since then
universally used in implementations of the Yao and GMW
protocols. It took a few years to realize that OT extension’s
use goes far beyond these fundamental applications. Many
aspects of secure computation were strengthened and sped
up by using OT extension. For example, Nielsen et al. [24]
propose an approach to malicious two-party secure compu-
tation, which relates outputs and inputs of OTs in a larger
construction. They critically rely on the low cost of batched
OTs. Another example is the application of information-
theoretic Gate Evaluation Secret Sharing (GESS) [16] to the
computational setting [17]. The idea of [17] is to stem the
high cost in secret sizes of the GESS scheme by evaluating
the circuit by shallow slices, and using OT extension to ef-
ficiently “glue” them together. Particularly relevant for our
work, efficient OTs were recognized by Pinkas et al. [27] as
an effective building block for private set intersection, which
we discuss in more detail later.

The IKNP OT extension, despite its wide and heavy use,
received very few updates. In the semi-honest model it is
still state-of-the-art. Robustness was added by Nielsen [23],
and in the malicious setting it was improved only very re-
cently [2, 14]. Improvement for short secret sizes, motivated
by the GMW use case, was proposed by Kolesnikov and Ku-
maresan [18]. We use ideas from their protocol, and refer
to it as the KK protocol. Under the hood, KK [18] noticed
that one core aspect of IKNP data representation can be ab-
stractly seen as a repetition error-correcting code, and their
improvement stems from using a better code. As a result,



instead of 1-out of-2 OT, a 1-out of-n OT became possible
at nearly the same cost, for n up to approximately 256.

Oblivious PRFs.
An oblivious pseudorandom function (OPRF) [6] is a pro-

tocol in which a sender learns (or chooses) a random PRF
seed s while the receiver learns F (s, r), the result of the PRF
on a single input r chosen by the receiver. While the gen-
eral definition of an OPRF allows the receiver to evaluate
the PRF on several inputs, in this paper we consider only
the case where the receiver can evaluate the PRF on a single
input.

The central primitive of this work, an efficient OPRF pro-
tocol, can be viewed as a variant of Oblivious Transfer (OT)
of random values. We build it by modifying the core of
OT extension protocols [12, 18], and its internals are much
closer to OT than to prior works on OPRF. Therefore, our
presentation is OT-centric, with the results stated in OPRF
terminology.

OT of random messages shares many properties with OPRF.
In OT of random messages, the sender learns randomm0,m1

while the receiver learns mr for a choice bit r ∈ {0, 1}.
One can think of the function F ((m0,m1), r) = mr as a
pseudorandom function with input domain {0, 1}. Similarly,
one can interpret 1-out-of-n OT of random messages as an
OPRF with input domain {1, . . . , n}.

In this work, we propose a novel extension to the IKNP
and KK protocols. At almost the same cost as 1-out-of-2
IKNP and KK OTs, we are able to achieve an 1-out-of-n
OT of random messages for arbitrarily large n. This can be
viewed as an OPRF with unbdounded input domain {0, 1}∗.
That is, the receiver has an input r ∈ {0, 1}∗ and learns the
value R(r), while the sender obtains the ability to evaluate
R(r′) for any string r′, where R is a pseudorandom function.
Because our protocol achieves a large number of OPRF in-
stances, we call our protocol batched OPRF (bOPRF).
Technically speaking, we achieve a slight variant of the stan-
dard oblivious PRF functionality that is nevertheless suffi-
cient for most applications of OPRFs.

Application to Private Set Intersection (PSI).
Private set intersection (PSI) refers to the setting where

two parties each hold sets of items and wish to learn noth-
ing more than the intersection of these sets. Today, PSI is a
truly practical primitive, with extremely fast cryptograph-
ically secure implementations [26]. Incredibly, these imple-
mentations are only a relatively small factor slower than
than the näıve and insecure method of exchanging hashed
values. Among the problems of secure computation, PSI is
probably the one most strongly motivated by practice. In-
deed, already today companies such as Facebook routinely
share and mine shared information [25, 29]. In 2012, (at
least some of) this sharing was performed with naive hash-
ing. Today, companies are able and willing to tolerate a
reasonable performance penalty, with the goal of achieving
stronger security [29]. We believe that the ubiquity and
the scale of private data sharing, and PSI in particular, will
continue to grow as big data becomes bigger and privacy
becomes a more recognized issue. We refer reader to [26, 27]
for additional discussion and motivation of PSI.

In our work, we significantly improve state-of-the-art PSI
protocol of [26] by replacing one of its components with
bOPRF. This change results in a factor 2.0–3.2× perfor-

mance improvement for PSI of moderate-length strings (64
or 128 bits) and reasonably large sets. We substantiate our
algorithmic results with implementation and detailed evalu-
ation. Our largest improvement is for the case of larger sets
(224 items each) of long strings (128 bits), which requires 63
seconds in our protocol but 214 seconds using [26].

1.1 Related work

Oblivious transfer.
Our bOPRF protocol can be seen as an OPRF protocol

as well as a variant of oblivious transfer in the paradigm
of IKNP [12]. As mentioned in Section 1, given its critical
importance in secure computation, the IKNP OT extension
has a surprisingly short list of follow up improvements, ex-
tensions and generalizations.

Most relevant prior work for us is the KK protocol [18],
which views the IKNP OT from a new angle and presents a
framework generalizing IKNP. More specifically, under the
hood, players in the INKP protocol encode Receiver’s se-
lection bit b as a repetition string of k copies of b. KK
generalized this and allowed the use of an error-correcting
code (ECC) with large distance as the selection bit encod-
ing. For a code consisting of n codewords, this allowed to
do 1-out of-n OT with consuming a single row of the OT ex-
tension matrix. In this work, we take the coding-theoretic
perspective to the extreme. We observe that we never need
to decode codewords, and by using (pseudo-)random codes
we are able to achieve what amounts to a 1-out-of-poly OT
by consuming a single row of the OT matrix, which for the
same security guarantee is only about 3.5× longer than in
the original IKNP protocol.

Our work is strictly in the semi-honest security model.
Other work on OT extension extends the IKNP protocol to
the malicious model [2, 14] and the PVC (publicly verifiable
covert) model [19].

