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Abstract. We optimize the communication (and, indirectly, compu-
tation) complexity of two-party secure function evaluation (SFE). We
propose a new approach, which relies on the information-theoretic (IT)
Garbled Circuit (GC), which is more efficient than Yao’s GC on shallow
circuits. When evaluating a large circuit, we “slice” it into thin layers
and evaluate them with IT GC. Motivated by the client-server setting,
we propose two variants of our construction: one for semi-honest model
(relatively straightforward), and one secure against a semi-honest server
and covert client (more technically involved). One of our new building
blocks, String-selection Oblivious Transfer (SOT), may be of indepen-
dent interest.
Our approach, asymptotically, offers communication and computation
improvement factor logarithmic in security parameter κ, over standard
state-of-the-art GC. In practical terms, already for today’s κ ∈ {128, 256}
our (unoptimized) algorithm offers approximately a factor 2 communi-
cation improvement in the semi-honest model, and is only a factor ≈ 1.5
more costly in setting with covert client.

1 Introduction

We propose efficiency improvements of two-party Secure Function Evaluation
(SFE). SFE allows two parties to evaluate any function on their respective in-
puts x and y, while maintaining privacy of both x and y. SFE is justifiably a
subject of an immense amount of research. Efficient SFE algorithms enable a
variety of electronic transactions, previously impossible due to mutual mistrust
of participants. Examples include auctions, contract signing, set intersection,
etc. As computation and communication resources have increased, SFE of many
useful functions has become practical for common use.

Still, SFE of most of today’s functions of interest is either completely out of
reach of practicality, or carries costs sufficient to deter would-be adopters, who
instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see use in real-life applications.

? Work partly done while the author was visiting Bell Labs.
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On the cost of SFE rounds. This work is mainly motivated by the client-
server setting, and its specific scalability and performance issues. We argue that
in this setting, the number of communication rounds in SFE often plays an
insignificant role in practice.

Of course, additional rounds may cause somewhat increased latency of an
individual computation – a possible inconvenience to the user of interactive ap-
plications. However, many SFE protocols allow for a significant precomputation
and also for streaming, where message transmission may begin (and even a re-
sponse may be received) before the sender completes the computation of the
message. Thus, even in the peer-to-peer setting round-related latency need not
be a wasted time. And this is certainly true in the client-server environment,
where the idle server can always busy itself with the next client.

Further, in the server environment, where computation and communication
resources are provisioned as close to demand as possible, we are particularly
interested in throughput (rather than latency) of the total computation. This is
because of the high cost of SFE, and the possibility of its adoption (vs the use of
a crypto-workaround) only at an engineer- and business-acceptable price point,
which includes hardware costs and electricity consumption. (Today’s U.S. data
centers already consume approximately 2% of U.S. electricity [13]. What would
happen if they all ran SFE?)

1.1 Our Setting

As justified above, we aim to optimize computation and, mainly, communication
of two-party SFE, without particular worry about round complexity. Further, our
main algorithm is in an asymmetric setting: one player (presumably, server) is
semi-honest, while the other (presumably, client), is covert [2]. This is in line with
our goal of achieving maximal performance, while providing appropriate security
guarantees. We argue that it is reasonable that a server (a business) would not
deviate from a prescribed protocol for fear of lawsuits and bad publicity, and the
client – for fear of being caught with probability guaranteed by the covert-secure
protocol. While we also give a simpler protocol in the semi-honest model, the
hybrid protocol (semi-honest client and covert server) is our main focus.

Finally, we remark that we are interested in the scalable client-server setting,
since we believe it to be the setting most likely to pioneer practical use of SFE.

For simplicity, we present our protocols in the Random Oracle (RO) model.
We note that we can reduce this assumption to correlation-robust hash functions,
needed for OT extension [7], by encrypting more carefully in our SOT protocol.

1.2 Our Contributions, Outline of the Work, and Results

We optimize computation and communication complexity of two-party SFE for
the important practical settings of semi-honest server and semi-honest or covert
client. Our Garbled-Circuit (GC)-like protocol, built on consecutive secure eval-
uation of “slices” of the original circuit, takes advantage of the high efficiency of
underlying information-theoretic (IT) GC-variant of Kolesnikov [11].
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The main technical challenge with this approach is efficient wire key transla-
tion between the circuit slices, secure against covert GC evaluator. Natural but
expensive use of committed OT [4, 10] would negate IT GC performance gain.
Instead, we introduce and efficiently implement a new OT variant of independent
interest, which we call String-selection OT (SOT). Here, the receiver submits a
selection string (instead of just one bit); he obtains corresponding OT output
only if he submitted one of the two sender-specified (presumably secret) strings.
Our second contribution is a construction of SFE slice-evaluation protocol, which
also has several subtleties in the covert-client setting.

We start with presenting detailed overview of our entire solution in Sec-
tion 1.4, and cover preliminaries in Section 2. In Section 3.1, we define SOT and
build SFE protocol secure against covert client C, assuming a SOT protocol in
the same model. Next, in Section 3.2 we present an efficient SOT protocol, based
on OT extension [7, 6]. Our SOT protocol is actually secure against a malicious
C, since we are able to get this advantage at comparable cost to that with the
covert C. In Section 3.1 we remark on shortcuts our SFE protocol could take
when both S and C are semi-honest.

Finally, in Section 4, we calculate the costs of our protocol, and compare
them with that of state-of-the-art Yao GC protocols, such as [22]. We achieve
asymptotic log factor improvement in security parameter κ in communication
and computation in both covert and semi-honest C settings. In practical terms,
for today’s κ ∈ {128, 256} we offer approximately a factor 2 communication im-
provement in the semi-honest model, and are a factor ≈ 1.5 more costly in setting
with covert client. We note that our protocols can be further optimized, resulting
in even better concrete performance, while GC protocols we are comparing with
have been highly fine-tuned for performance.

