
Secure Cash Distribution with Penalties

Ranjit Kumaresan
ranjit@cs.technion.ac.il

Tal Moran
talm@idc.ac.il

Iddo Bentov
idddo@cs.technion.ac.il

ABSTRACT
Andrychowicz et al. (Security and Privacy 2014) and Back
and Bentov (arXiv 2014) introduced techniques to perform se-
cure multiparty computations on Bitcoin. Among other things,
these works constructed lottery protocols that ensure that any
party that aborts after learning the outcome pays a monetary
penalty to all other parties. Following this, Andrychowicz et
al. (Bitcoin Workshop 2014) and concurrently Bentov and
Kumaresan (Crypto 2014) extended the solution to arbitrary
secure function evaluation while guaranteeing fairness in the
following sense: any party that aborts after learning the out-
put pays a monetary penalty to all parties that did not learn
the output. Andrychowicz et al. (Bitcoin Workshop 2014)
also suggested extending to scenarios where parties receive a
payoff according to the output of a secure function evaluation,
and outlined a 2-party protocol for the same that in addition
satisfies the notion of fairness described above.

In this work, we formalize, generalize, and construct mul-
tiparty protocols for the primitive suggested by Andrychow-
icz et al.. We call this primitive secure cash distribution with
penalties. Our formulation of secure cash distribution with
penalties poses it as a multistage reactive functionality (i.e.,
more general than secure function evaluation) that suffices to
capture a wide variety of stateful computations involving data
and/or money, such as decentralized auctions, games, mar-
kets, etc. Our protocol realizing secure cash distribution with
penalties works in a hybrid model where parties have access
to a claim-or-refund transaction functionality F?CR which can
be efficiently realized in (a variant of) Bitcoin, and is other-
wise independent of the Bitcoin ecosystem. We emphasize
that our protocol is dropout-tolerant in the sense that any party
that drops out during the protocol is forced to pay a monetary
penalty to all other parties. Our formalization and construction
generalize both secure computation with penalties of Bentov
and Kumaresan (Crypto 2014), and secure lottery with penal-
ties of Andrychowicz et al. (Security and Privacy 2014).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords: Secure Computation, Bitcoin, Markets, Poker.

1. INTRODUCTION

Once there were two “mental chess” experts who
had become tired of their favorite pastime. Let’s
play “mental poker” for some variety suggested
one. “Sure” said the other. “Just let me deal!”

Motivated by this anecdote, Shamir, Rivest, and Adleman set
forth in their seminal paper [1] to propose protocols that allow
a pair of parties to play “fair” mental poker. Arguably their
paper gave birth to the concept of secure multiparty compu-
tation (MPC), a primitive that allows a set of mutually dis-
trusting parties to carry out a distributed computation without
compromising on the privacy of inputs or the correctness of
the end result [2]. Indeed mental poker has since been used as
a metaphor for MPC [3]. Clearly, MPC can be used to allow a
set of parties to play poker over the Internet without having to
trust a third party. However this comes with certain caveats.

The obvious problem is that secure computation as defined
can only allow players to play mental poker (i.e., without in-
volving real money). Another serious problem is that secure
computation in the presence of a dishonest majority (includ-
ing the important two-party case) does not provide dropout-
tolerant solutions to mental poker. Players may wait until the
end of the hand to decide whether they want to drop out, i.e.,
after they have a much better idea of whether they are going
to win or lose. As [4] points out, an even more fundamental
issue is to get parties to respect the outcome of the protocol
and distribute the money as dictated by the output.

Tying payments to secure computation. More generally,
there are many cases in which we would like to tie real-world
payments to secure computation, e.g., decentralized fair ex-
change of digital goods or services for money in online mar-
ketplaces, decentralized multistage auctions, decentralized on-
line gambling, etc. Currently, these tasks are delegated to a
trusted third party (such as a bank, escrow service, or a court
system). For “traditional” currency systems, any payment—
whether or not it is based on secure computation— requires
trust in a third party (as the currency itself is based on a trusted
party, such as a central bank). However, the introduction of
cryptocurrencies, such as Bitcoin [5], opens the possibility of
handling payments in a decentralized manner [6, 7].

Indeed cryptocurrencies are a natural choice for combining
MPC with “real money.” Andrychowicz et al. [4] and Back

and Bentov [8] introduced techniques to perform secure mul-
tiparty computations on Bitcoin. Among other things, these
works constructed lottery protocols that ensure that any party
that aborts after learning the outcome pays a monetary penalty
to all other parties. Following this, Andrychowicz et al. [9]
and concurrently Bentov and Kumaresan [10] extended the so-
lution to arbitrary secure function evaluation while guarantee-
ing fairness in the following sense: any party that aborts after
learning the output pays a monetary penalty to all parties that
did not learn the output. Andrychowicz et al. [9] also sug-
gested extending to scenarios where parties receive a payoff
according to the output of a secure function evaluation, and
outlined a 2-party protocol for the same that in addition satis-
fies the notion of fairness described above.

Our contributions in a nutshell. In this work, we formalize,
generalize, and construct multiparty protocols for the primi-
tive suggested by [9]. We call this primitive secure cash dis-
tribution with penalties. Our formulation of secure cash dis-
tribution with penalties poses it as a multistage reactive func-
tionality (i.e., more general than secure function evaluation)
that suffices to capture a wide variety of stateful computations
involving data and/or money, such as decentralized auctions,
games, markets, etc. Our protocol realizing secure cash dis-
tribution with penalties works in a hybrid model where par-
ties have access to a claim-or-refund transaction functionality
F?CR which can be efficiently realized in (a variant of) Bitcoin,
and is otherwise independent of the Bitcoin ecosystem. We
emphasize that our protocol is dropout-tolerant in the sense
that any party that drops out during the protocol is forced to
pay a monetary penalty to all other parties. Our formalization
and construction simultaneously generalize secure computa-
tion with penalties of Bentov and Kumaresan [10], and secure
lottery with penalties of Andrychowicz et al. [4]. Below we
describe our contributions in more detail.

Defining SCD. We define SCD as a bounded reactive func-
tionality, i.e., the computation proceeds in a finite number of
stages. In an initial “deposit” stage, parties deposit sums of
money. In each succeeding stage, parties provide inputs and
obtain outputs for that stage. Then in the last stage, the money
deposited by the parties is redistributed among them according
to the output of the last stage. Any party that aborts during any
stage of the computation will be forced to pay penalties to all
parties. Thus SCD guarantees that honest parties either com-
plete the entire computation or are compensated financially.

Implementing SCD. Note that while in the standard setting,
reactive secure computation reduces to non-reactive secure
computation by secret sharing the state between successive
stages, a similar reduction does not carry over when we are
in the penalty setting since a malicious party may abort be-
tween successive stages of a reactive computation and go un-
penalized. We design a protocol that realizes SCD (i.e., with
full simulation security [11]) in a hybrid model where par-
ties have access to a claim-or-refund transaction functionality
F?CR. The main technical idea in our solution is the construc-
tion of a see-saw transaction mechanism which is a novel ex-
tension of the ladder transaction mechanism of [10]. Loosely
speaking, the ladder mechanism implements fair exchange
with penalties in the following sense: each party has their (dig-
ital) item at the beginning of the protocol, and at the end if one
party receives all items, then it pays a penalty to parties which

have not received all items. In contrast the see-saw mecha-
nism implements the following variant of fair exchange with
penalties: the exchange proceeds in multiple rounds, and in
each round, parties can adaptively choose their input item they
want exchanged based on the items put up for exchange by
other parties in previous rounds. Penalties are now enforced
across the entire exchange process. That is, if a party decides
to terminate the exchange process, then it pays a penalty to
all other parties. Note in particular that penalties are enforced
even when no party receives all items. Contrast this with the
ladder mechanism that enforces penalties to all parties only
when some party received all items. See Section 5 for the
implementation of the see-saw mechanism. Our protocol for
secure cash distribution makes non-black-box use of an under-
lying MPC protocol (cf. Section 4).

Practical applications. Consider a group of servers that agree
to carry out an intensive computation task that spans several
days. Furthermore, assume that the computation requires mul-
tiple rounds of interactions and the full participation of all par-
ticipating servers, and otherwise fails. Here, we would like
to guarantee that the servers exchange information as agreed
upon without defaulting. In such a setting, it is critical to en-
sure that the computation is carried out as intended, and that
no server invests computational effort only to learn that a dif-
ferent server abruptly decided to not continue the computation
any more. Observe that the problem description as is does
not involve money. Still our formulation of SCD allows us to
capture such a setting and offers a meaningful solution to this
problem, namely that a defaulting server will be forced to pay
a penalty to everyone else. Such a solution can be achieved
by a straightforward use of a verifiable computation scheme in
combination with our see-saw transaction mechanism.