Oblivious PRF.
Oblivious pseudorandom functions were introduced by Freed-

man, Ishai, Pinkas, & Reingold [6]. In general, the most
efficient prior protocols for OPRF require expensive public-
key operations because they are based on algebraic PRFs.
For example, an OPRF of [6] is based on the Naor-Reingold
PRF [22] and therefore requires exponentiations. Further-
more, it requires a number of OTs proportional to the bit-
length of the PRF input. The protocol of [3] constructs an
OPRF from unique blind signature schemes. The protocol of
[13] obliviously evaluates a variant of the Dodis-Yampolskiy
PRF [4] and hence requires exponentiations (as well as other
algebraic encryption components to facilitate the OPRF pro-
tocol).

Private set intersection.
Oblivious PRFs have many applications, but in this paper

we explore in depth the application to private set intersec-
tion (PSI). We consider only the semi-honest security model.
Our PSI protocol is most closely related to that of Pinkas
et al. [26], which is itself an optimized variant a previous
protocol of [27]. We describe this protocol in great detail in
Section 5.

We refer the reader to [27] for an overview of the many
different protocol paradigms for PSI. As we have mentioned,
the OT-based protocols have proven to be the fastest in prac-



tice. We do, however, point out that the OT-based proto-
cols do not have the lowest communication cost. In settings
where computation is not a factor, but communication is at a
premium, the best protocols are those in the Diffie-Hellman
paradigm introduced in [11]. In the semi-honest version of
these protocols, each party sends only 2n group elements,
where n is the number of items in each set. However, these
protocols require a number of exponentiations proportional
to the number of items, making their performance slow in
practice. Concretely, [26] found Diffie-Hellman-based proto-
cols to be over 200× slower than the OT-based ones.

While we closely follow the paradigm of [27], we abstract
parts of their protocol in the language of oblivious PRFs
(OPRF). The connection between OPRF and PSI was al-
ready pointed out in [6]. However, the most straight-forward
way of using OPRF to achieve PSI requires an OPRF pro-
tocol in which the receiver can evaluate the PRF on many
inputs, whereas our OPRF allows only a single evaluation
point for the receiver. OPRFs have been used for PSI else-
where, generally in the malicious adversarial model [13, 10,
9].

Other applications of OPRF.
Just like a standard OPRF, our batched OPRF function-

ality immediately and efficiently implies the keyword search
functionality of [6] (also called “string-select OT (SOT)” in
[17]). Keyword search allows the Receiver R to select the
received secret via a string. In SOT the Sender S has a
mapping of keywords to secret values. R receives the se-
cret corresponding to the keyword string it selected. In [17],
SOT for k-bit selection strings is built by executing k 1-out
of-2 OTs, and this technique is also essentially what is used
in the PSI protocol of [27]. Using bOPRF, we can achieve
keyword search by consuming only a single row of the OT
extension matrix.

Oblivious PRFs can be used for secure pattern match-
ing [10, 5], where one party holds a long text T and the
other party holds a short pattern string p. The parties learn
the location of all occurences of p within T .

2. TECHNICAL OVERVIEW OF OUR RE-
SULTS

We start with the OT-extension paradigm of Ishai, Kil-
lian, Nissim & Petrank (IKNP) [12]. The goal of OT ex-
tension is to use a small number k of “base-OTs,” plus only
symmetric-key operations, to achievem� k“effective OTs.”
Here, k is chosen depending on the computational security
parameter κ; in the following we show to what value k should
be set. Below we describe an OT extension that achieves m
1-out-of-2 OTs of random strings, in the presence of semi-
honest adversaries.

We follow the notation of [18] as it explicates the coding-
theoretic framework for OT extension. Suppose the receiver
has choice bits r ∈ {0, 1}m. He chooses two m× k matrices
(m rows, k columns), T and U . Let tj ,uj ∈ {0, 1}k denote
the j-th row of T and U , respectively. The matrices are
chosen at random, so that:

tj ⊕ uj = rj · 1k
def
=

{
1k if rj = 1

0k if rj = 0

The sender chooses a random string s ∈ {0, 1}k. The
parties engage in k instances of 1-out-of-2 string-OT, with

their roles reversed, to transfer to sender S the columns of
either T or U , depending on the sender’s bit si in the string s
it chose. In the i-th OT, the receiver gives inputs ti and ui,
where these refer to the i-th column of T and U , respectively.
The sender uses si as its choice bit and receives output qi ∈
{ti,ui}. Note that these are OTs of strings of length m� k
— the length of OT messages is easily extended. This can
be done, e.g., by encrypting and sending the two m-bit long
strings, and using OT on short strings to send the right
decryption key.

Now let Q denote the matrix obtained by the sender,
whose columns are qi. Let qj denote the jth row. The
key observation is that

qj = tj ⊕ [rj · s] =

{
tj if rj = 0

tj ⊕ s if rj = 1
(1)

LetH be a random oracle (RO). We have that the sender can
compute two random strings H(qj) and H(qj⊕s), of which
the receiver can compute only one, via H(tj). Note that tj
equals either qj or qj⊕s, depending on the receiver’s choice
bit rj . Note that the receiver has no information about s, so
intuitively he can learn only one of the two random strings
H(qj), H(qj ⊕ s). Hence, each of the m rows of the matrix
can be used to produce a single 1-out-of-2 OT.

As pointed out by [12], it is sufficient to assume that H
is a correlation-robust hash function, a weaker assumption
than RO. A special assumption is required because the same
s is used for every resulting OT instance. See Section 3 for
definition of correlation-robustness.

Coding interpretation.
In IKNP, the receiver prepares secret shares of T and U

such that each row of T ⊕ U is either all zeros or all ones.
Kolesnikov & Kumaresan [18] interpret this aspect of IKNP
as a repetition code and suggest to use other codes instead.

Consider how we might use the IKNP OT extension pro-
tocol to realize 1-out-of-2` OT. Well, instead of a choice bit
ri for the receiver, ri will now be an `-bit string. Let C be
a linear error correcting code of dimension ` and codeword
length k. The receiver will prepare matrices T and U so that
tj ⊕ uj = C(rj).