1.3 Related Work

We survey efficient SFE state-of-the-art, and discuss how it relates to our work.
Most relevant to us is a comparatively small body of work, which provides

improvements to the SFE core techniques, which address the semi-honest model.
We mention, but do not discuss in detail here the works that specifically concen-
trate on the malicious setting, such as [14, 8, 21, 16, 23, 20]. This is because their
improvement techniques cannot be transferred into the semi-honest world, and,
further, malicious-secure protocols are much more costly than the protocols we
are considering.

After Yao’s original GC work [25], we are aware of few improvements to
the core algorithm. Naor et al. [19] mentioned that it was possible to reduce the
number of entries (each of size security parameter κ) in the GC garbled table to 3
from 4. Kolesnikov [11] introduced the GESS construction, which can be viewed
as information-theoretic (IT) GC, and is much more efficient than standard GC
on shallow circuits. Using a GESS block in GC, Kolesnikov and Schneider [12]
showed how to get XOR gates “for free” in GC. Finally, Pinkas et al. [22] showed
how to reduce the garbled table size to 3 entries, while preserving the free-XOR
compatibility, or to two entries, but disallowing free-XOR technique.
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GMW [5], a non-constant-round SFE protocol like ours, is very communication-
efficient, if given cheap oblivious transfer (OT) (e.g., of cost independent of se-
curity parameter). However, using today’s best two-party OT [7], GMW’s com-
munication cost, 4κ per gate, is slightly worse than GC. Further, GMW is not
secure against covert client.

In this work, we are building on [11], and demonstrate communication cost
improvement over [22], as a trade-off with round complexity. Our costs are cor-
respondingly better than that of GMW, and we need fewer rounds than GMW.

Finally, we note the theoretical work of Naor and Nissim [17], which uses
indexing to perform SFE of branching programs (BP), and achieves costs poly-
nomial in the communication complexity of the insecurely computed function.
We note that, firstly, [17] is not performance-optimized. However, more impor-
tantly, BP function representation often carries dramatic overhead (exponential
for integer multiplication), as compared to circuits.

1.4 Overview of our solution

As discussed and justified above, our main goal is communication and com-
putational complexity reduction of the solution. We allow ourselves additional
communication rounds.

Our main idea is to build on the information-theoretic version of GC of
Kolesnikov [11], which, due to its avoidance of encryption, is more efficient than
computational GC for small-depth circuits. We capitalize on this by “slicing”
our original circuit C into a sequence of shallow circuits C1,...Cn, which we then
evaluate and obtain corresponding efficiency improvement. There are several
technical problems that need to be solved.

First, recall that Kolesnikov’s scheme, GESS, does not require generation or
sending of garbled tables. It does use wire keys, which may start with 1-bit-long
strings for output wires, and grow in size approximately quadratically with the
depth d of the fan-out-one circuit. For generic fan-out-2 circuits, thus, total wire
keys at depth d is up to O(2dd2).

The first problem is allowing for piece-wise secure circuit evaluation, given
the circuit’s slicing. In the semi-honest model, this can be achieved as follows.
Consider any slicing of C, where some wire wj of C is an output wire of Ci, and
is an input wire of Ci+1. Now, when a slice Ci is evaluated, Ci’s 1-bit wire key for
wj is computed by the evaluator, and then used, via OT, to obtain the wire key
for the corresponding input wire of Ci+1. This process repeats until C’s output
wire keys are computed by the evaluator. In order to prevent the evaluator from
learning the intermediate wire values of C, the 1-bit wire keys of slices’ output
wires are randomly assigned to wire values.

While secure against passive adversaries, above construction is easily com-
promised by an active evaluator. Indeed, he can influence the output of the
computation simply by flipping the 1-bit key of wj before using it in OT, which
will result in flipping the underlying bit on that wire.

To efficiently resolve this problem and achieve covert security against the
evaluator, we introduce String-selection OT (SOT), a variant of 1-out-of-2 OT,
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where the receiver submits a selection string (instead of a selection bit). Natu-
rally, in SOT, receiver obtains OT output corresponding to his selection string;
submission of a string not expected by the sender S results in error output. In
our construction, we will use multi-bit wire keys on output wires of each slice;
Client C will submit them to SOT to obtain input wire keys for next slice. Now,
a malicious C wishing to flip a wire value must guess, in the on-line fashion, the
multi-bit wire key corresponding to the opposite wire value. We will show that
this results in covert security against the evaluator.

Efficient OT is a critical component in our construction. Another techni-
cal contribution of this paper is an efficient SOT protocol for arbitrary-length
selection strings, secure against malicious C.

Finally, we discuss how to optimally slice a given circuit, evaluate and com-
pare efficiency of our approach to previous solutions.

2 Preliminaries and Notation

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [25], excellently presented in [15], is the most
efficient method for one-round secure evaluation of a boolean circuit C. We
summarize its ideas in the following. The circuit constructor (server S) creates

a garbled circuit C̃: for each wire wi of the circuit, he randomly chooses two
garblings w̃0

i , w̃
1
i , where w̃ji is the garbled value of wi’s value j. (Note: w̃ji does

not reveal j.) Further, for each gate Gi, S creates a garbled table T̃i with the

following property: given a set of garbled values of Gi’s inputs, T̃i allows to
recover the garbled value of the corresponding Gi’s output, but nothing else.
S sends these garbled tables, called garbled circuit C̃ to the evaluator (client
C). Additionally, C obliviously obtains the garbled inputs w̃i corresponding to
inputs of both parties: the garbled inputs x̃ corresponding to the inputs x of S
are sent directly and ỹ are obtained with a parallel 1-out-of-2 oblivious transfer
(OT) protocol [18, 1]. Now, C can evaluate the garbled circuit C̃ on the garbled

inputs to obtain the garbled outputs by evaluating C̃ gate by gate, using the
garbled tables T̃i. Finally, C determines the plain values corresponding to the
obtained garbled output values using an output translation table received by S.
Correctness of GC follows from the way garbled tables T̃i are constructed.