Next, consider a group of agents who participate in a set
of financial transactions over the internet. For example, these
could be agents in a prediction market who place bets on the
occurrence of sets of events, and may adaptively vary their
choices depending on whether a previous event in the set hap-
pened or not. One must also consider what happens when
a malicious agent stops participating during the process. A
naïve solution would require that the agents make a deposit at
the beginning of the protocol which they would forfeit when
they abort. To make this idea work in a decentralized setting,
one must develop a method to put the deposits in escrow, and
make sure that in the event of an abort (1) honest agents can
always retrieve their deposits from the escrow, and (2) hon-
est agents obtain penalties from the escrow when a dishonest
agent aborts. Implementing such a decentralized escrow when
a majority of agents are dishonest is not straightforward. Our
formulation of SCD exactly allows the capability to maintain a
decentralized escrow across multiple stages of a computation
and hence our protocol implementing SCD provides a solution
to the prediction market problem described above.

More generally, since SCD models stateful reactive func-
tionalities it captures a wide variety of games, including poker
(assuming that the strategy space of the players includes vari-
ables that cannot be clearly defined and may depend on side
information that cannot be completely captured).

Limitations. Note that the plain model realizations of F?CR

rely on Bitcoin scripts. While we explicitly specify the checks
that the scripts need to perform, the current Bitcoin scripting

language is quite conservative (many opcodes became black-
listed [12]), and therefore some of the required checks are not
currently supported in Bitcoin. More concretely, our construc-
tion requires signature verification of arbitrary messages (i.e.,
not more burdensome than the supported signature verification
for the entire transaction data). In addition it requires scripts to
support calculations whose complexity depends on the specific
application. For instance, in the application to poker, we re-
quire Bitcoin scripts to support simple arithmetic calculations
that verify whether a transcript of a poker protocol follows the
rules of poker. In the most general setting, the validation com-
plexity [13] (which corresponds to the complexity of script ver-
ification) equals the complexity of verifying validity of partial
transcripts of an underlying secure computation protocol that
realizes the reactive functionality. As suggested in [13], vali-
dation complexity may also accurately reflect additional trans-
action fees that may be levied to include “unordinary” transac-
tions (i.e., transactions of the kind that our constructions need)
into the blockchain. Currently, only a small fraction of min-
ers (e.g., Eligius mining pool) accept transactions that make
use of the entire Bitcoin scripting language. In any case, our
constructions require that new opcodes be added to the Bit-
coin scripting language (e.g., the opcode mentioned above for
verifying signatures of arbitrary messages). While we expect
Bitcoin to be less conservative in the scripts it supports in the
future, our protocols can be deployed on alt-coins with Tur-
ing complete scripts. However, Turing complete scripts are an
overkill for our constructions. This is because the number of
rounds until the final cash distribution must be bounded (cf.
Section 4), hence miners can levy a suitable transaction fee by
easily assessing the verification complexity of a certain SCD
(e.g., poker of some fixed number of rounds) script. By con-
trast, a full-fledged Turing-complete cryptocurrency (like the
Ethereum project) has to resort to extra mechanisms in order
to protect itself from DoS attacks [14].

Our main goal in this work is to show feasibility of realiz-
ing SCD. As mentioned earlier, our SCD protocol makes non-
black-box use of an underlying MPC protocol and can be inef-
ficient in practice. We note that this limitation can be removed
for some applications. For example, in Section 6, we show
how to obtain a protocol for decentralized poker with dropout
tolerance that makes only black-box use of MPC.

Related work. The general problem of secure computation
was solved in the 2-party setting by Yao [15], and in the mul-
tiparty setting in [3]. Besides not handling payments, none of
the schemes above can guarantee fairness in the presence of
a dishonest majority [16]. [4] designed a multiparty lottery
protocol in the penalty model. [9] designed a secure compu-
tation protocol in the penalty model but their protocol han-
dles only the two-party setting. Secure multiparty computa-
tion with penalties and secure multiparty lottery with penal-
ties were formalized, and protocols realizing these were con-
structed in [10]. [13] shows applications of Bitcoin to various
other interesting cryptographic primitives.

Relation to [9]. The extension to a setting where payoffs de-
pend on the output of a secure function evaluation was pro-
posed in [9, Section 6]. The authors then show how to mod-
ify the Bitcoin scripts that implements two-party secure func-
tion evaluation with penalties and obtain a solution for the ex-
tended setting with payoffs. We emphasize that [9] handles

the two-party case, with a non-reactive functionality, and out-
lines a solution using ad-hoc Bitcoin transactions. In contrast,
we provide formal definitions for secure cash distribution with
penalties which we define as a stateful reactive functionality,
then construct a multiparty protocol that securely realize this
definition, and provide formal proofs. Furthermore, our proto-
col works in a clean hybrid model where parties have access
to a claim-or-refund transaction functionality F?CR and is oth-
erwise independent of the Bitcoin ecosystem. That is, our pro-
tocol can be easily adapted to any setting (e.g., alt-coins, Pay-
Pal) that can support an implementation of F?CR. In a sense,
our work shows that F?CR is a complete primitive for secure
computations involving money. Finally, a technique that we
use in our cash distribution mechanism was previously out-
lined in [9]. Specifically, we use the idea from [9] that allows
the parties to transfer arbitrary amounts of money by divid-
ing a large amount into “power of 2 fractions.” Note that it is
possible to replace this technique with a naïve mechanism and
still obtain our feasibility results.

2. PRELIMINARIES
A function µ(·) is negligible in λ if for every posi-
tive polynomial p(·) and all sufficiently large λ’s it holds
that µ(λ) < 1/p(λ). A probability ensemble X =
{X(a, λ)}a∈{0,1}∗,n∈N is an infinite sequence of random
variables indexed by a and λ ∈ N. Two distribution ensem-
bles X = {X(a, λ)}λ∈N and Y = {Y (a, λ)}λ∈N are said to
be computationally indistinguishable, denoted X

c≡ Y if for
every non-uniform polynomial-time algorithm D there exists
a negligible function µ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ).

All parties are assumed to run in time polynomial in the secu-
rity parameter λ. We prove security in the “secure computa-
tion with coins” (SCC) model proposed in [10]. Note that the
main difference from standard definitions of secure computa-
tion [17] is that now the view of Z contains the distribution of
coins. Let IDEALf,S,Z(λ, z) denote the output of environment
Z initialized with input z after interacting in the ideal process
with ideal process adversary S and (standard or special) ideal
functionality Gf on security parameter λ. Recall that our pro-
tocols will be run in a hybrid model where parties will have
access to a (standard or special) ideal functionality Gg . We de-
note the output of Z after interacting in an execution of π in
such a model withA by HYBRIDgπ,A,Z(λ, z), where z denotes
Z’s input. We are now ready to define what it means for a
protocol to SCC realize a functionality.

Definition 1. Let n ∈ N. Let π be a probabilistic polynomial-
time n-party protocol and let Gf be a probabilistic polynomial-
time n-party (standard or special) ideal functionality. We say
that π SCC realizes Gf with abort in the Gg-hybrid model
(where Gg is a standard or a special ideal functionality) if
for every non-uniform probabilistic polynomial-time adver-
sary A attacking π there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that
for every non-uniform probabilistic polynomial-time adver-
sary Z ,

{IDEALf,S,Z(λ, z)}λ∈N,z∈{0,1}∗
c≡

{HYBRIDgπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ . ♦

Ideal functionality F?CR [10, 18, 19]. This special ideal func-
tionality has been employed in the design of multiparty fair
secure computation and lottery protocols [10]. See Figure 1
for a formal description. At a high level, F?CR allows a sender
Ps to conditionally send coins(x) to a receiver Pr . The condi-
tion is formalized as the revelation of a satisfying assignment
(i.e., witness) for a sender-specified circuit φs,r(· ; z) (i.e., re-
lation) that may depend on some public input z. Further, there
is a “time” bound, formalized as a round number τ , within
which Pr has to act in order to claim the coins. An important
property that we wish to stress is that the satisfying witness
is made public by F?CR. In the Bitcoin realization of F?CR,
sending a message with coins(x) corresponds to broadcasting
a transaction to the Bitcoin network, and waiting according to
some time parameter until there is enough confidence that the
transaction will not be reversed.

F?CR with session identifier sid, running with parties Ps
and Pr , a parameter 1λ, and adversary S proceeds as fol-
lows:

• Deposit phase. Upon receiving the tuple (deposit, sid,
ssid, s, r, φs,r, τ, coins(x)) from Ps, record the mes-
sage (deposit, sid, ssid, s, r, φs,r, τ, x) and send it to
all parties. Ignore any future deposit messages with
the same ssid from Ps to Pr .

• Claim phase. In round τ , upon receiving (claim, sid,
ssid, s, r, φs,r, τ, x, w) from Pr , check if (1) a tuple
(deposit, sid, ssid, s, r, φs,r, τ, x) was recorded, and
(2) if φs,r(w) = 1. If both checks pass, send (claim,
sid, ssid, s, r, φs,r, τ, x, w) to all parties, send (claim,
sid, ssid, s, r, φs,r, τ, coins(x)) to Pr , and delete the
record (deposit, sid, ssid, s, r, φs,r, τ, x).

• Refund phase: In round τ + 1, if the record (deposit,
sid, ssid, s, r, φs,r, τ, x) was not deleted, then send
(refund, sid, ssid, s, r, φs,r, τ, coins(x)) to Ps, and
delete the record (deposit, sid, ssid, s, r, φs,r, τ, x).

Figure 1: The ideal functionality F?CR.