Now, generalizing Equation 1 the sender receives

qj = tj ⊕ [C(rj) · s] (2)

where “·” now denotes bitwise-AND of two strings of length
k. (Note that when C is a repetition code, this is exactly
Equation 1.)

For each value r′ ∈ {0, 1}`, the sender associates the secret
value H(qj ⊕ [C(r′) · s]), which it can compute for all r′ ∈
{0, 1}`. At the same time, the receiver can compute one of
these values, namely, H(tj). Rearranging Equation 2, we
have:

H(tj) = H(qj ⊕ [C(rj) · s])

Hence, the value that the receiver can learn is the secret
value that the sender associates with the receiver’s choice
string r′ = rj .

At this point, OT of random strings is completed. For OT
of chosen strings, the sender will use each H(qi ⊕ [C(r) · s])
as a key to encrypt the r’th OT message. The receiver will
be able to decrypt only one of these encryptions, namely one
corresponding to its choice string rj .



To argue that the receiver learns only one string, suppose
the receiver has choice bits rj but tries to learn also the
secret H(qj ⊕ [C(r̃) · s]) corresponding to a different choice
r̃. We observe:

qj ⊕ [C(r̃) · s] = tj ⊕ [C(rj) · s]⊕ [C(r̃) · s]
= tj ⊕ [(C(rj)⊕ C(r̃)) · s]

(3)

Importantly, everything in this expression is known to the
receiver except for s. Now suppose the minimum distance
of C is κ (the security parameter). Then C(rj) ⊕ C(r̃) has
Hamming weight at least κ. Intuitively, the adversary would
have to guess at least κ bits of the secret s in order to violate
security. The protocol is secure in the RO model, and can
also be proven under the weaker assumption of correlation
robustness, following [12, 18].

Finally, we remark that the width k of the OT extension
matrix is equal to the length of codewords in C. This (k)
determines the number of base OTs and the overall cost of
the protocol.

Pseudorandom codes, OPRFs.
The main technical observation we make in this work is

pointing out that the code C need not have many of the
properties of error-correcting codes. In particular,

• We make no use of decoding, thus our code doesn’t
need to be efficiently decodable.

• We require only that for all possibilities r, r′, the value
C(r) ⊕ C(r′) has Hamming weight at least equal to
the computational security parameter κ. In fact, it
is sufficient even if the Hamming distance guarantee
is only probabilistic — i.e., it holds with overwhelm-
ing probability over choice of C (we discuss subtleties
below).

For ease of exposition, imagine letting C be a random ora-
cle with suitably long output. (Later we will show that C can
be instantiated from a pseudorandom function in a straight-
forward way.) Intuitively, when C is sufficiently long, it
should be hard to find a “near-collision.” That is, it should
be hard to find values r and r′ such that C(r) ⊕ C(r′) has
low (less than a computational security parameter κ) Ham-
ming weight. Later in Table 2 we compute the parameters
more precisely, but for now we simply point out that a ran-
dom function with output length k = 4κ suffices to make
near-collisions negligible in our applications.

We refer to such a function C (or family of functions,
in our standard-model instantiation) as a pseudorandom
code (PRC), since its coding-theoretic properties — namely,
minimum distance — hold in a cryptographic sense.

By relaxing the requirement on C from an error-correcting
code to a pseudorandom code, we remove the a-priori bound
on the size of the receiver’s choice string! In essence, the
receiver can use any string as its choice string; the sender
can associate a secret value H(qj ⊕ [C(r′) · s]) for any string

r′. As discussed above, the receiver is only able to compute
H(tj) = H(qj ⊕ [C(r) · s]) — the secret corresponding to
its choice string r. The property of the PRC is that, with
overwhelming probability, all other values of qj ⊕ [C(r̃) · s]
(that a polytime player may ever ask) differ from tj in a way
that would require the receiver to guess at least κ bits of s.

As discussed in Section 1, we can view the functionality
achieved by this protocol as a kind of oblivious PRF. Intu-

itively, r 7→ H(q ⊕ [C(r) · s]) is a function that the sender
can evaluate on any input, whose outputs are pseudoran-
dom, and which the receiver can evaluate only on its chosen
input r.

In Section 3 we give a formal definition of the functionality
that we achieve. The main subtleties of the definition are
(1) the fact that the receiver learns slightly more than the
output of this “PRF”— in particular, the receiver learns t =
q⊕ [C(r) ·s] rather than H(t); (2) the fact that the protocol
realizes many instances of this “PRF” but with related keys
— s and C are shared among all instances.

We prove our construction secure assuming C is a pseu-
dorandom code and that H satisfies a natural generalization
of the “correlation robust” assumption from [12].

Summary & cost.
With our new variant of the IKNP protocol, we can obtain

m OPRF instances efficiently, using only k base OTs plus
symmetric-key operations. Compared to IKNP-paradigm
OT extension for 1-out-of-2 OTs, the main differences in
cost are:

• Cost associated with the increased width of the OT
extension matrices. In our case, the matrix has width
k rather than κ — concretely 3κ < k < 4κ in our
applications. Note that the parameter k controls the
number of base OTs required.1

• Computational costs associated with the pseudoran-
dom code C. While in IKNP C is a repetition code,
and in [18] C is a short Walsh-Hadamard code, in our
protocol C is cryptographic. However, we are able to
instantiate C using a PRF. In practice, we use AES as
the PRF, and the associated hardware acceleration for
AES in modern processors makes the cost of comput-
ing C minimal.

Application to private set intersection.
Private set intersection (PSI) refers to a computation in

which Alice has a set A of items, Bob has a set B of items,
and the two learn only A ∩B and nothing more.

We show how bOPRF can be used to significantly reduce
the cost of semi-honest-secure PSI. The current fastest pro-
tocol for the task is that of Pinkas et al. [26]. The protocol
relies heavily on efficient OT extension (for standard 1-out-
of-2 OTs).

Looking closely at the PSI protocol of [26], we see that
they use a number of OTs that is proportional to N`, where
N is the number of items in the parties’ sets and ` is the
length (in bits) of those items. We can replace their use
of 1-out-of-2 OTs with a suitable use of bOPRF and remove
the dependence on `. Our protocol uses a number of bOPRF
instances that is proportional only to N .