2.2 GESS: Efficient Information-Theoretic GC for Shallow Circuits

We review the Gate Evaluation Secret Sharing (GESS) scheme of Kolesnikov
[11], which is the most efficient information-theoretic analog of GC. Because en-
cryption there is done with bitwise XOR and bit shufflings, rather than with
standard primitives such as AES, GESS is significantly more efficient than stan-
dard GC, both in computation and communication, for shallow circuits.

At a high level, GESS is a secret sharing scheme, designed to match with
the gate function g, as follows. The output wire keys are the secrets, from which
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the constructor produces four secret shares, one for each of the wire keys of the
two input wires. GESS guarantees that a combination of shares, corresponding
to any of the four possible gate inputs, reconstructs the corresponding key of the
output wire. This secret sharing can be applied recursively, enabling reduction
of SFE to OT (to transfer the wire secrets on the input wires). One result
of [11] is the SFE protocol for a boolean formula F of communication complexity
≈

∑
d2i , where di is the depth of the i-th leaf of F . This improvement (prior

best construction – [9] combined with [3] – cost ≈
∑

2θ(
√
di)) will allow us to

outperform the standard GC by evaluating thin slices of the circuit. We note
that other IT GC variants could also be used in our work, with corresponding
performance disadvantage.

2.3 Covert Security

In this work, we consider a semi-honest Server, and a stronger Client-adversary
who may deviate from the protocol specification in an attempt to cheat. While
cheating attempts may be successful, the covert model [2] guarantees that any
attempted cheating is caught with a certain minimal probability ε.

Aumann and Lindell [2] give three formalizations of this notion; we consider
their strongest definition, the strong explicit-cheat formulation. Informally, this
variant of the covert-security definition guarantees that, if caught, the adversary
does not learn honest player’s input. If not caught, the adversary may succeed
either in learning the honest player’s input or influencing the computation (or
both). The definition is given in the standard ideal-real paradigm. Intuitively, the
difference with the malicious model is that covert ideal world allows the cheat

request: if successful (based on the coin flip by a trusted party), the adversary
is allowed to win, if not, honest players are informed of cheat attempt.

We refer the reader to [2] for details and formal definitions.

2.4 Notation

Let κ be the computational security parameter.
Our SFE protocol is given a circuit C which represents a function f that

a server S (with input x) and a client C (with input y) wish to compute. Let
d denote the depth of C. Our protocol proceeds by dividing the circuit C into
horizontal slices. Let ` denote the number of such slices, and let C1, . . . , C` denote
these ` slices of C. We let d′ denote the depth of each slice Ci.

In circuit slice Ci, we let ui,j (resp. vi,j) denote the jth input (resp. output)
wire. For a wire ui,j (resp. vi,j), we refer to the garbled values corresponding to
0 and 1 by ũ0i,j , ũ

1
i,j (resp. ṽ0i,j , ṽ

1
i,j) respectively. In our protocol, let k (resp. k′)

denote the length of input (resp. output) wire garblings (k′ will be related to
the covert deterrent factor as ε = 1

2k′−1 ). While evaluating the garbled circuit,

C will possess only one of two garbled values for each wire in the circuit. We let
ũ′i,j (resp. ṽ′i,j) denote the garbled value on wire ui,j (resp. vi,j) that is possessed
by C.
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In Section 3, we introduce the primitive SOTk,k′ which requires a receiver
R, with input a k′-bit selection string, to select one of two k-bit strings held
by sender S. Our protocol for SOTk,k′ uses calls to the standard 1-out-of-2 OT
primitive (where receiver R, with input a selection bit, selects one of two k-bit
strings held by sender S).

3 Our Protocol for Secure Two-Party Computation

We describe our protocol for secure two-party computation against a semi-honest
server and a covert receiver in a hybrid model with ideal access to String-selection
OT (SOT), defined below:

Definition 1. String-selection OT, SOTk,k′ , is the following functionality:
Inputs: S holds two pairs (x0, r0), (x1, r1), where each x0, x1 are k-bit strings,

and r0, r1 are k′-bit strings (with r0 6= r1). R holds k′-bit selection string r.
Outputs: If r = ri for some i ∈ {0, 1}, then R outputs xi, and S outputs

empty string λ. Otherwise, R and S both output error symbol ⊥.

3.1 Our Protocol

We now present our protocol for securely computing a function f , represented
by a circuit C, where semi-honest S has input x and covert C has input y.

Our protocol uses OT, the standard 1-out-of-2 OT protocol, and SOTk,k′ ,
a SOT protocol, as defined in Definition 1. Assume both OT and SOTk,k′ are
secure against a semi-honest sender and a covert receiver with deterrent ε (the
required value of ε will depend on the parameters of the SFE protocol and is
stated in the security theorems below). We prove security in the strongest covert
formulation of [2], the strong explicit cheat formulation.

We evaluate C slice-by-slice. Further, each slice is viewed as a fan-out-1
circuit, as needed for the GESS scheme. We will discuss performance-optimal
ways of generating the slices in Appendix C.