3. SECURE CASH DISTRIBUTION
In this section, we introduce secure cash distribution with
penalties. Loosely speaking, secure cash distribution with
penalties (or simply “secure cash distribution”) allows each
party to first make a cash deposit and then supply additional
inputs to a function. The deposited cash is then distributed
back to the parties depending on (and along with) the output
of the function evaluation. Any malicious party that aborts the
protocol after learning output and/or receiving coins must pay
a monetary penalty to all honest parties.

Clearly, such a primitive generalizes both secure computa-
tion with penalties [10, 9] and secure lottery with penalties [10,
4]. As it turns out, this informal definition of secure cash distri-
bution is not strong enough to enable applications that we are
interested in. What is needed is to handle the reactive setting,
i.e., allowing multiple “stages” of computation with parties
providing inputs to each stage and receiving outputs at the end
of each stage. Let F be a reactive functionality, i.e., one that

keeps state across evaluations and proceeds in multiple stages.
To keeps things simple, we assume an upper bound ρ on the
number of stages of F . That is, we assume F = (f1, . . . , fρ)
is a collection of functionalities which accumulate state with
each evaluation. More concretely, let x` = (x`,1, . . . , x`,n)
denote the parties’ input to the `-th stage for ` ∈ [ρ], and
let state0 be initialized as state0 := NULL. Then over
the course of the computation, parties successively evaluate
f`(x`; state`−1) to obtain (z`, state`) for ` = 1, . . . , ρ. Here
z` = (z`,1, . . . , z`,n) represents the parties’ output, i.e., party
Pi obtains z`,i. The value state` represents the state saved for
the (` + 1)-th computation stage, and is kept private from the
parties (via use of secret sharing).

Although we now handle a reactive functionality, we stress
that the cash that is deposited at the beginning of the protocol
is distributed only at the end (i.e., no cash distribution occurs
in any intermediate stage). That is, secure cash distribution
provides a means to keep the cash deposited in escrow while
parties’ learn output from each stage’s function evaluation, and
thus can revise their inputs to a later stage. The capability
to maintain an escrow turns out to be crucial in enabling the
applications we are interested in.

We now proceed to the formal details. Let d? =
(d?1, . . . , d

?
n) be the initial cash deposit from the parties, i.e.,

party Pi deposits coins(d?i) into the computation. Then
at the end of the protocol all the deposited coins, i.e.,
coins(

∑
i∈[n] d

?
i), are distributed back to the parties accord-

ing to the evaluation of the reactive functionality F on the
parties’ inputs. More precisely, let zρ denote the parties’ out-
put at the end of the last stage of the computation. We as-
sume that zρ specifies how the coins are (re)distributed at
the end of the entire computation. That is, we can parse
zρ = (z = (z1, . . . , zn), z

? = (z?1 , . . . , z
?
n)) where zi repre-

sents the parties’ output, and z?i represents the amount of cash
that Pi is supposed to get back. We are now ready to define
bounded zero-sum reactive distribution.

Definition 2 (Bounded zero-sum reactive distribution). For all
` ∈ [ρ], let fi : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n×{0, 1}∗
be a function. Let d? = (d?1, . . . , d

?
n) ∈ Nn be a vector.

We say that (F = (f1, . . . , fρ), d
?) is a bounded zero-sum

reactive distribution if ∀ x1, . . . , xρ ∈ ({0, 1}∗)n it holds that
the value zρ = ((z1, . . . , zn), (z

?
1 , . . . , z

?
n)) ∈ ({0, 1}∗)n ×

Nn obtained from the sequence:
(z1, state1)← f1(x1;NULL);

(z2, state2)← f2(x2; state1);

...
(zρ, stateρ)← fρ(xρ; stateρ−1),

satisfies
∑
i z
?
i =

∑
i d
?
i . ♦

Observation 1. The coins earned by Pi, namely z?i may be
such that z?i > d?i (e.g., when F represents the lottery func-
tionality [4, 10]). To simplify exposition, we make use of a
“helper” function g which on input (d?, z?) returns a matrix
A whose (i, j)-th entry denoted ai,j specifies the amount of
coins that need to be transferred from Pi to Pj . In particular,
it must hold for all i ∈ [n] that

∑
j∈[n] ai,j = d?i , and for

all j ∈ [n] that
∑
i∈[n] ai,j = z?j . Observe that it is easy to

design g for a zero-sum distribution (F, d?).

Next we formally define F?F,d? which idealizes SCD.

Let (F = (f1, . . . , fn), d
? = (d?1, . . . , d

?
n)) be a

bounded zero-sum reactive distribution (cf. Definition 2).
F?F,d? with session identifier sid running with parties
P1, . . . , Pn, a parameter 1λ, and an ideal adversary S
that corrupts parties {Ps}s∈C proceeds as follows: Let
H = [n] \ C and h = |H|. Let d represent the safety
deposit, and let q denote the penalty amount. Initialize
state0 := NULL and flag = 1.

• Deposit phase: Wait to receive a message (deposit, sid,
ssid, r, d?, coins(d + d?r)) from Pr for all r ∈ H .
Then wait to receive (deposit, sid, ssid, d?, coins(hq+∑
s∈C d

?
s)) from S.

• Computation phase: For each ` = 1, . . . , ρ, do:

– Wait to receive a message (input, sid, ssid, r, x`,r)
from Pr for all r ∈ H .

– If S sends (abort, sid, ssid, {coins(qr)}r∈H), send
(penalty, sid, ssid, coins(q + qr)) to Pr for all
r ∈ H , send (payback, sid, ssid, coins(

∑
s∈C d

?
s −∑

r∈H qr)) to S, set flag = 0, and terminate phase.

– Else if S sends (input, sid, ssid, {x`,s}s∈C), set
x` = (x`,1, . . . , x`,n).

– Compute (z`, state`) ← f`(x`; state`−1), and parse
z` to obtain (z`,1, . . . , z`,n).

– Send (output, sid, ssid, {zs,`}s∈C) to S.

– If S returns (continue, sid, ssid), then send (output,
sid, ssid, z`,r) to Pr for all r ∈ H .

– Else if S sends (abort, sid, ssid, {coins(qr)}r∈H),
send (penalty, sid, ssid, coins(q + qr)) to Pr for all
r ∈ H , send (payback, sid, ssid, coins(

∑
s∈C d

?
s −∑

r∈H qr)) to S, set flag = 0, and terminate phase.

• Distribution phase: If flag = 0, send (return, sid, ssid,
coins(d+d?r)) to Pr for all r ∈ H , and terminate. Else,
parse zρ to obtain z? = (z?1 , . . . , z

?
n), and send (pay,

sid, ssid, z?, coins(d + z?r)) to Pr for all r ∈ H , and
send (pay, sid, ssid, z?, coins(hq +

∑
s∈C z

?
s)) to S.

Figure 2: Secure cash distribution with penalties F?F,d? .

Ideal functionality F?F,d? . See Figure 2 for the formal defni-
tion. In an initial cash deposit phase, the functionality F?F,d?
receives coins(d + d?r) from each honest Pr , where d repre-
sents a parameterizable safety deposit and d?r represents the
cash that will be stored in escrow. In addition, F?F,d? allows
the ideal world adversary S to deposit some coins which may
be used to compensate honest parties if S aborts after receiv-
ing the outputs. If there is an abort at this stage, that is, S does
not submit the necessary amount of cash then the protocol ter-
minates, and the honest parties get their deposit back. Note
that at this stage there is no penalty for aborts; the penalties
enter the picture only after this stage. Once the deposit phase
ends, parties enter the computation phase. In the `-th stage of
the computation phase, the honest parties supply their inputs
to `-th stage of the computation. The functionality then waits
to receive corrupt parties’ inputs for this stage. If S aborts at

this stage, then the honest parties receive coins(q) penalty in
addition to getting their deposit coins(d) back (and may also
obtain some extra coins(qr)), and the computation phase is
terminated. Now honest parties receive the amount that they
deposited at the beginning of the protocol in the cash distribu-
tion phase. However, if S does continue (i.e., provide inputs
to this stage), then the functionality computes the output of the
`-th stage. Now the simulator gets a chance to look at the out-
put first, and then decide if it wants to continue or not. If it
decides to continue then the honest parties receive the output
as well, and proceed to the next stage of the computation. On
the other hand, if S decides to abort, then the honest parties
get compensated as before, i.e., with coins(d+d?r+q+qr) in
total, and the protocol is terminated. The computation phase
terminates after the ρ-th stage ends. Note that upon successful
completion of the ρ-th stage, all parties receive their final out-
puts. After this, parties enter the cash distribution phase; the
cash is distributed according to the output of the ρ-th stage,
i.e., zρ. The functionality parses zρ to obtain z? which dic-
tates how the cash is distributed among the parties. Using z?,
the functionality distributes the cash among the parties, and
returns their original deposits as well. In addition, the func-
tionality also sends the value z? to all parties, i.e., the way the
cash gets distributed at the end is not private.

4. REALIZING SCD
In this section we provide the blueprint of our protocol that re-
alizes secure cash distribution with penalties. As we will see
soon, our general strategy is to use a protocol that securely
realizes a standard reactive functionality (with no coins, and
unfair abort), denoted FF , to set things up such that the see-
saw transaction mechanism of Section 5 applies to ensure that
either the protocol is completed until the very end or all hon-
est parties get compensated. Then, to make the final transfers
between parties we will make use of a cash distribution mech-
anism that we describe later in this section.