We implemented our bOPRF-based PSI protocol and com-
pared its performance to that of [26]. For PSI on strings of
length ` ∈ {64, 128} and sufficiently large sets, our protocol
is 2.0–3.2 times faster. This is a significant achievement in
the already very polished PSI state of the art!

1In our instantation, we actually use IKNP to extend κ base
OTs to k OTs, and then use those k OTs as base OTs for
bOPRF instances. Hence, the number of public-key OT op-
erations is unchanged. Still, the total communication cost
remains proportional to km in our protocol rather than κm.



3. TECHNICAL PRELIMINARIES
We write ‖x‖H to denote the hamming weight of a binary

string x. Our computational security parameter is κ and
statistical security parameter is σ.

3.1 Correlation Robustness
The OT extension protocol of IKNP [12] is proven secure

under a so-called correlation robustness assumption on the
underlying hash function. Our protocol makes use of the
following generalization of this notion:

Definition 1. Let H be a hash function with input length
n. Then H is d-Hamming correlation robust if, for any
(fixed) strings z1, . . . , zm ∈ {0, 1}∗, a1, . . . , am, b1, . . . , bm ∈
{0, 1}n with ‖bi‖H ≥ d, the following distribution, induced
by random sampling of s← {0, 1}n, is pseudorandom:

H(z1‖a1 ⊕ [b1 · s]), . . . , H(zm‖am ⊕ [bm · s])

As in the overview, “·” denotes bitwise-AND.
The definition generalizes previous ones in the following

way:

• If d = n, then the only legal choice of bi is 1n, and
H(zi‖ai ⊕ [bi · s]) simplifies to H(zi‖ai ⊕ s). Restrict-
ing the definition in this way, and taking zi = i corre-
sponds to the IKNP notion of correlation robustness.

• If the bi values are required to be elements of a linear
error correcting code C, then the resulting definition
is one under which the construction of [18] is secure
(for simplicity they prove security in the random oracle
model).

3.2 Pseudorandom Codes
We now formalize the notion of a pseudorandom code,

motivated in Section 2.

Definition 2. Let C be a family of functions. We say
that C is a (d, ε) pseudorandom code (PRC) if for all
strings x 6= x′,

Pr
C←C

[
‖C(x)⊕ C(x′)‖H < d

]
≤ 2−ε

That is, a (d, ε)-PRC guarantees that the hamming dis-
tance of two codewords is less or equal to d with probability
at most 2−ε.

The reader may find it convenient to think of C as a ran-
dom oracle. However, it suffices for C to be a pseudorandom
function instantiated with random seed:

Lemma 1. Suppose F : {0, 1}κ × {0, 1}∗ → {0, 1}n is a
pseudorandom function. Define C = {F (s, ·) | s ∈ {0, 1}κ}.
Then C is a (d, ε)-pseudorandom-code where:

2−ε = 2−n
d−1∑
i=0

(
n

i

)
+ ν(κ).

and ν is a negligible function.

Proof. Consider the following game. An adversary has
strings x and x′ hard-coded. It queries its oracle O on x
and x′ and outputs 1 if O(x) and O(x′) are within Hamming
distance d.

When O is instantiated as a random function, a simple
counting argument shows that the adversary outputs 1 with
probability 2−n

∑d−1
i=0

(
n
i

)
.

When O is instantiated as a PRF F with random seed,
the probability must be within ν(κ) of the above probability,
where ν is negligible. The adversary’s output probability in
this instantiation is exactly the probability specified in the
PRC security definition, so the lemma follows.

Note that in our typical usage of PRCs, the choice of C
(in this case, the seed to the PRF) is a public value. But in
both the security definition for PRC and in this analsysis,
the values x and x′ are fixed before the PRF key is chosen.
Whether or not F (s, x) and F (s, x′) are within Hamming
distance d is not affected by making the PRF seed pub-
lic.

3.3 Oblivious PRFs
As outlined in Section 2, our main construction is a variant

of OT-extension which associates a pseudorandom output
R(x) for every possible input r ∈ {0, 1}∗. The sender can
compute R(r) for any r, while the receiver learns R(x) for
only a single value r. This functionality is reminiscent of an
oblivious PRF (OPRF) [6]. In this section we describe
how our construction can be interpreted as a variant OPRF
functionality.

In an OPRF functionality for a PRF F , the receiver pro-
vides an input2 r; the functionality chooses a random seed
s, gives s to the sender and F (s, r) to the receiver.

In our protocol, the sender knows qj and s. We can con-
sider these values as keys to a PRF:

F ((qj , s), r) = H(j‖qj ⊕ [C(r) · s])

Intuitively, the sender can evaluate this PRF at any point,
while the receiver can evaluate it on only one. However, we
point out some subtleties:

• In our protocol, the receiver learns tj = qj⊕ [C(r∗) ·s]
for his chosen input r∗, which is more information than
the“PRF output”H(j‖tj). However, even knowing tj ,
the other outputs of the“PRF”still look random. This
common feature of an OPRF protocol leaking slightly
more than the PRF output is called relaxed OPRF in
[6].

• In our protocol, we realize many “OPRF” instances
with related keys. In particular, all instances have the
same component s (and C).

We can encapsulate these properties in the following def-
initions.

3.3.1 PRF variant we achieve
We refer to F as a relaxed PRF if there is another func-

tion F̃ , such that F (k, r) can be efficiently computed given

just F̃ (k, r). We then define the relevant notion of secu-
rity with respect to an adversary who can query the relaxed

function F̃ rather than just F .

Definition 3. Let F be a relaxed PRF with output length
v. We write the seed of F as a pair (k∗, k). Then F has m-
correlated-PRF (m-cPRF) security if the advantage of
any PPT adversary in the following game is negligible:
2More general OPRF variants allow the receiver to learn the
PRF output on many inputs — here it suffices to limit the
receiver to one input.



1. The adversary chooses strings x1, . . . , xn and m pairs
(j1, y1), . . . , (jm, ym), where yi 6= xji .

2. Challenger chooses random related PRF seeds k∗, k1, . . . , kn
and tosses a coin b← {0, 1}.

(a) If b = 0, the challenger outputs {F̃ ((k∗, kj), xj)}j
and {F ((k∗, kji), yi)}i.