Protocol 1 1. Circuit Preparation:
(a) Slicing. Given d, d′, server S divides circuit C of depth d into horizontal

sub-circuit layers, or slices, C1, . . . , C` of depth d′.
(b) Preparing each slice. In this step, S randomly generates the output secrets

of the slice, and, applying the GESS sharing scheme, obtains correspond-
ing input secrets, as follows.
Denote by ui,j the input wires and by vi,j the output wires of the slice
Ci. For each wire vi,j, S picks two random garblings ṽ0i,j , ṽ

1
i,j of length

k′ > 1 (conditioned on ṽ0i,j 6= ṽ1i,j). S then (information-theoretically)
computes the GESS garblings for each input wire in the subcircuit, as
described in [11]. Let k be the maximal length of the garblings ũ0i,j , ũ

1
i,j

of the input wires ui,j. Recall, GESS does not use garbled tables.
2. Circuit Evaluation:

For 1 ≤ i ≤ `, in round i do:
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(a) Oblivious transfer of keys.
i. For the top slice (the sub-circuit C1), do the standard SFE garblings

transfer:
For each client input wire u1,j (representing the bits of C’s input y),
S and C execute a 1-out-of-2 OT protocol, where S plays the role of
a sender, with inputs ũ01,j , ũ

1
1,j, and C plays the role of the receiver,

directly using his inputs for OT.
For each server input wire u1,j (representing the bits of S’s input x),
S sends to C one of ũ01,j , ũ

1
1,j, corresponding to its input bits.

ii. For slices Ci, i 6= 1, transfer next slice’s input keys based on the
current output keys:
For each input wire ui,j of the slice Ci, S uniformly at random
chooses a string ri,j of length k (this will mask the transferred se-
crets3). S then acts as sender in SOTk,k′ with input ((ũ0i,j⊕ri,j , ṽ0i−1,j),

(ũ1i,j ⊕ ri,j , ṽ1i−1,j)), and C acts as receiver with input ṽ′i−1,j (this is
the output wire secret of the one-above slice Ci−1, which C obtains
by executing Step 2b described next). Let C obtain ũ′i,j ⊕ ri,j as the
output from SOTk,k′ .
Once all SOTk,k′ had completed, S sends all ri,j to C, who then
computes all ũ′i,j.

(b) Evaluating the slice. C evaluates the GESS sub-circuit Ci, using garbled
input values ũ′i,j to obtain the output values ṽ′i,j.

3. Output of the computation. Recall, w.l.o.g., only C receives the output. S
now sends the output translation tables to C. For each output wire of C, C
outputs the bit corresponding to the wire secret obtained in evaluation of the
last slice C`.

Observation 1 We note that technically the reason for sending masked wire
values via SOTk,k′ in Step 2(a)ii is to facilitate the simulation proof, as follows.
When simulating covert C∗ without the knowledge of the input, the simulator
SimC’s messages to C∗ “commit” SimC to certain randomized representation of
players’ inputs. When, in SOT of the i-th slice Ci, a covert C∗ successfully cheats,
he will be given both wire keys for some wire of Ci. Without the masking, this
knowledge, combined with the knowledge of the gate function and a key on a
sibling wire, allows C∗ to infer the wire value encrypted by the simulation, which
might differ from the expected value. We use the mask to hide the encrypted
value even when both wire keys are revealed. Mask can be selected to “decommit”
transcript seen by C∗ to either of wire values.

Observation 2 We note that in the semi-honest-C case the above protocol can
be simplified and made more efficient. In particular, k′ is set to 1, in Step 2(a)ii,
it is sufficient to use OT (vs SOT), and offset strings rj are not needed.

We prove security of Protocol 1 against a semi-honest server S and a covert
client C.
3 The reason for the masking is to enable simulation of C. See Observation 1 for details.
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Theorem 3. Let OT be a 1-out-of-2 OT, and SOTk,k′ be a string-selection OT
(cf. Definition 1), both secure against semi-honest sender. Then Protocol 1 is
secure against a semi-honest server S.

Further, let k′ be a parameter upper-bounded by poly(n), and set ε = 1
2k′−1 .

Let f be any probabilistic polynomial-time function. Assume that the underly-
ing OT and SOT protocols are secure in the presence of covert receiver with
ε-deterrent, in the strong explicit cheat formulation of covert security. Then,
Protocol 1 securely computes f in the presence of covert client C with ε-deterrent,
in the strong explicit cheat formulation.

The proof is presented in Appendix A.

3.2 A Protocol for SOTk,k′

In this section, we introduce an efficient string-selection OT protocol, secure
against semi-honest sender and malicious receiver, which works for selection
strings of arbitrary length k′. We build it from k′ standard 1-out-of-2 OTs. We
note that, while Protocol 1 requires only covert-C security, we provide a stronger
building block (at no or very little extra cost).

The intuition behind our construction is as follows. We will split each of
the two secrets x0, x1 into k′ random shares xji (i.e. 2k′ total shares), with the

restriction that the sets of xji , indexed by each of the two selection strings, recon-
structs the corresponding secret. Then, in the semi-honest model, performing k′

standard OTs allows receiver to reconstruct one of the two secrets, corresponding
to his selection string.

To protect against malicious or covert receiver, we, firstly, assume that un-
derlying OTs are secure against such receiver. Further, we allow the sender to
confirm that the receiver indeed received one of the two secrets, as follows. De-
note by h0 (resp. h1) the hash of the vector of secret shares corresponding to the
secret x0 (resp. x1). To confirm that receiver obtained shares to reconstruct at
least one of x0, x1, the sender will send h0⊕h1 to R, and expect to receive both
h0 and h1 back (actually, it is sufficient to receive just one of h0, h1 selected by
R at random).