To simplify the presentation of our protocol, we consider
the case when there is only a single stage in the computation,
i.e., ρ = 1 and F = f . Essentially we are dealing with secure
function evaluation but with an important difference: namely,
aborts anywhere during the computation (i.e., not only at the
output delivery step) will be penalized. The extension to mul-
tiple stages is straightforward and we describe it later.

First let us set up some notation. We say (r, i) > (r′, i′)
iff either (1) r > r′, or (2) r = r′ and i > i′. For (r, i),
let pred(r, i) be (r′, i′) such that for every (r′′, i′′) it holds
that (r′′, i′′) < (r, i) iff (r′′, i′′) ≤ (r′, i′). In other words,
pred(r, i) is the “predecessor” of (r, i). Let πf be a m-round
protocol that realizes function f . For each i ∈ [n], let xi de-
note party Pi’s input to f . We assume that in each round of
the protocol, parties take turns to broadcast their message, i.e.,
the entire protocol transcript is public.1 Let TT

πf

r,i denote the
transcript of protocol πf up until party Pi’s message in the
r-th round. Let nmfr,i denote the next message function for
party Pi in round r. The function nmfr,i takes as input the ac-
tual input xi, the private randomness of party Pi, denoted ωi,

1That is, all messages exchanged in the protocol are simply
broadcasts. Protocols secure against dishonest majority typi-
cally fall under this category. For an explicity example, see the
main construction in [20, 3]. See also the discussion in [21].

and the public transcript seen so far, i.e., TT
πf

pred(r,i). In other
words, we have that TT

πf

r,i ← nmfr,i(TT
πf

pred(r,i); (xi, ωi))

(i.e., nmfr,i outputs the entire transcript so far). Also, since
all messages are public broadcasts, there exists a function tv

πf

r,i

which checks if a given transcript TTr,i (that contains all mes-
sages until and including party Pi’s message in round r) is
valid or not. By definition, we have that tv

πf

r,i (TT
πf

r,i) = 1. For
simplicity and wlog, we assume that all messages (i.e., tran-
scripts) broadcasted are signed by the sending party. This im-
plies that the function tv that checks validity of the transcript
also checks for the necessary signatures.

Our strategy is to force each party Pi to deliver its round r
message during its turn. That is, first, we want party P1 to ei-
ther reveal its first round message TT

πf

1,1 to all parties, or pay a
penalty to all parties. If P1 revealed TT

πf

1,1, then P2 can apply
nmf1,2(TT

πf

1,1; (x2, ω2)) to obtain TT
πf

1,2. Now we want P2 to
either reveal TT

πf

1,2 to all parties or otherwise pay a penalty to
all parties. This way, we want to force every party to either
make its move or pay a penalty. If we implement this strat-
egy successfully, then we have ensured that each party either
learned its output, or is compensated with a penalty. (Note
that cash distribution at the end still needs to be handled.) De-
signing a transaction mechanism for implementing the above
strategy is one of the main contributions in this paper. We de-
fer the presentation of the transaction mechanism to Section 5,
and devote the rest of this section to handling other issues.

Handling multiple valid transcripts. In an actual imple-
mentation of the above strategy in the F?CR-hybrid model,
we will have parties receive multiple F?CR transactions from
other parties that can be claimed if they produce a valid tran-
script. It is possible that a malicious party may claim a sub-
set of these F?CR transactions using one valid transcript and
a different subset using a different valid transcript. Such an
“attack” may indeed be possible by varying the actual input
and private randomness input to the next message function.
Indeed malicious coalitions of k consecutive parties can po-
tentially change the last k messages in the transcript (since
they possess the required signing keys to do this). In appli-
cations to poker, a player (admittedly a novice) may leak an
“expression of surprise” upon seeing a (malicious) player’s
“confirmed” move, only to see this move modified by the next
(malicious) player. In any case, we consider such attacks as
violations, and must compensate the honest parties upon such
violations. Note that a “proof” of any such violation is read-
ily obtained from the inconsistent transcripts. We ask each
party Pi to make F?CR transactions to every other party that
can be claimed by revealing a proof of violation: i.e., pair of
transcripts T vio

i = (TTi, TT′i) such that for some r ∈ [m], it
holds that tv

πf

r,i (TTi) = tv
πf

r,i (TT′i) and yet TTi 6= TT′i. Since
transcripts are signed, a proof of violation against an honest
party can never be obtained (except with negligible probabil-
ity). Following the notation in [10], we use P1

T−−→
q,τ

P2 to

denote an F?CR transaction for coins(q) made by P1 that can
be claimed by P2 if P2 produces witness T within time τ .
Thus to safeguard against violations we ask each Pi to make
the following set of transactions for each j ∈ [n] \ {i}:

Pi
T vio
i−−−−−−−−−−−−−−→

n·q,τ
Pj (Txvio

i,j)

Here τ is such that the transaction can be claimed until the
end of the protocol. Note that the transaction if claimed will
transfer coins(n · q) from the violating party Pi. This is be-
cause, upon such a violation an honest Pj will be asked to
abort the rest of the protocol and directly claim Txvio

i,j where Pi
is the violating party. SincePj aborts the rest of the protocol, it
may be forced to pay a total compensation of coins((n− 1)q)
to the remaining parties. Thus upon any violation by malicious
parties, we ensure that each honest Pj will still be coins(q) up
at the end of the protocol execution.

Handling multiple stages of computation. At an abstract
level, adding stages to a reactive computation merely amounts
to adding more “next messages” to the transcript. Indeed an
intermediate stage of computation simply begins by recon-
structing the current state, and then performing the compu-
tation on this state and the current inputs. Thus it is trivial
to merge multiple stages of computation into a single stage—
simply append the protocol messages of the multiple stages
together. Since our strategy works by keeping track of the
protocol transcript, it ensures that an abort at any round/stage
of a multi-stage computation will be penalized.

Handling the cash distribution. To do this, we first need
parties to make deposits at the beginning of the protocol that
will allow them to claim their returns at the end of the protocol.
Note that parties might have to transfer an arbitrary amount
of coins between themselves. Adopting an idea from [9], we
ask parties to commit to money transfers for all powers of 2
up to the maximum possible sum. In more detail, let d? =
(d?1, . . . , d

?
n), and for each i ∈ [n], let mi = dlog(d?i)e. The

high level idea is to have, for every ordered pair (i, j) with
i, j ∈ [n] and i 6= j, and for each k ∈ [mi], party Pi make an
F?CR transaction as follows:

Pi
T fin
i,j,k−−−−−−−−−−−−−−−−−−−→

2k,τfin

Pj (Txfin
i,j,k)

Given these transactions, it is easy to see that Pj can claim
any arbitrary amount of coins from the rest of the parties. Also,
we need to ensure thatPj obtains exactly the correct amount of
coins. That is, suppose the output of the reactive computation
is zρ = (z, z?) with z? = (z?1 , . . . , z

?
n), then we want Pj to

obtain coins(z?j) at the end of the protocol. In other words, we
need to provide Pj with the right subset of {T fin

i,j,k}i,k that will
allow it to claim exactly coins(z?j). This subset will obviously
need to be transferred in the last computation stage fρ. To
make sure the deposits are made at the very beginning, the par-
ties need to know the corresponding verification circuits φfin

i,j,k

at the beginning as well. To design the verification circuits,
we employ honest binding commitments [21, 10]. Let (S,R)
be a honest binding commitment scheme (cf. Appendix A).
(Note that such commitment schemes can be realized by cryp-
tographic hash functions in the programmable random oracle
model.) More precisely we require parties to execute a stan-
dard, secure-with-abort MPC protocol at the very beginning
that for all i ∈ [n], j ∈ [n] \ {i}, k ∈ [mi]:

• chooses T fin
i,j,k ← {0, 1}λ and ωfin

i,j,k ← {0, 1}λ at random;

• computes comfin
i,j,k ← S(1λ, T fin

i,j,k, ω
fin
i,j,k);

• n-out-of-n secret shares each (T fin
i,j,k, ω

fin
i,j,k);

• outputs comfin
i,j,k and `-th share of (T fin

i,j,k, ω
fin
i,j,k) to P`.

The secret sharing is done so that parties can reconstruct the
T fin
i,j,k values (saved as part of the state) at the beginning of the

last stage of the computation. Note that now parties possess
the verification circuits φfin

i,j,k to make the transaction Txfin
i,j,k.

Next we describe the modification to the last stage. Instead of
realizing fρ in the last stage, parties realize f ′ρ which:

• computes z? = (z?1 , . . . , z
?
n) by invoking fρ;

• computesA = g(d?, z?) (cf. Observation 1), let ai,j denote
the (i, j)-th entry of matrix A, and let b?i,j,1, ..., b

?
i,j,mi

be
the binary representation of ai,j ;

• for all i ∈ [n], j ∈ [n] \ {i}, k ∈ [mi]:

reconstructs T fin
i,j,k (from stateρ−1);

outputs T fin
i,j,k if b?i,j,k = 1, else outputs 0.