(b) If b = 1 the challenger chooses z1, . . . , zm ← {0, 1}v

and outputs {F̃ ((k∗, kj), xj)}j and {zi}i,

3. The adversary outputs a bit b′. The advantage of the
adversary is Pr[b = b′]− 1/2.

Intuitively, the PRF is instantiated with n related keys
(sharing the same k∗ value). The adversary learns the re-
laxed output of the PRF on one chosen input for each key.
Then any m additional PRF outputs (corresponding to any
seed) are indistinguishable from random by the adversary.

Lemma 2. Let C be a (d, ε+log2m)-PRC, where 1/2ε is a
negligible function, Let H be a d-Hamming correlation robust
hash function. Define the following relaxed PRF, for C ∈ C:

F
(

((C, s), (q, j)), r
)

= H(j‖q ⊕ [C(r) · s])

F̃
(

((C, s), (q, j)), r
)

= (j, C, q ⊕ [C(r) · s])

Then F has m-correlated-PRF security.

Proof. In the m-cPRF game with this PRF, we can
rewrite the adversary’s view as in Section 2 as:

(C, {tj}j , {H(ji‖tji ⊕ [(C(xji)⊕ C(yi)) · s])}i)

There are m terms of the form C(xji) ⊕ C(yi) for xji 6=
yi. Each of these terms has Hamming weight at least d
with probability at least 1 − 2−ε−log2m over the choice of
C. By a union bound, all m terms have Hamming weight
at least d with probability 1 − 2−ε. Conditioning on this
(overwhelmingly likely) event, we can apply the d-Hamming
correlation robust property of H to see that the H-outputs
are indistinguishable from random.

3.3.2 Oblivious PRF functionality
In Figure 1 we formally describe the variant OPRF func-

tionality we achieve. It generates m instances of the PRF
with related keys, and allows the receiver to learn the (re-
laxed) output on one input per key.

The functionality is parameterized by a relaxed PRF F ,
a number m of instances, and two parties: a sender and
receiver.

On input (r1, . . . , rm) from the receiver,

• Choose random related PRF seeds k∗, k1, . . . , km
and give these to the sender.

• Give F̃ ((k∗, k1), r1), . . . , F̃ ((k∗, km), rm) to the re-
ceiver.

Figure 1: Relaxed batched oblivious-PRF ideal func-
tionality.

4. MAIN CONSTRUCTION
We present our main construction, which is a semi-honest

secure protocol for the batched OPRF functionality in Fig-
ure 1, instantiated with the relaxed PRF defined in Lemma 2.

4.1 Notation
We use the notation OTkm to denote k instances of 1-out-

of-2 string-OT where the strings are m bits long. Let S de-
note the sender, and let R denote the receiver. In OTkm, the
sender’s input is {(xj,0, xj,1)}j∈[k], i.e., m pairs of strings,
each of length m, and the receiver holds input {rj}j∈[k],
where each rj is a choice bit. Note that if S provides input
{(xj,0, xj,1)}j∈[k] to OTkm, and if R provides input {rj}j∈[k]
to OTkm, then R receives back {xj,rj}j∈[k], while S receives
nothing.

Following the convention in IKNP, we denote vectors in
bold, and matrices in capitals. For a matrix A, we let aj
denote the j-th row of A, and ai denote the i-th column of A.
If a = a1‖ · · · ‖ap and b = b1‖ · · · ‖bp are two vectors, then
we define ⊕ and · operations as follows. We use the notation
a⊕b to denote the vector (a1⊕b1)‖ · · · ‖(ap⊕bp). Similarly,
the notation a · b denotes the vector (a1 · b1)‖ · · · ‖(ap · bp).
Finally, suppose c ∈ {0, 1}, then c · a denotes the vector
(c · a1)‖ · · · ‖(c · ap).

We note that to simplify notation via indexing, in the
following we will refer to the OT matrices as T0 and T1,
rather than as T and U , as we did when presenting high-
level overview of our work.

4.2 The bOPRF construction
Our bOPRF protocol is presented in Figure 2. It closely

follows the high-level overview. Recall that we are consid-
ering a PRF whose seed is of the form ((C, s), (j, qj)) and
whose relaxed output is of the form t0,j = qj ⊕ (C(rj) · s).

Theorem 3. The bOPRF protocol in Figure 2 securely
realizes the relaxed batched OPRF functionality of Figure 1,
instantiated with the relaxed PRF defined in Lemma 2, in the
presence of semi-honest adversaries, where κ is the compu-
tational security parameter.

Proof. When using the abstraction of an OPRF func-
tionality, the proof is elementary.

Simulating S. The simulator receives output from the
OPRF ideal functionality consisting of related PRF seeds: a
common (C, s) and a qj for each j ∈ [m]. Let Q be a matrix

whose rows are the qj . Let qi denote the ith column of Q.
The simulator simulates an execution of the protocol in

which S chooses C in step 0, chooses s in step 1, and receives
output {qi}i∈[k] as OT output in step 3.

Simulating R. The simulator has input (r1, . . . , rm) and
receives output from the OPRF ideal functionality consist-
ing of a relaxed PRF output (j, C, tj) for each j ∈ [m].

The simulator simulates an execution of the protocol in
which R receives C in step 0 and samples t0,j = tj in step
2.

In both cases it is straight-forward to check that the sim-
ulation is perfect.

5. IMPROVING PRIVATE SET INTERSEC-
TION



Input of R: m selection strings r = (r1, . . . , rm), ri ∈
{0, 1}∗.

Parameters:

• A (κ, ε)-PRC family C with output length k = k(κ).

• A κ-Hamming correlation-robust H : [m] ×
{0, 1}k → {0, 1}v.

• An ideal OTkm primitive.

Protocol:

0. S chooses a random C ← C and sends it to R.

1. S chooses s ← {0, 1}k at random. Let si denote
the i-th bit of s.

2. R forms m×k matrices T0, T1 in the following way:

• For j ∈ [m], choose t0,j ← {0, 1}k and set
t1,j = C(rj)⊕ t0,j .

Let ti0, t
i
1 denote the i-th column of matrices T0, T1

respectively.

3. S and R interact with OTkm in the following way:

• S acts as receiver with input {si}i∈[k].
• R acts as sender with input {ti0, ti1}i∈[k].
• S receives output {qi}i∈[k].