The above check introduces a subtle vulnerability: the value h0 ⊕ h1 leaks
information if selection strings differ in a single position. Indeed, then there is
only one secret share unknown to malicious R, and secrets’ values can be verified
by checking against received h0 ⊕ h1. (If we restricted the selection strings to
differ in at least two positions, this approach can be made to work. However,
such restriction is less natural.) As a result, we now can not transfer the SOTk,k′

secrets directly. To address this, we transfer SOTk,k′ secrets by encrypting each
with a random key, and then OT-transferring one of the two keys as above,
which is secure for OT of long random secrets.

Our Protocol. Let sender S have input (x0, r0), (x1, r1) with |x0| = |x1| = k,
and |r0| = |r1| = k′. Let receiver R have input r ∈ {r0, r1}. Let κ be a security
parameter, OT be a standard 1-out-of-2 OT, and H : {0, 1}∗ → {0, 1}κ be a
random oracle.
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Protocol 2 String-Selection OT

1. Let r0 = r01, r02, ..., r0k′ , and r1 = r11, r12, ..., r1k′ , where rij are bits. S
chooses sji ∈R {0, 1}κ, for i ∈ {0, 1}, j ∈ {1, . . . , k′}. S sets keys s0 =⊕

j s
r0j
j , and s1 =

⊕
j s
r1j
j .

2. S and R participate in k′ OTs as follows. For j = 1 to k′:
(a) S with input (s0j , s

1
j ), and R with input rj send their inputs to OT. R

receives s
rj
j .

3. S computes hashes of shares corresponding to the two secrets/selection strings:
h0 = H(sr011 , sr022 , ..., s

r0k′
k′ ), and h1 = H(sr111 , sr122 , ..., s

r1k′
k′ ). S then sends

h = h0 ⊕ h1 to R.
4. R computes hR = H(sr1 , ..., srk′ ) and sends to S either hR or h ⊕ hR,

equiprobably.
5. S checks that the hash received from R is equal to either h0 or h1. If so, it

sends, in random order, H(s0)⊕ x0, H(s1)⊕ x1 and terminates with output
λ; if not, S sends ⊥ to R and outputs failure symbol ⊥.

6. R computes key sr =
⊕

j srj and recovers the secret by canceling out H(sr).

For readability, we omitted simple technical details, such as adding redun-
dancy to xi which allows R to identify the recovered secret. We also slightly
abuse notation and consider the output length of H sufficiently stretched when
we use it to mask secrets xi.

Theorem 4. Assume that the underlying OT is secure in the presence of semi-
honest sender and malicious receiver. When k′ > 1, Protocol 2 is a secure SOT
protocol in the presence of semi-honest sender and malicious receiver.

The proof is presented in Appendix B.

4 Performance Analysis

For the lack of space, we present all the calculations in Appendix C. Here we
summarize the results.

Consider a fan-out 2 circuit C with c gates. To simplify our cost calculation
and w.l.o.g., we assume C is a rectangular circuit of constant width, where each
gate has fan-out 2. Let C be divided into ` slices, each of depth d′. Let k (resp.
k′) be key length on input (resp. output) wires of each slice. k′ is effectively the
covert deterrent parameter, and k grows as O(2d

′
) due to fan-out 2.

Then communication cost (measured in bits) of GC [22] is cost(Yao) = 2κc,
and of GMW is cost(GMW) = 4c+ 4κc. Our costs are O(κc/ log κ) in the semi-
honest model, and O(k′κc/ log(κ/k′)) in the covert-client setting, with small
constants. The computation costs (the number of hash function evaluations) of
all protocols, including ours is proportional to the communication cost; hence
our asymptotic improvements translate into computation as well.

In concrete terms, we get up to factor 2 improvement in the semi-honest
model for today’s typical parameters. Setting d′ = 3 and κ = 256, our cost is
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≈ 208c, as compared to ≈ 512c of [22]. In the setting with covert client (k′ = 2,
deterrent 1/3), our protocol has cost ≈ 804c, at less than factor 2 disadvantage;
it surpasses [22] for κ ≈ 4800.

Finally, while the GC protocol has been highly fine-tuned for performance,
we note that our protocols have room for optimization, resulting in even better
concrete advantage.
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A Proof of Theorem 3

Proof. Security against semi-honest S. Given input x, the semi-honest S∗
is simulated as follows. SimS chooses a random input y′ for C and plays honest
C interacting with S∗. He then outputs whatever S∗ outputs.
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It is easy to see that S∗ does not receive any messages – all protocol messages
related to C’s input are delivered inside OT and SOTk,k′ , the protocols that do
not return output to S∗ (other than possible error symbols, which will never be
output in this simulation, since it presumes that C is acting honestly, and S∗ is
semi-honest). Hence, this is a perfect simulation (however, the function calls to
underlying OT primitives will not be perfectly simulated).

The proof of security in the client-corruption case is somewhat more complex.

Security against covert C. This part of the proof is somewhat more in-
volved. We present the simulator SimC of a covert attacker C∗, and argue that it
produces a good simulation.

SimC starts C∗ and interacts with it, sending C∗ messages it expects to receive,
and playing the role of the trusted party for the OT and SOTk,k′ oracle calls
that C∗ may make, where C∗ plays the role of the receiver. Unless terminating
early (e.g. due to simulating abort), SimC will first simulate processing the top
slice C1, then all internal slices (using same procedure for each internal slice),
and then the last, output slice C`.

For each output wire of each slice Ci, SimC samples two random strings of
length k′ (with the restriction that these two strings are different per wire).
Based on these, SimC computes Ci’s input wire garblings by applying the GESS
algorithm.

For the top slice C1, SimC plays OT trusted party, where C∗ is the receiver,
and receives OT input from C∗.