Given the above it is easy to see that the set of transactions
{Txfin

i,j,k} transfer the right amounts of money according to the
output z?. Next we show how to design the see-saw transac-
tion mechanism that implements our strategy of forcing parties
to send the next message of the protocol realizing FF .

5. SEE-SAW MECHANISM
Recall that our goal is to force parties to reveal their next
message of say a m-round protocol for computing function
f , one-by-one in a round-robin fashion round after round.
That is, party P1 first computes and reveals “token” T1,1 =
TT
πf

1,1, then party P2 computes (using T1,1) and reveals to-
ken T1,2 = TT

πf

1,2, and so on until party Pn computes and
reveals token T1,n = TT

πf

1,n. (Note that the order of revela-
tions is important.) Following this, parties move on to the next
round, and so on and so forth until at the end Pn reveals token
Tm,n = TT

πf
m,n. What we need is a transaction mechanism

that incentivizes parties to follow the above sequence of re-
veals. More precisely for every i ∈ [n], r ∈ [m], we force Pi
to pay a penalty to all other parties if (a) all parties P1, . . . , Pn
revealed their tokens until round r− 1; and (b) in round r par-
ties P1, . . . , Pi−1, revealed their tokens; and (c) in round r
party Pi did not reveal Tr,i.

Towards solving this problem, we let parties participate in
a initial deposit phase where parties make some sequence of
transactions. We are lenient towards any aborts during this
initial deposit phase, i.e., we do not penalize any party for an
abort during this deposit phase. However once this deposit
phase ends, then we enter the reveal phase. Any party that
deviates during its turn in any of the m rounds in the reveal
phase has to pay a penalty to all the remaining parties. Con-
trast this with the “ladder mechanism” of [10], where a party
that aborts without learning the final output may not necessar-
ily pay penalties to all parties.
Honest parties’ strategy. As mentioned earlier, our protocol
will be an ordered sequence of claim-or-refund transactions.
In an honest execution of our protocol, all deposits will be
made first before any of them is claimed. Also, the sequence
deposits will be claimed in the reverse order in which they are
made. Note that a malicious party may abort the protocol ei-
ther (1) by not making a deposit it was supposed to make, or
(2) by not claiming a deposit it could have claimed. The fol-
lowing two rules of thumb may be kept in mind to understand
how honest parties behave in the event of such aborts.

1. When it’s an honest party’s turn to make a deposit, it makes
the deposit if and only if all the deposits that were supposed
to made before its deposit were made. That is, if a malicious
party does not make a deposit during its turn, then no honest
party makes any subsequent deposit in the protocol.

2. When it’s an honest party’s turn to make a claim, it makes
the claim if it possesses all the witnesses necessary for mak-
ing the claim. That is, an honest party may go ahead and
claim a deposit even if (1) some deposits were not made,
and (2) some claims were not made.

Two simplifying assumptions. The first is that our construc-
tions will try to penalize deviations of party Pi in round r only
when (r, i) 6= (1, 1). Later in this section, we show how
to handle the “bootstrapping” step of forcing P1 to start the
protocol. The second is that we assume parties can use only
unique witnesses to claim F?CR transactions. In our construc-
tions, the witnesses correspond to protocol transcripts, and we
already discussed in the previous section how to handle the
case when parties broadcast multiple valid transcripts.

We construct our final protocol in a step-by-step manner.
We start with n = 2 and m = 1.

Single-round two-party case. Since we are in the single-
round case we use Ti to denote the token T1,i. Consider the
following sequence of deposit transactions where τ2 > τ1:

P1
T1∧T2−−−−−−−−−−−→
q,τ2

P2 (Tx2)

P2
T1−−−−−−−−→
q,τ1

P1 (Tx1)

Note that the verification circuits for these transactions are
simply the corresponding transcript checking functions tv

πf

r,i ,
and are already known to the parties, and thus the deposits
can be made. Once all the deposits are made, the deposits
are claimed in reverse. That is, P1 first claims Tx1. Using T1

revealed byP1, partyP2 is able to claim Tx2. We first consider
aborts during the initial deposit phase. If P1 aborts without
making Tx2, then clearly no money changes hands and we are
good. Now if P2 aborts without making Tx1, then note that
P1 does not enter the reveal phase, and so does not reveal T1.
This in turn ensures that P2 will not be able to claim Tx2, and
thus no money changes hands, and we are good. These attacks
imply that we do not even get past the initial deposit phase
(meaning that we are not required to penalize any party).

Next, we consider aborts during the reveal phase. Recall
that once we enter the reveal phase, then we must penalize
P2 if P1 revealed T1 but P2 did not reveal T2. First suppose
P1 aborts, i.e., does not claim Tx1. Then note that Tx1 gets
refunded back to P2, and no party is penalized. Note that if P1

does claim Tx1, then P2 is able to claim Tx2, and the parties
even out as well as obtain both T1 and T2. Next, we consider
the case when P2 aborts the protocol, i.e., does not claim Tx2.
In this case, Tx2 gets refunded back to P1. Also, P1 would
have already gained coins(q) after claiming Tx1 and hence is
compensated at the end of the protocol.

We use the following notation to simplify the presentation:
for r ∈ [m], let TTr = ∧rs=1(Ts,1 ∧ · · · ∧ Ts,n), and for
i ∈ [n] and r ∈ [m], let TTr,i = TTr−1 ∧ (∧ij=1Tr,j). (Here
TT stands for “transcript.”) Also, let “(r′, i′) > (r, i)” if either
(1) r′ > r, or (2) r′ = r and i′ > i.

ROOF DEPOSIT.

P1
TTm,2−−−−−−−−−−−→
q,τm,2

P2 (Txm,2)

SEE-SAW DEPOSITS. For r = m− 1 to 1:

P2

TTr+1,1−−−−−−−−−−−−→
2q,τr+1,1

P1 (Txr+1,1)

P1
TTr,2−−−−−−−−−−→

2q,τr,2
P2 (Txr,2)

FLOOR DEPOSIT.

P2
TT1,1−−−−−−−−−−→
q,τ1,1

P1 (Tx1,1)

Figure 3: Multi-round two party see-saw mechanism.

Multi-round two-party see-saw mechanism. The sequence
of transactions is shown in Figure 3 where τr′,i′ > τr,i iff
(r′, i′) > (r, i). As in the single-round case, the reveals are
made in reverse: namely, P1 first claims Tx1,1. Using TT1,1 =
T1,1 revealed by P1, party P2 is now able to claim Tx1,2 by
revealing TT1,2 = T1,1 ∧ T1,2. Likewise parties P1 and P2

take turns claiming each others’ F?CR transactions.
We first consider aborts during the initial deposit phase.

Suppose Pi aborts without making Txr,j for j 6= i and some
r. First, this ensures that (1) Pj does not make Txr′,i for
(r′, i) < (r, j), and (2) Pj will never reveal Tr,j (since Tr,j
needs to be revealed only to claim Txr′,i′ for (r′, i′) ≥ (r, j)),
and (3) no party can claim Txr′,i′ for (r′, i′) ≥ (r, j) (since
Tr,j is necessary to claim Txr′,i′), and (4) all the deposits
Txr′,i′ for (r′, i′) > (r, i) (i.e., those that were made so far)
will get automatically refunded after τr′,i′ (since Tr,j is need
to claim this, but is never revealed by Pj). Thus in such a
situation neither party stands to gain or lose coins. Next, we
discuss aborts by parties in the reveal phase.

First suppose P1 aborts without claiming Tx1,1. In this
case, dishonest P1 will never obtain T1,2. This is because P2

would not have obtained T1,1 from P1, and hence cannot claim
Tx1,2. Now note that all deposits Txr,i for (r, i) ≥ (1, 2) re-
quire T1,2, and hence none of these deposits can be claimed.
Thus we have that neither party stands to lose or gain coins.
Recall that this corresponds to the case where the reveal phase
hasn’t started yet, and so parties don’t get penalized yet.

Recall that once the reveal phase starts, we must penalize
every party that did not reveal its token during its turn. Sup-
pose P1 does claim Tx1,1 (i.e., the reveal phase has started).
Then in this case, P2 is down coins(q) while P1 is up coins(q).
If P2 aborts at this stage, then essentially P2 has compensated
P1 with coins(q). On the other hand if P2 claims Tx1,2, then
note that it gets coins(2q) from that claim. Thus, it is now
coins(q) up while P1 is down coins(q). It is easy to see that
as the remaining claims are made, parties take turns going up
and down coins(q) (hence the name “see-saw”). Thus we have
the property that whenever a party Pi claims Txr,i (except for
(r, i) = (m, 2)), it gains coins(q) while the other party loses
coins(q). This incentivizes the other party to go ahead and
claim F?CR transaction immediately above Txr,i, say Txr′,i′ .
Indeed if the other party does not make the claim, then we have
that the honest party (i.e., Pi) is compensated with coins(q)

at the end of the protocol. This is because if Txr′,i′ is not
claimed, then either (1) (r′, i′) = (m, 2), and this casePi does
not lose coins from this transaction, and simply ends the proto-
col with coins(q) as compensation, or (2) (r′, i′) 6= (m, 2), in
which case Pi will never reveal Tr+1,i thus making it impossi-
ble for any Txr′′,i′′ to be claimed for any (r′′, i′′) ≥ (r+1, i),
essentially ensuring that no further money transfers happen,
and that Pi can end the protocol with coins(q) as compensa-
tion. Finally, in an honest execution, when P2 claims the last
transaction Txm,2 it gets only coins(q) from that claim, and
thus in this case both parties even out.
Multiparty locked ladder mechanism. Generalizing the two
party solution is nontrivial. To better understand the compli-
cations we will first look a naïve 3-party protocol.
Naïve single-round 3-party case. The high level idea is to try
and ensure that all parties are already compensated by Pi just
before the step where party Pi is required to reveal Ti. Then
after Pi is supposed to reveal Ti, we get the compensation that
was delivered to the parties back to Pi. (Observe that we do
not need to apply the above strategy for i = 1.) Consider the
following implementation of the above strategy:

ROOF DEPOSITS. For j ∈ {1, 2}:

Pj
TT3−−−−−−−−−−−−−−→
q,τ3,j

P3

THIRD STAGE DEPOSITS.