S forms m× k matrix Q such that the i-th column
of Q is the vector qi. (Note qi = tisi .) Let qj denote
the j-th row of Q. Note, qj = ((t0,j⊕t1,j) ·s)⊕t0,j .
Simplifying, qj = t0,j ⊕ (C(rj) · s).

4. For j ∈ [m], S outputs the PRF seed
((C, s), (j, qj)).

5. For j ∈ [m], R outputs relaxed PRF output
(C, j, t0,j).

Figure 2: The bOPRF protocol

The main application of bOPRF is to improve the per-
formance of semi-honest-secure private set intersection
(PSI). Pinkas et al. [27] give a thorough summary of many
different paradigms for PSI in this model.

For our purposes, we summarize only the most efficient
PSI protocol, which is the OT-based paradigm of [27] in-
cluding the optimizations suggested in followup work [26].
Hereafter we refer to their protocol as the “PSSZ” protocol.

5.1 The OPRF Implicit in PSSZ
The main building block of PSSZ can be viewed as a (re-

laxed) OPRF based on random OTs (i.e., oblivious transfers
of random messages), which can be obtained efficiently from
OT extension. The protocol is as follows, where Bob has
input r, with ` = |r|.

• The parties perform ` 1-out-of-2 OTs of random mes-
sages, with Alice as receiver. Bob acts as receiver and
uses the bits of r as his choice bits. In the ith OT,
Alice learns random strings mi,0 and mi,1, while Bob
learns mi,r[i].

• Define the mapping F (x) = H
(⊕

imi,x[i]

)
, where H is

a random oracle. One can then view F as a PRF whose
keys are the mi,b values (known to Alice). Bob learns
the output of F on r only. More precisely, he learns
relaxed output {mi,r[i]}i, for which all other outputs
of F are pseudorandom.

In this description, we have treated r as a string of bits,
and therefore use 1-out-of-2 (random) OTs. However, when
using the OT extension protocol of [18], the cost of a 1-
out-of-2 random OT is essentially the same as a 1-out-of-
256 random OT. Hence, PSSZ interpret r as a strings of
characters over {0, 1}8. The protocol uses one instance of
1-out-of-256 ROT for each byte (not bit) of r.

Regardless of whether one uses 1-out-of-2 or 1-out-of-256
OT, this OPRF protocol has cost that scales with length of
the input r, whereas ours has cost independent of the input
length. Our improvement to PSSZ consists of replacing their
OPRF with ours. The rest of the protocol is unchanged.

5.2 PSI from OPRF
We now describe how the PSSZ paradigm achieves PSI

using an OPRF. This part of the overall PSI protocol is
exactly identical between our implementation and that of
[26]. For concreteness, we describe the parameters used in
PSSZ when the parties have roughly the same number n of
items.

First, the parties choose 3 random hash functions h1, h2, h3

suitable for 3-way Cuckoo hashing. Bob maps his n items
into 1.2n bins using Cuckoo hashing and a stash of size s. At
this point Bob has at most one item per bin and at most s
items in his stash — he pads his input with dummy items so
that each bin contains exactly 1 item and the stash contains
exactly s items.

The parties then run 1.2n + s instances of OPRF, where
Bob plays the role of receiver and uses each of his 1.2n + s
items as OPRF input. Let F (i, ·) denote the PRF evalu-
ated in the ith OPRF instance. In other words, if Bob has
mapped item y to bin i via cuckoo hashing, then Bob learns
F (i, y); if Bob has mapped y to position j in the stash, then
Bob learns F (1.2n+ j, y). Alice can compute F (i, ·) for any
i.

At this point, for each item y belonging to Bob, he knows
one of {F (h1(y), y), F (h2(y), y), F (h3(y), y)} if his Cuckoo
hashing maps y to a bin, or one of {F (1.2n+1, y), . . . , F (1.2n+
s, y)} if y was hashed to the stash.

Hence, for each item x belonging to Alice, she can compute
3 + s possible PRF outputs:

F (h1(x), x), F (h2(x), x), F (h3(x), x),
F (1.2n+ 1, x), . . . , F (1.2n+ s, x)

Alice randomly permutes the entire set of (3 + s)n PRF
outputs, and sends it to Bob. Bob can check which of his
values appears in this set and identify the intersection.

Intuitively, the protocol is secure against a semi-honest
Bob by the pseudorandomness of“other”PRF outputs F (i, ·).
It is easy to see that security holds even if Bob learns relaxed
PRF outputs and the relaxed PRF achieves cPRF security,
Definition 3 (i.e., Alice’s PRF outputs are pseudorandom to
an adversary who learns relaxed PRF outputs).

The protocol is correct as long as there are no spurious
collisions — i.e., Bob holds F (i, y) and Alice sends F (i′, x) =
F (i, y) for some x 6= y. Since Bob has n PRF outputs (he
does not need to check his dummy items for presence in the



intersection) and Alice has (3 + s)n, we can limit the prob-
ability of a spurious colision to 2−σ by using PRF outputs
of length σ + log2((3 + s)n2).

5.3 Comparing OPRF Subprotocols
When comparing our protocol to that of PSSZ, the only

difference is the choice of OPRF subprotocols. All other pa-
rameters — number of bins, stash size, etc. — are identical.

Later in Section 6 we give an empirical comparison of the
protocols. For now, we derive an analytical comparison of
the costs of the two OPRF subprotocols, to give a better
sense of our improvement.

We focus on the communication cost associated with the
OT primitives. Communication cost is an objective metric,
and it often reflects the bottleneck in practice (especially
in these protocols where essentially all of the cryptographic
computations are pre-computed). Although the computa-
tion costs of our protocols are different (e.g., ours requires
computing the pseudorandom code, which is a cryptographic
operation), communication cost is nonetheless a good proxy
for computation costs in OT extension protocols. The data
that is communicated in these protocols is a large matrix
that must be transposed, and this transposition is the pri-
mary contributor to computational cost.

The main benefit of our protocol is that its cost does not
scale with the size of the items being compared. Each in-
stance of OPRF consumes just one row of the OT extension
matrix. The width of this OT extension matrix is exactly
the length of the pseudorandom code (PRC). In Section 6.1
we describe how to compute an appropriate length of PRC.
For the range of parameters we consider, this parameter is
424–448 bits. Hence the OT-cost of one instance of our
OPRF protocol is 424–448 bits. The specific numbers are in
Table 1.