1. If the input is abort or corrupted, then SimC sends abort or corrupted (re-
spectively) to the trusted party computing f , simulates C aborting and halts
(outputting whatever C∗ outputs).

2. If the input is cheat, then SimC sends cheat to the trusted party. If it receives
back corrupted, then it hands C∗ the message corrupted as if it received it
from the trusted party, simulates C aborting and halts (outputting whatever
C∗ outputs). If it receives back undetected (and thus S’s input x as well),
then SimC works as follows. First, it hands C∗ the string undetected together
with all the input wire keys that were part of server’s input in the OT (C∗
expects to receive OT inputs in this case). Next, SimC uses the input x of S
that it received in order to perfectly emulate S in the rest of the execution.
This is easily done, since so far SimC had not delivered to C∗ any messages
“from S” that depended on S’s input.

3. If the input is a representation of C∗’s input to OT, then SimC hands C∗
the input wire garbling keys that are “chosen” by the C∗’s OT input, and
proceeds with the simulation below.

SimC now also sends C∗ the wire secrets corresponding to a random input of
S. Now, presumably, C∗ will evaluate the slice and use the output wire secrets
in SOTk,k′ oracles.

For all internal slices C2, ..., C`−1 SimC plays SOTk,k′ trusted party, where
C∗ is the receiver, and receives SOTk,k′ input from C∗.



14 Vladimir Kolesnikov and Ranjit Kumaresan

1. If the input is abort or corrupted, then SimC sends abort or corrupted (re-
spectively) to the trusted party computing f , simulates C aborting and halts
(outputting whatever C∗ outputs).

2. If the input is cheat, then SimC sends cheat to the trusted party.
If it receives back corrupted, then it hands C∗ the message corrupted as if it
received it from the trusted party, simulates C aborting and halts (outputting
whatever C∗ outputs).
If it receives back undetected (and thus S’s input x as well), then SimC works
as follows. First, it hands C∗ the string undetected together with all the
masked input wire keys ũ0i,j⊕ri,j , ũ1i,j⊕ri,j and the corresponding selection-

string keys ṽ0i−1,j , ṽ
1
i−1,j that were part of sender’s input in current SOTk,k′

(C∗ expects to receive OT inputs in this case). These input wire keys were
generated by SimC by running GESS wire key generation for the current
slice, the selection-string keys are the output keys from preceding slice, and
the wire-key to selection-string correspondence is set at random at this time
(we will reconcile it when needed later).
Next, SimC uses the input x of S that it just received and the input y of C∗
that it received in OT in slice C1, to perfectly emulate S in the rest of the
execution. We note that SimC had already sent messages to C∗ which should
depend on S’s input, which we now need to reconcile with the real input x
received. First, we observe that the view of C∗ of the prior slices’ evaluation
is consistent with any input of S, since C∗ is never given both secrets on
any wire. (C∗ only sees both secrets on the immediately preceding slice’s
output wires since SimC gave him both string-selection keys for current slice.
However, this is allowed in the underlying GESS scheme, and hence is also
consistent with any input of S.) At the same time, both SOTk,k′ secrets are
revealed to C∗ in the current slice, and C∗ can obtain both wire encodings
for each of the slice’s input wires, which, in turn, may reveal correspondence
between wire values and encodings. Since C∗’s SOTk,k′ selection string deter-
mines the “active” SOTk,k′ value, which is offset by ri,j into the “active” wire
encoding, we now have to be careful that it is consistent with the players’
input into the function. This reconciliation is easily achieved by appropri-
ately setting the simulated offset string r′i,j for each wire j. The simulated
r′i,j is selected so that the “active” (resp. “inactive”) encoding corresponding
to the function’s inputs x and y is obtained by XORing r′i,j with the “ac-
tive” (resp. “inactive”) string-selection OT value. In other words, for each
wire where SimC chose incorrect wire-key to selection-string correspondence,
this correspondence is flipped by choosing the right offset r′i,j . This flipping
selection is computed as follows: for GESS input keys u0, u1, offset r (and
SOTk,k′ inputs u0 ⊕ r, u1 ⊕ r) the correspondence is reversed by applying
offset r′ = u0 ⊕ u1 ⊕ r.
SimC simulates the rest of the interaction simply by playing the honest S.

3. If the input is a representation of C∗’s input to SOTk,k′ then SimC proceeds
as follows. We stress that SimC knows exactly the garblings of the input wires
of Ci−1 sent to C∗ (and hence the garblings of the output wires of Ci−1 that
C∗ should reconstruct and use as inputs to SOTk,k′ oracles for slice Ci).



Efficiency Improvements for Two-party Secure Computation 15

(a) If C∗ submits SOTk,k′ inputs as expected, then SimC sends C∗ the cor-
responding garblings of the Ci input wires.

(b) Otherwise, we deal with the cheating attempt by C∗. SimC then sends
cheat to the trusted party. By the definition of the ideal model, with
probability ε = 1

2k′−1 SimC receives back the message undetected , and

with probability 1 − ε = 1 − 1
2k′−1 it receives the message corrupted

together with S’s input x.
If it receives back corrupted, then it simulates S aborting due to detected
cheating and outputs whatever C∗ outputs.
If it receives back undetected, then it receives S’s input, simulates honest
S, and outputs whatever C∗ outputs. We stress that the C∗’s view of
execution so far is independent of S’s input, since C∗ never receives more
than one wire key per wire. (The only exception to this is the information
inferred by C∗ based on the fact that he was undetected in attempting
to submit another string to string-selection OT. Specifically, this gives
C∗ the knowledge of both wire keys on one of the the output wires of
the preceding slice (importantly, he will not learn both input garblings
of the corresponding input wire of the current slice). This information is
allowed in the GESS protocol, and will not allow to correlate wire keys.)
Therefore, the simulation goes through in this case.