P3
TT2−−−−−−−−−−−−−−→

3q,τ2,3
P2

SECOND STAGE DEPOSITS.

P2
TT1−−−−−−−−−−−−−−→
q,τ3,2

P3

FIRST STAGE DEPOSITS.

P2
TT1−−−−−−−−−−−−−−→
q,τ1,2

P1

To see why the above may be a faithful implementation of
the strategy, note that the end of the first two deposit stages,
P2 has already compensated both P1 and P3 with coins(q),
i.e., P2 has lost coins(2q). Then, in the third stage, it claims
coins(3q) from P3 by revealing T2. This is effectively equiv-
alent to P3 compensating P2 with coins(q), and learning T1

and T2. That is, at the end of the third stage, it is P3’s turn to
reveal T3, and both P1 and P2 have already been compensated
with coins(q) by P3. Then, in the roof stage, P3 claims back
coins(q) from both P1 and P2 by revealing T3 (along with
T1, T2), and thus all parties even out.

The problem with the above scheme is that it is not resistant
to a “coalition attack.” Consider a malicious P2 that does not
make the first and second stage deposits. Recall that the roof
deposits and the third stage deposits have already been made.
Now a malicious coalition of P1 and P2 possesses both T1 and
T2, i.e., TT2 and can claim the third stage deposit of coins(3q).
While P3 can use TT2 to claim the roof deposits, and learn all
the tokens, it does so at an expense of coins(q) (i.e., it claims
coins(2q) from the roof deposits but has lost coins(3q) in the
third stage deposits). This is clearly an undesirable situation
as the honest party has lost coins(q).

To avoid the “coalition attack,” we now introduce two new
ideas that will help us construct our multiparty protocol. The

first idea is a locking mechanism that prevents the collusion
attack that we just described on our naïve 3-party protocol.
The second is an integration of the first idea with the ladder
mechanism of [10] which allows transitions between different
stages of the protocol. We explain these two ideas below.

Locking mechanism. Recall that the high level idea in our
naïve 3-party protocol was to ensure that all parties are already
compensated by Pi just before the step where party Pi is re-
quired to reveal Ti. Then after Pi reveals Ti, we get the com-
pensation that was delivered to the parties back to Pi. That is,
we have a set of transactions S+i where Pi claims coins(q)
each from a set of parties, followed by a set of transactions
S−i where the same set of parties each claim coins(q) from
Pi. (Recall that transactions in S−i are claimed first, which
forces Pi to reveal Ti and claim transactions in S+i.)

The general form of the attack on the naïve protocol is that
Pi aborts when it has to make transactions in S−i. Then
colluding with parties P1, . . . , Pi−1, party Pi starts claiming
transactions in S+i. This allows Pi to unfairly obtain addi-
tional coins from parties Pi+1, . . . , Pn while ensuring that
they are unable to claim deposits in S−i.

The main idea that we use to prevent such attacks is to
“lock” transactions in S+i such that they can be “unlocked”
and claimed only if the transactions in S−i were already
claimed. To do this, we make use of “dummy tokens” Ui,j
that will be used by Pj (and known only to Pj) to lock trans-
actions in S+i. (We will generate these dummy token via an
initial MPC protocol. A similar strategy is used to “bootstrap”
the computation, and we defer details until then.) More con-
cretely, to claim the transaction from Pj in S+i, party Pi needs
to produce Ui,j in addition to TTi. Then to enable an honest
Pi to claim transactions in S+i, we let party Pj to claim trans-
actions in S−i only if it produces Ui,j in addition to TTi−1.

Ladder mechanism. While the above locking mechanism deals
with aborts in the deposit phase, we must obviously be wary of
aborts in the reveal phase. Indeed, it turns out that the locking
mechanism alone does not suffice. To see why, watch what
happens when it is (honest) Pi’s turn to reveal the witness, and
yet none of the parties claim transactions in S−i thus disabling
Pi from revealing its token. In effect, all parties other than Pi
have aborted, and yet Pi does not receive any compensation,
thus violating our requirements. For a more concrete exam-
ple of what we refer to as the “locked-out attack,” consider
the naïve 3-party protocol enhanced with the locking mecha-
nism (i.e., both second stage as well as the third stage deposits
are locked). Now P1 claims the first stage deposit, and af-
ter that P3 simply aborts without claiming the second stage
locked transaction. This will disallow P2 from claiming the
third stage deposit as it remains locked. Thus, essentially P3

aborted the protocol, and yet P2 does not gain coins(q) (in
fact, it loses coins(q) here).

The above attack naturally leads us to include a F?CR trans-
action to Pi that can be claimed just by revealing TTi, i.e., it
is essentially an unlocked transaction. What the above would
ensure is that Pi will never be stranded in a situation where it
wishes to reveal its token, and yet is unable to claim any trans-
actions. While the above is true, unfortunately if we include
unlocked F?CR transactions from each Pj to Pi (i.e., those that
can be claimed just using TTi), then we have negated the lock-
ing mechanism, and are back to square one. Thus, what we

want to do is to give a chance to Pi to avoid the “locked-out
attack” while at the same time preventing the “coalition at-
tack.” To do this, we let only Pi+1 make an unlocked F?CR

transaction to Pi that can be claimed by revealing just TTi. In
some sense, this breaks the symmetry of the protocol, but it
also gives us a chance to make use of the ladder mechanism
of [10]. That is, following [10], we let Pi+1 make an unlocked
F?CR transaction to Pi for coins(i · q) that can be claimed by
revealing TTi. We present our protocol in Figure 4.

ROOF DEPOSITS. For each j ∈ [n− 1]:

Pj
TTn−−−−−−−−−−−−−−−−−→

q,τ2n−2

Pn

LADDER DEPOSITS. For i = n− 1 down to 2:

• Rung unlock: For j = n down to i+ 1:

Pj
TTi∧Ui,j−−−−−−−−−−−−−−−−−→
q,τ2i−1

Pi

• Rung climb:

Pi+1
TTi−−−−−−−−−−−−−−−−−→
i·q,τ2i−2

Pi

• Rung lock: For each j = n down to i+ 1:

Pi
TTi−1∧Ui,j−−−−−−−−−−−−−−−−−−−→
q,τ2i−2

Pj

FOOT DEPOSIT.

P2
TT1−−−−−−−−−−−−−−−−−→
q,τ1

P1

Figure 4: Locked ladder mechanism.

At a high level, the protocol proceeds by getting a roof de-
posit from each of the parties to Pn that can be claimed if
Pn produces TTn. Next, we enter the ladder deposits for each
i = n−1 down to 2 (note the order is important), where party
Pi receives a deposit that is locked with token Ui,j from each
party Pj for j > i (these correspond to S+i), an unlocked
deposit from Pi+1 that can be claimed if Pi reveals TTi, and
makes deposits to Pj for j > i that are locked with Ui,j (these
correspond to S−i). Note that deposits in S−i can be claimed
with TTi−1 (in addition to Ui,j), and that deposits in S+i can
be claimed with TTi (in addition to Ui,j). Finally, we have the
foot deposit (essentially foot of the ladder that involves P1)
where P2 makes a deposit to P1 that can be claimed with T1.

As usual these deposits will be claimed in reverse. That is,
P1 first claims the floor deposit by revealing T1. Then parties
enter the ladder reveal phase. As in [10], the parties metaphor-
ically climb the ladder as they take turns claiming the ladder
deposits. The difference from [10] is that before climbing a
rung of the ladder, parties first do a “rung lock” step, and af-
ter they climb the rung, they perform a “rung unlock” step.
Hence, while the protocol is being executed, Pi first pays the

parties above it (who haven’t “played” yet), but Pi will then
immediately be able to “play” by extending TTi−1 and thereby
reclaim these coins that it paid, thus avoiding the locked-out
and coalition attacks.

As in the ladder mechanism of [10], once the i-th ladder de-
posit is claimed, parties P1 through Pi become “inactive” in
the sense that they no longer claim any deposits and nor are
any of their ladder deposits remain unclaimed. (In fact their
only unclaimed deposits are those that are part of the roof
deposits.) It is easy to see that the “inactive” parties are al-
ways coins(q) up after the i-th ladder rung unlock deposits
are claimed, and that they remain coins(q) up until the be-
ginning of roof claims. As it turns out, the lock and ladder
mechanisms are sufficient to deal with aborts in the deposit
and reveal phases, respectively.