The PSSZ OPRF protocol uses several instances of 1-out-
of-256 ROT. With security parameter 128, the cost of such
a random OT is 256 bits using the OT extension of [18].

The main optimization of [26] allows for the OPRF sub-
protocols to be performed on items of length `∗ = `− logn
(n is the number of items in the overall PSI protocol) rather
than length `. Let `∗ denote this effective item length.
Then `∗/8 instances of 1-out-of-256 ROT are needed for one
OPRF instance. The total OT-cost of their OPRF protocol
is therefore 256`∗/8 = 32`∗ bits.

Hence, we see that our protocol has lower communica-
tion cost whenever `∗ > 448/32 = 14. Among the different
parameter settings reported in [26], the only configuration
with `∗ < 14 is for PSI of 220 items (or more) of length
32 bits. For all other configurations, our PSI protocol has
lower communication cost, with the savings increasing as the
items become longer. See Table 1.

Remark about PSI on long strings.
Our improvements to PSI are most significant for PSI of

long items. Yet, if the parties have items which are very
long strings (say, thousands of bits), they can agree on a
random hash function, hash their items locally, and perform
PSI on the shorter hashes instead. The reader may rightfully
wonder whether this idea make our improvements irrelevant!

For this approach (PSI-of-hashed-values) to work, we must
ensure that the hashing introduces no collisions among the
parties’ items. If the parties have a total of (at most) n
items combined, and we wish to limit the probability of a

OT cost
n ` `∗ PSSZ our bOPRF ratio

28 32 24 768 424 0.54
28 64 56 1792 424 0.24
28 128 120 3840 424 0.11

212 32 20 640 432 0.68
212 64 52 1664 432 0.26
212 128 116 3712 432 0.12

216 32 16 576 440 0.76
216 64 48 1536 440 0.29
216 128 112 3584 440 0.12

220 32 12 384 448 1.17
220 64 44 1408 448 0.32
220 128 108 3456 448 0.13

224 32 8 256 448 1.75
224 64 40 1280 448 0.35
224 128 104 3328 448 0.13

Table 1: Comparing the OT-cost of PSSZ-paradigm
OPRF subprotocol and ours, for various parameters.
The entries in the table refer to the contribution (in
bits) to the size of the OT-extension matrices. ` is
the item length (in bits), n is the total number of
items in the parties’ sets, and `∗ is the effective item
length when using the optimizations of [26].

collision to 2−σ, then one must choose a hash function whose
length is σ + 2 logn. When using the optimizations of [26],
the effective item length can be reduced from σ + 2 logn to
σ + logn bits.

We see that pre-hashing the items cannot reduce their ef-
fective length below σ bits, where σ is a statistical security
parameter. Standard practice suggests σ ≥ 40. Our proto-
col outperforms [26] whenever the effective item length is at
least 14 bits.

6. IMPLEMENTATION & PERFORMANCE
We implemented our PSI protocol and report on its per-

formance in comparison with the state-of-the-art PSI pro-
tocol of [26]. Our complete implementation is available on
Github: https://github.com/osu-crypto/batched-OPRF.

In our implementation we used parameter settings consis-
tent with PSSZ or stricter, and ran their and our code on
our system so as to obtain meaningful comparisons. As do
PSSZ, we use matrix transposition code from [1] and several
other optimizations.

6.1 Choosing Suitable Parameters
In this section we discuss concrete parameters used in our

implementation. We use a computational security parame-
ter of κ = 128 and a statistical security parameter of σ = 40.

The other parameters are:

s: the maximum size of the stash for Cuckoo hashing,
when hashing n items into 1.2n using 3 hash functions.

k: length of the pseudorandom code (and hence the width
of the OT extension matrix) in the bOPRF protocol.

v: output length of the PRF implicit in the bOPRF pro-
tocol.

https://github.com/osu-crypto/batched-OPRF


n s k v

28 12 424 64
212 6 432 72
216 4 440 80
220 3 448 88
224 2 448 96

Table 2: Parameters used in our implementation. n
is the size of the parties’ input sets; s is the maxi-
mum stash size for Cuckoo hashing; k is the width
of the pseudorandom code (in bits); v is the length
of OPRF output (in bits).

A summary of our concrete parameter choices is given in
Table 2. Below we describe how these parameters were de-
rived.

Hashing parameters.
Bob uses Cuckoo hashing with 3 hash functions to assign

his n items into 1.2n bins (and a stash). For the appropriate
choice of the stash size s, we use the numbers given in [26],
which limit the probability of hashing failure to 2−40.

Size of pseudorandom code.
Our bOPRF protocol requires a pseudorandom code achiev-

ing minimum distance κ = 128. In our protocol, Alice eval-
uates the PRF on (3 + s)n values. In order to argue that
these values can be collectively pseudorandom, so we require
the underlying PRF to have m-cPRF security (Definition 3)
for m = (3 + s)n.

From Lemma 2, this means we must choose a pseudoran-
dom code with parameters (d = κ, ε = σ + logm). Using
Lemma 1, we calculate the minimum length of such a pseu-
dorandom code; the results are column k in Table 2. We
round up to the nearest multiple of 8 so that protocol mes-
sages will always be whole bytes.

Length of OPRF outputs.
The length of OPRF output controls the probability of

a spurious collision in the PSI protocol. In Section 5.2 we
argued that output length of σ+ log2((3 + s)n2) is sufficient
to bound the probability of any spurious collision to 2−σ.

Using σ = 40, we compute the appropriate length in col-
umn v of Table 2. We round up to the nearest multiple of 8
so that protocol messages will always be whole bytes.

6.2 Environment settings
All of our experiments were implemented on a server with

Intel(R) Xeon(R) CPU E5-2699 v3 2.30GHz CPU and 256
GB RAM. We run both clients on the same machine, but
simulate a LAN and WAN connection using the Linux tc

command. In the WAN setting, the average network band-
width and the average (round-trip) latency are set to be 50
MB/s and 96 ms, respectively. In the LAN setting, the net-
work has 0.2ms latency. All of our experiments use a single
thread for each party.