To simulate the output slice C`, SimC first performs the simulation steps
of an internal slice described above. Upon completion, he additionally has to
reconcile the view with the output of the function. If after the SOTk,k′ step C∗
still has not attempted to cheat, SimC provides to the trusted party the input
that was provided by C∗ in the OT of slice C1, and gets back the output of the
computation. Now SimC simply provides C∗ the output translation tables with
the mapping of the output values, which would map to the output received from
the trusted party. �

B Proof of Theorem 4

Proof. (sketch) Security against semi-honest S. We start with showing that
the protocol is secure against the semi-honest sender S. The information received
by S are transcripts of the underlying OTs, and the hash of one of the two
shares sequences. Neither leaks information. Firstly, OT’s are secure against
semi-honest S. Further, an honest receiver uses r ∈ {r0, r1} selection string,
hence the hash sent to S will in fact be of one of the two sequences corresponding
to the selection strings. The simulator SimS follows naturally.

Security against malicious receiver R. We present the simulator SimR

of a malicious R∗, and argue that it produces a good simulation.
SimR startsR∗ and interacts with it, sending it messages it expects to receive,

and playing the role of the trusted party for the OT oracle calls that R∗ makes,
in which R∗ plays the role of the receiver.

SimR starts by playing OT trusted party k′ times, where R∗ is the receiver;
as such, SimR receives all k′ OT selection bits from R∗ and each time uses a
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random string s′j to hand to R∗ as his OT output. If any of the underlying OT’s
input is abort, then SimR sends abort to the trusted party computing SOTk,k′

and halts, outputting whatever R∗ outputs.
SimR then sends a random κ-bit string h′ to R∗, simulating the message

of Step 3. SimR then receives a hash value from R∗ as Step 4 message. If this
value was not computed correctly from the simulated OT strings s′j and hash h′,
then SimR sends abort to the trusted party, and terminates outputting whatever
R∗ outputs. Otherwise, SimR feeds R∗’s selection bits to the trusted party of
SOTk,k′ . SimR gets back from the trusted party either:

– string x′, one of S’s secrets. In this case, R∗ submitted a valid selection
string, and we simulate successful completion. SimR sends, in random order,
x′ ⊕ H(⊕js′j) and a random string of equal length, and then terminates
outputting whatever R∗ outputs.

– ⊥. In this case, R∗ did not submit a valid selection string, and we simu-
late abnormal termination. SimR sends ⊥ to R∗ and terminates outputting
whatever R∗ outputs.

We now argue that SimR produces view indistinguishable from the real execu-
tion. We first note that SimR’s interaction with R∗ is indistinguishable from that
of honest S. Indeed, OT secrets delivered to R∗ are distributed identically to
real execution. Further, since non-selected OT secrets remain hidden, the string
h′ sent is also indistinguishable from real execution. Finally, the simulation of
Step 5 is indistinguishable from real, since it is infeasible to search for a preimage
of H to check whether it satisfies both simulation of Steps 3 and 5. �

C Performance Analysis Calculation

Consider a circuit C with fan-out 2 of size c gates. We will ignore the costs of
n inputs, as usually c � n. We compare the communication complexity of our
protocol against existing solutions, mainly the state-of-the-art GC approach [24,
22]. For completeness, we include the (higher) costs of the GMW approach [5].

We let all solutions use OT extension [7], which reduces the total number of
public-key operations to O(κ). The communication cost of extending m OTs on
`-bit strings in the semi-honest setting [7] is

cost (OTm` ) = cost (OTκκ) + 2m`+ 2κm. (1)

We ignore cost(OTκκ), which is independent of the size of the circuit.

Yao Garbled Circuit. Standard GC is secure against a semi-honest S and
covert C. State-of-the-art GC [22] sends at least 2 encryptions per gate, i.e., a
total of 2κc bits. However, if using free-XOR, this increases to 3 encryptions per
non-XOR gate [22], i.e., a total of 3κc bits. For simplicity, set cost(Yao) = 2κc.

GMW Approach. Each AND/OR gate in C triggers a 1-out-of-4 OT invoca-
tion. In the semi-honest setting, one invocation of a 1-out-of-4 OT can be reduced
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to two invocations of 1-out-of-2 OT. Each OT in GMW approach requires the
sender’s input to be of length 1 bit. Using Equation 1, the total communication
complexity of SFE is (2 · (2c) · 1) + (2κ · (2c)). Thus, cost(GMW) = 4c+ 4κc.

Our Approach. The wiring of the circuit plays an important role in the actual
cost of our approach. For simplicity and w.l.o.g., we assume C is a rectangular
circuit of constant width, where each gate has fan-out 2. Let C divided into `
slices, each of depth d′. Let k (resp. k′) be key length on input (resp. output)
wires of each slice. Recall, that k grows as O(2d

′
) due to fan-out 2.

The costs of the underlying SOTk,k′ instances dominate the cost of our pro-
tocol. Our protocol requires a single instance of SOTk,k′ (which translates to
k′ 1-out-of-2 OT invocations) for each input gate in a slice. This amounts to
a total of k′ · (c/d′) 1-out-of-2 OT invocations in a rectangular circuit. When
using OT extension, we may first execute 1-out-of-2 OTs using random inputs,
and then correct them later when OT inputs are available. (We omit the details
of this correction.) When executing a very wide circuit, or a number of smaller
ones in parallel, this correction can be avoided whatsoever simply by running
OT extension on each layer of the circuit when C’s inputs are known.
Semi-honest Setting. Here we set k′ = 1 and note that the random pads used
to mask the secrets corresponding to the input wires are not necessary. From
Equation 1 and assuming no correction, we obtain cost (2k + 2κ)c/d′.