Multiparty see-saw mechanism. Our idea is to mimic the
two-party see-saw mechanism. That is, all we need to do is
to ensure that the end of each of the m rounds, party P1 has
already compensated coins(q) to every other party, and is thus
incentivized to send the first token for the next round. This
is quite straightforward to implement. For every round we in-
voke an instance of the single-round locked ladder mechanism
(with the transcript verification circuits corresponding to the
round of the protocol). These instances are invoked sequen-
tially, and thus the timelocks have to be set accordingly.

Recall that at the end of the reveal phase of every instance of
the locked ladder mechanism, parties have either already been
compensated, or they learn all the protocol messages for the
round, and are all evened out w.r.t. deposits. Then to apply
the see-saw idea, we need to introduce new “chain” deposits
between successive instances of the locked ladder mechanism.

CHAIN DEPOSITS.

• For j = 2 to n:

Pj
TTr+1,1−−−−−−−−−−−−−−−−−→
q,τr+1,1

P1 (Txchain
j,1)

• For j = 2 to n:

P1
TTr,n−−−−−−−−−−−−−−−→

q,τr+1,1

Pj (Txchain
1,j)

Remark. Note that solving the single-round multiparty case
yields a solution to the multi-round multiparty case as well.
To see why, let us denote the problem for them-round n-party
case by LLm,n. Then the problem LLm,n is obtained by simply
“folding” LL1,nm. That is, for i ∈ [nm], interpret Pi’s move
in LL1,nm as Pi mod n’s move in the (bi/nc + 1)-th round of
LLm,n. The key observation behind why this transformation is
secure is that any protocol π solving LL1,nm is resistant to ma-
licious coalitions of any subset of nm parties, and therefore,
the “folded”m-round n-party protocol obtained from π is also
resistant to any coalitions of subset of the n parties. Since the
protocol in Figure 4 solves the single-round multiparty case,
we trivially obtain the multi-round multiparty solution.

However note that the efficiency of such a solution obtained
for the m-round two-party case i.e., for LLm,2 by using the
2m-party locked ladder mechanism, has worse efficiency than
the two-party see-saw protocol from Figure 3. While the see-
saw protocol requires parties to each deposit coins(2mq), the
amount deposited in the ladder grows as O(m2q).

Bootstrapping. Finally we focus on how to incentivize P1 to
start the protocol (i.e., reveal T1,1) or otherwise pay penalty.
To do this, we make use of “dummy tokens” {U1,j}j∈{2,....n}.
These dummy tokens are obtained by the parties via an initial
secure computation step. In more detail, for all j ∈ [n] \ {1},
the secure computation protocol:

• chooses U1,j ← {0, 1}λ and ωboot
1,j ← {0, 1}λ at random;

• computes comboot
1,j ← S(1λ, U1,j , ω

boot
1,j);

• outputs comboot
1,j to all parties and (U1,j , ω

boot
1,j) to Pj ,

where S is the sender algorithm of a honest binding commit-
ment scheme (cf. Appendix A). Note that comboot

1,j is computed
in order to allow parties to generate the verification circuit for
transaction Txboot

1,j and Txboot
j,1 described below. Also, we stress

that for j 6= 1, the dummy token U1,j is unknown to P1;
it only knows the corresponding commitment comboot

1,j . (We
note that the above MPC step can be combined with the MPC
step for handling the cash distribution step (cf. Section 4) as
well as for generating the dummy tokens {Ui,j} in the lock
mechanism.) Consider the following set of deposit transac-
tions where τ1 > τ0:
BOOTSTRAP DEPOSITS.

• For j = 2 to n:

Pj
T1∧U1,j−−−−−−−−−−−−−−−−−→
q,τ1

P1 (Txboot
j,1)

• For j = 2 to n:

P1

U1,j−−−−−−−−−−−−−−−→
q,τ0

Pj (Txboot
1,j)

That is, first each Pj makes a deposit Txboot
j,1 to P1, and then

P1 makes deposits Txboot
1,j to each Pj . Then in the reveal phase,

the claims are made in reverse: each Pj first claims Txboot
1,j

using the dummy token U1,j . Now P1 learns U1,j , and since
it already knows T1, it can go ahead and claim each Txboot

j,1 .
More importantly, note that once the bootstrap deposits are
made, an honest Pj will always claim Txboot

1,j , and thus will be
coins(q) up. Thus the onus is on P1 to deliver the first token
(and to reclaim its coins(q)), failing which it effectively pays a
penalty coins(q) to each honest party. The bootstrap deposits
will be the last deposits to be made in the initial deposit phase,
and will be the first deposits to be claimed in the reveal phase.

We are now ready to state our main theorem. Since the ideal
oblivious transfer primitiveFOT is suffficient to obtain a com-
mon random string, we can then apply e.g., [20] to obtain:

Theorem 2. Let (F, d?) be a bounded zero-sum reactive dis-
tribution as in Definition 2. Then assuming the existence of
enhanced trapdoor permutations, there exists a protocol that
SCC-realizes (cf. Definition 1) F?F,d? in the (FOT,F?CR)-
hybrid model.

Proof sketch. The main idea behind the proof is that the wit-
nesses used to claim F?CR transactions are simply successive
messages of a secure computation protocol πF that realizes
that standard reactive functionality FF . Since πF is secure
by definition, we have that the computation also proceeds se-
curely. To do the simulation, we make use of (1) the simulator
for πF , (2) the simulator for initial MPC step (alternatively

access to ideal unfair functionality realized in the FOT-hybrid
model) that generates the dummy tokens for the lock mecha-
nism, the bootstrap deposits (i.e., the values {Ui,j}), and also
for the cash deposits at the end (i.e., the values {T fin

i,j,k}), and
(3) the simulator algorithms for honest-binding commitments.
Simulating the coins part of the protocol is more involved
but closely follows the simulation of the ladder mechanism
in [10]. We defer further details to the full version.

6. EFFICIENT POKER PROTOCOL
In this section we describe an optimized protocol for Texas
hold ‘em poker that avoids non-black-box use of an MPC pro-
tocol. Our key observation is that in each stage, only player Pi
has an input in a stage of the computation that corresponds to
player Pi’s r-th round move. Let (S,R) be a non-interactive
honest binding commitment (cf. Definition 3). Parties run a
MPC protocol that does the following:

• selects hands hi uniformly at random for each party Pi, as
well as the five community cards y1, . . . , y5;
• performs an n-out-of-n secret sharing of each hand hi to

obtain {hi,j}j∈[n], and a n-out-of-n secret sharing of each
of the five cards yk to obtain {yk,j}j∈[n];
• applies the sender algorithm of an honest-binding commit-

ment using random ωhi,j to secret share hi,j to obtain comh
i,j

and set Taghi,j = comh
i,j and Tokenhi,j = (hi,j , ω

h
i,j);

• applies the sender algorithm of an honest-binding commit-
ment using random ωyi,j to secret share yi,j to obtain comy

i,j

and set Tagyi,j = comy
i,j and Tokenyi,j = (yi,j , ω

y
i,j);

• sets AllTags = {Taghi,j ,Tagyi,j}i,j∈[n]; and

• delivers AllTags, {Tokenhi,j ,Tokenyi,j}j∈[n] to each Pi.

Note that at the end of this step, none of these cards are
delivered to the parties. Instead all of these cards (including
each party’s hands) are simply secret shared among the parties.
In addition, parties also receive (honest-binding) commitments
on all the shares, and the decommitments to the shares held
by them. These are given so that parties can later verify if
each party indeed reveals the correct shares by sending the
decommitments corresponding to the public commimtments.

Once this is done, parties make a series of deposits as in
the see-saw (alternatively, locked ladder) mechanism. We de-
fer the description of the φi,r for these deposits, and first fo-
cus on the structure of the protocol. Each party Pj is first
required to reveal Hj = {hi,j}i∈[n]\{j}, i.e., the secret shares
of other party’s hands. This is so that each party learns its pri-
vate hands. Here we will make use of the see-saw mechanism
to ensure that each party Pj either revealsHj or pays a penalty
to all other parties. The verification circuits for the F?CR trans-
actions will depend on comh

i,j generated in the initial secure
computation step.

Next parties enter a round of (pre-flop) betting. Here we as-
sume a bound on maximum number of stages of betting (this is
so that we can ensure that parties make all the necessary F?CR

deposits in the see-saw mechanism). To place a bet, party Pi
simply sends the entire transcript of bets made so far in this
hand along with its new bet. Note that each party signs its
bet when it makes one, and thus when parties send a transcript
containing the bets, they must also contain the necessary sig-
natures. We assume that there is a well-defined function tvr,i

(tv stands for “transcript validity”) that takes the transcript of
the poker game so far (including bets made so far, and the new
bet made by party Pi in round r), and verifies if it is a valid
bet. Note that a bet bi made by Pi simply specifies the ad-
ditional amount of coins it is willing to bet during its turn in
pre-flop betting round. (Similarly to fold, Pi simply sends a
signed “fold” message.) We wish to stress that no actual coins
related to the bet amounts are transferred in this phase. (These
will all be transferred at the very end of the protocol.)