6.3 Implementation Details
In our bOPRF protocol, the offline phase is conducted to

obtain an OT extension matrix of size (1.2n+s)×k by using
the IKNP OT extension. Specifically, first we use the Naor-

Pinkas construction [21] to get 128 base-OTs, which are then
extended to a k×128 matrix by utilizing the pseudorandom
generator. The transpose of this matrix yields the k base
OTs for the bOPRF extension protocol. We extend to 1.2n+
s OPRF instances.

We hash all inputs of both client and server at the begin-
ning of the online phase. Following Lemma 1, we use a PRF
with suitably long output as our pseudorandom code. More
concretely, the parties agree on an AES-128 key sk, which
is independent of their inputs, and then extend the output
of AES via:

C(x) = AESsk(1‖x)‖AESsk(2‖x)‖AESsk(3‖x)‖AESsk(4‖x)

to obtain the desired k random output bits. Furthermore,
to reduce the waiting time at the server side, the client will
constantly send a new packet encompassing multiple code
words to the server. Based on trail-and-error approach, the
packet size of 212×k bits is selected to minimize the waiting
time. In Table 4, we report the running time of our proto-
col for both offline and online phases in different settings.
For instance, in LAN environment, the online phase of our
bOPRF protocol takes about 3.9s for n = 220.

To illustrate the efficacy of the bOPRF-PSI approach, we
compared it with a näıve hashing protocol and the PSSZ
protocol. The näıve hashing protocol is a widely-used in-
secure protocol [26] where both parties use the same cryp-
tographic hash function to hash their elements, then one of
the parties permutes their hash value and sends the result to
the other party, who will compute the intersection by com-
puting the match of the hash values. In the following, we
conducted several performance tests with the input sets of
equal size n and for inputs of length 32, 64, and 128 bits.

Note that the running time of our PSI protocol does not
depend on the bit length of the input. It can be explained
as follows. First, the upper bound of the length of the input
is 128 bits. Second, the hash function will call a block of
128 bits to encrypt the input data, thus our protocol has
the same computation cost for all bit length of the input.
In addition, the communication cost of our bOPRF protocol
depends only on the length of the pseudorandom code k and
the length v of the OPRF outputs, which are independent of
the bit length `. Similarly, the näıve hashing protocol does
not depend on `. This was confirmed by our simulation
results for different bit lengths (e.g. 32 bits, 64 bits, and
128 bits). Table 3 presents the running time of the näıve
hashing protocol, PSSZ, and our PSI protocol in both LAN
and WAN environment.

As we can see in the tables, our protocol outperforms
PSSZ in almost all the case studies, especially for the long
bit length of input ` and large values of the input size n. For
example, we consider the results in the LAN setting. For the
input size of 220, our approach can improve 2.3 times and
3.0 times the performance of PSSZ for the bit lengths of 64
bits and 128 bits, respectively. For the input size of 224, the
corresponding improvements are 1.9 times and 3.0 times. It
is worth mentioning that it takes about 1 minute to compute
the intersection for the sets of size n = 224. Similar obser-
vations can be inferred from Table 3 for the WAN setting.

At the same time, for smaller bit lengths, the PSSZ pro-
tocol can be faster than our PSI protocol. This is the case,
for example, when the bit length is 32 bits and n = 220

in LAN setting. Since the two protocols are very similar,
differing only in the choice of OPRF subprotocol, it would



set size n
Setting Protocol Bit length ` 28 212 216 220 224

LAN

(insecure) näıve hashing {32, 64, 128} 1 6 75 759 13,529

PSSZ
32 306 380 770 4,438 42,221
64 306 442 1,236 10,501 137,383
128 307 443 1,352 13,814 213,597

bOPRF-PSI {32, 64, 128} 197 227 484 4,555 71,238

WAN

(insecure) näıve hashing {32, 64, 128} 97 101 180 1,422 22,990

PSSZ
32 609 701 1,425 8,222 81,234
64 624 742 2,142 18,398 248,919
128 624 746 2,198 23,546 381,913

bOPRF-PSI {32, 64, 128} 471 516 1,055 8,866 121,072

Table 3: Running time in ms for PSI protocols with n elements per party

set size n
Setting Phase 28 212 216 220 224

LAN
Offline 176 178 219 649 7,558
Online 20 49 265 3,906 63,680

WAN
Offline 260 260 317 797 7,592
Online 211 256 738 8,069 113,480

Table 4: Running time of our bOPRF protocol in ms in offline and online phases

set size n
Protocol Bit length ` 28 212 216 220 224 Asymptotic [bit]

näıve hashing {32, 64, 128} 0.01 0.03 0.59 10.49 184.55 n(σ + 2 logn)

PSSZ
32 0.07 0.80 9.62 149.74 1,650.88 2κ(1.2n+ s)(d `−blog(1.2n)c

8
e) + (3 + s)nv

64 0.10 1.43 19.69 310.80 4,227.86 2κ(1.2n+ s)(dmin(v,`)−log(n)
8

e) + (3 + s)nv

128 0.18 2.69 39.82 632.92 9,381.82 2κ(1.2n+ s)(d `−log(n)
8
e) + (3 + s)nv

bOPRF-PSI {32, 64, 128} 0.05 0.60 8.91 139.67 2,134.06 k(1.2n+ s) + (3 + s)nv

Table 5: Communication in MB for PSI protocols with n elements per party. Parameters k, s, and v refer to
those in Table 2 / Section 6.1. Communication costs for PSSZ and for our protocol ignore the fixed cost of
base OTs for OT extension.

be relatively straightforward to implement a hybrid that al-
ways chooses the best OPRF subprotocol based on n and
` according to Table 1. However, in order to clarify the
strengths/weaknesses of the two protocols, we report the
performance for our approach even when it is worse.

Similar to the running time result, our communication
cost is 4.4–5.0× faster than Pinkas et al. for PSI of 128-
bit strings and sufficiently large sets. Concretely, for the
input size of 220, our protocol can improve 4.5 times the
performance of PSSZ for the bit lengths 128 bits. Table 5
presents the communication (in MB) of the näıve hashing
protocol, PSSZ, and our bOPRF-PSI protocol.
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