Setting k = κ, and hence d′ = O(log k), we obtain the cost O(κc/ log κ). We
also calculate concrete efficiency improvements (see Table 1).

k cost as a function of κ cost when κ = 128 cost when κ = 256

d′ = 1 4 (8 + 2κ)c 264c 520c
d′ = 2 16 (32 + 2κ)c/2 144c 272c
d′ = 3 56 (112 + 2κ)c/3 122.67c 208c
d′ = 4 180 (360 + 2κ)c/4 154c 218c
d′ = 5 542 (1084 + 2κ)c/5 268c 319.2c

Table 1. Concrete cost of semi-honest SFE for different slide depth values d′ (k is
calculated from d′ assuming rectangular fan-out 2 circuit). GC costs at least 2κc. Thus
when κ = 128 GC cost is 256c, and when κ = 256, GC cost is 512c.

Covert Client Setting. Compared to semi-honest cost, here we need to add
κ bits per instance of SOTk,k′ for the random pad of Step 2(a)ii of Protocol 1,
i.e., a total of κ · (c/d′) bits for the entire protocol. Further, each instance of
SOTk,k′ translates to k′ 1-out-of-2 OT instances, an needs additional 2κ bits
that confirm the honest behavior of the receiver (Steps 3 and 4 of Protocol 2),
and an additional 2κ bits to transfer the masked secrets (Step 5 of Protocol 2).
Using equation 1, we obtain the cost (2kk′ + 2κk′ + 5κ)c/d′

Setting k = κ and hence d′ = O(log(k/k′)), the cost is O(k′κc/ log(κ/k′)).
For k′ = 2 and today’s practical κ = {128, 256}, we show the concrete cost of
our protocol in Table 2.
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k cost as a function of κ cost when κ = 128 cost when κ = 256

d′ = 1 7 (28 + 9κ)c 1180c 2332c
d′ = 2 24 (96 + 9κ)c/2 624c 1200c
d′ = 3 76 (304 + 9κ)c/3 485.33c 869.33c
d′ = 4 228 (912 + 9κ)c/4 516c 804c
d′ = 5 654 (2616 + 9κ)c/5 753.6c 984c
d′ = 6 1802 (7208 + 9κ)c/6 1393.33c 1585.33c

Table 2. Concrete cost of our SFE protocol with a covert client (ε = 1/3, k′ = 2) for
different slide depth values d′ (k is calculated from d′ assuming rectangular fan-out 2
circuit). GC costs at least 2κc. Thus when κ = 128 GC cost is 256c, and when κ = 256,
GC cost is 512c.

C.1 Slicing Circuits

W.l.o.g we assume that the given circuit C contains at most n gates at each
depth and that gates at any given depth receive input only from the output
wires of the gates at the previous level. We bound the size c of the circuit by
(n · d), and make an observation regarding the number of distinct wires that
connect gates at a given depth to the next.

Note that the n gates at any given depth have 2n associated input wires.
Since all these 2n input wires comes from the n gates at the previous level.
Therefore, the number of distinct wires that connect gates at a given depth to
the next equals n. Therefore, when we slice the circuit C into d′ slices, the total
number of SOT invocations required per slice is at most n = c/d′.

Our next discussion is on how to apply the GESS algorithm to each slice.
Specifically we cope with the following issues: (1) GESS construction is applica-
ble only to circuits representing boolean formulae, and (2) GESS assigns input
keys of different lengths to the left and right input wires of any gate.

Given a slice Ci, we derive a tree-circuit C ′i (representing a boolean formulae)
from Ci such that the GESS algorithm can be applied to C ′i. Naturally such a

derivation results in a 2d
′

expansion factor on the number of input gates (and
thus on the input wires) for each slice in C ′i relative to Ci. Recall that each slice
Ci has n distinct output wires and n distinct input wires. So even though each
of the n output wires now correspond to 2d

′
input wires in the tree-circuit C ′i,

these 2d
′

wires are roughly divided uniformly between n distinct input wires.
Furthermore, we argue that it is possible to rebalance the tree-circuit C ′i such

that the 2d
′

duplicates of each wire appears in all 2d
′

positions in the tree exactly
once. Given the above, we derive the length of the input keys required for each
of the n distinct input wires of C as the sum of the length of the input keys
required for a single output wire in a depth d′ tree-circuit C ′i. When the output
wire carries a single bit, the sum of the length of the input keys is bounded by
2d

′
(d′

2
log(d′ + 1) + d′ log(d′ + 1) + d′ + 1) ≈ 2d

′
d′

2
log d′, dominated by the 2d

′

term [11]. Thus we conclude that the depth of a slice d′ is related to the length of
the input keys k by the equation d′ = O(log k). More generally when the output
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wire is assigned a k′ bit value, the slice depth d′ = O(log(k/k′)). Table 3 shows
the exact length of the GESS input keys required for each distinct input wire as
a function of the depth d′ and k′.

k′ d′ = 1 d′ = 2 d′ = 3 d′ = 4

1 4 16 56 180
2 7 24 76 228
3 10 32 96 276
4 13 40 116 324
5 16 48 136 372

Table 3. Dependence of the length of input keys on depth d and on-line security
parameter k′. Example: for a slice of depth 3 and for k′ = 2, the length of the input
keys (i.e., k) is 76.

Finally, note that the expansion factor applies only to the length of the input
keys to slice Ci. Although the output wires are also duplicated in the tree-circuit
C ′i, any one of these k′ bit outputs can be used in our protocol to obtain the
corresponding keys for the next slice C ′i+1.