Now note that once this round of betting ends, the flops
needs to be revealed to all the parties. We adopt the same
strategy that we used to reveal each party’s hands. That is,
each party Pj is required to reveal Y 1

j = {y1,j , y2,j , y3,j},
i.e., the secret shares of the flop. Once again we will make use
of the see-saw mechanism to ensure that each party Pj either
reveals Y 1

j or pays a penalty to all other parties.
Two additional rounds of betting take place before reveal-

ing the turn and the river. These are handled exactly like the
pre-flop betting. Once all the community cards are revealed,
parties that wish to claim the pot start revealing their cards.
That is, parties execute an additional stage where they take
turns to reveal their cards, i.e., reveal their share hi,i (which
reveals their hand). Once all parties complete the showdown
round, and the entire transcript TTm,n is available, then the pot
winner can be determined. Note that we run only one MPC at
the very beginning, and AllTags generated in this step is suf-
ficient to design the verification circuits for all F?CR deposits
in the see-saw mechanism. Since the see-saw mechanism now
applies, any party that aborts the protocol before the winner
has been determined will pay a penalty to all other parties.

The above description turns out to be sufficient to realize
“mental poker” [1], but is not sufficient to realize standard
poker (i.e., poker with money). This is because we still haven’t
let the winner(s) take the pot. Next we describe the cash dis-
tribution stage. Let d? = (d?1, . . . , d

?
n), and for each i ∈ [n],

let mi = dlog(d?i)e. As in Section 4, for every ordered pair
(i, j) with i, j ∈ [n] and i 6= j, and for each k ∈ [mi], we
let Pi make an F?CR transaction as follows (we slightly abuse
the F?CR notation and use the verification circuit instead of the
verifying witness):

Pi
φfin
i,j,k−−−−−−−−−−−−−−−−−−−→
2k,τ0

Pj (Txfin
i,j,k)

where verification circuit φfin
i,j,k takes TTm,n as input and:

• outputs 0 and terminates if tvm,n(TTm,n) = 0;

• computes z? = (z?1 , . . . , z
?
n) using TTm,n, where z?i rep-

resents the amount which party Pi is supposed to get at the
end of the protocol;

• computes A = g(d?, z?) (cf. Observation 1), lets
ai,j denote the (i, j)-th entry of matrix A, and lets
b?i,j,1, ..., b

?
i,j,mi

be the binary representation of ai,j ;

• outputs 1 if b?i,j,k = 1, else outputs 0.

Efficiency. Note that each party Pi makes (n − 1) ·mi calls
to F?CR and deposits a total of (n − 1) · d?i coins. For imple-
menting the see-saw mechanism we require O(n2m) calls to
F?CR and each party to make a maximum deposit of O(nm)
where m represents the bound on the maximum number of
betting rounds in a hand. Note that we can preprocess both
the secure computation, as well as the initial deposit phase

(thus managing the long waiting times for transaction confir-
mation offline). Other than this, note that the messages in our
secure poker protocol are mostly signed messages indicating
the player’s move, and thus not very different from the mes-
sages in an insecure poker protocol.

7. CONCLUSIONS
In this paper, we presented formal definitions for secure cash
distribution with penalties (SCD), a primitive that allows state-
ful computations involving data and/or money, and guarantees
a strong notion of dropout tolerance. We then constructed a
protocol for SCD that only makes use of a claim-or-refund
transaction functionalityF?CR (which can be implemented in a
variant of Bitcoin) and is otherwise independent of the Bitcoin
ecosystem. Our SCD protocol may be improved in a number
of ways, including improvements to round complexity, vali-
dation complexity of F?CR transactions, as well as alternate
constructions that make only black-box use of MPC.

8. REFERENCES
[1] A. Shamir, R. Rivest, and L. Adleman, “Mental poker.”

The Mathematical Gardener., pp. 37–43, 1981.
[2] A. C. Yao, “Protocols for secure computations,” in 23rd

Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, Nov. 1982, pp. 160–164.

[3] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game, or a completeness theorem for
protocols with honest majority,” in 19th Annual ACM
Symposium on Theory of Computing (STOC), A. Aho,
Ed. ACM Press, 1987.

[4] M. Andrychowicz, S. Dziembowski, D. Malinowski,
and L. Mazurek, “Secure multiparty computations on
bitcoin.” in IEEE Security and Privacy, 2014.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008, http://bitcoin.org/bitcoin.pdf.

[6] M. Green, “Poker is hard, especially for
cryptographers,” http://blog.cryptographyengineering.
com/2012/04/poker-is-hard-especially-for.html, 2013.

[7] M. Jakobsson, D. Pointcheval, and A. Young, “Secure
mobile gambling,” in Cryptographers’ Track —
RSA 2001, ser. LNCS, D. Naccache, Ed., vol. 2020.
Springer, Apr. 2001, pp. 110–125.

[8] A. Back and I. Bentov, “Note on fair coin toss via
bitcoin,” http://arxiv.org/abs/1402.3698, 2013.

[9] M. Andrychowicz, S. Dziembowski, D. Malinowski,
and L. Mazurek, “Fair two-party computations via the
bitcoin deposits.” in First Workshop on Bitcoin
Research, FC, 2014.

[10] I. Bentov and R. Kumaresan, “How to use bitcoin to
design fair protocols.” in Crypto (2), 2014, pp. 421–439.

[11] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in 42nd Annual
Symposium on Foundations of Computer Science
(FOCS). IEEE, Oct. 2001.

[12] “Bitcoin CVEs,”
https://en.bitcoin.it/wiki/CVEs#CVE-2010-5141.

[13] R. Kumaresan and I. Bentov, “How to use bitcoin to
incentivize correct computations.” in CCS, 2014.

[14] G. Andresen, “Turing complete language vs non-turing
complete.” https://bitcointalk.org/index.php?topic=
431513.20#msg4882293.

[15] A. Yao, “How to generate and exchange secrets
(extended abstract),” in FOCS, 1986, pp. 162–167.

[16] R. Cleve, “Limits on the security of coin flips when half
the processors are faulty (extended abstract).” in STOC,
1986, pp. 364–369.

[17] O. Goldreich, “Foundations of cryptography - vol. 2,”
2004.

[18] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to
better - how to make bitcoin a better currency.” in FC,
2012.

[19] G. Maxwell, “Zero knowledge contingent payment.
2011,” https://en.bitcoin.it/wiki/Zero_Knowledge_
Contingent_Payment.

[20] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai,
“Universally composable two-party and multi-party
secure computation,” in 34th Annual ACM Symposium
on Theory of Computing (STOC). ACM Press, May
2002, pp. 494–503.

[21] J. A. Garay, J. Katz, R. Kumaresan, and H.-S. Zhou,
“Adaptively secure broadcast, revisited.” ACM Press,
2011, pp. 179–186.

APPENDIX
A. FORMAL DEFINITIONS
Definition 3 (Honest binding commitments [21]). A (non-
interactive) commitment scheme for message space {Mλ} is
a pair of PPT algorithms S,R such that for all λ ∈ N, all
messages m ∈ Mλ, and all random coins ω it holds that
R(m,S(1λ,m;ω), ω) = 1. A commitment scheme for mes-
sage space {Mλ} is honest-binding if:
Binding (for an honest sender) For all PPT algorithms A
(that maintain state throughout their execution), the following
is negligible in λ:

Pr

m← A(1λ);
ω ← {0, 1}∗; com← S(1λ,m;ω);
(m′, ω′)← A(com, ω) :

R(m′, com, ω′) = 1
∧
m′ 6= m

Equivocation There is an algorithm S̃ = (S̃1, S̃2) such that
for all PPT A (that maintain state throughout their execution)
the following is negligible:∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 m← A(1λ);
ω ← {0, 1}∗; com← S(1λ,m;ω) :
A(1λ, com, ω) = 1

−Pr

 (com, st)← S̃1(1
λ);

m← A(1λ); ω ← S̃2(st,m) :
A(1λ, com, ω) = 1

∣∣∣∣∣∣∣∣∣∣∣∣
Equivocation implies the standard hiding property. Also,

observe that binding holds for commitments generated by
(S̃1, S̃2). As observed in [10], we can construct highly effi-
cient heuristically secure honest binding commitment schemes
in the programmable random oracle model. In the follow-
ing let Hash be a programmable hash function, and let ω ∈
{0, 1}λ. We describe the algorithms S,R (algorithms S̃1, S̃2

are obtained by standard oracle programming techniques).
S(1k,m;ω)

return com := Hash(m‖ω);
R(m, com, ω)

If com
?
= Hash(m‖ω)

return 1;
else return 0;

http://bitcoin.org/bitcoin.pdf
http://blog.cryptographyengineering.com/2012/04/poker-is-hard-especially-for.html
http://blog.cryptographyengineering.com/2012/04/poker-is-hard-especially-for.html
https://en.bitcoin.it/wiki/CVEs#CVE-2010-5141
https://bitcointalk.org/index.php?topic=431513.20#msg4882293
https://bitcointalk.org/index.php?topic=431513.20#msg4882293
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

	Introduction
	Preliminaries
	Secure Cash Distribution
	Realizing SCD
	See-saw Mechanism
	Efficient Poker Protocol
	Conclusions
	References
	Formal Definitions

