
SUMMON 1.6 Manual

Matt Rasmussen
April 5, 2007

Computer Science and Arti�cial Intelligence Lab
Massachusetts Institute of Technology

rasmus@mit.edu

Contents

1 Introduction 2
1.1 What is SUMMON . 2
1.2 Features . 2

2 Installing SUMMON 3
2.1 Compiling SUMMON . 3
2.2 Con�guring SUMMON . 3

3 Using SUMMON 3
3.1 Example Script . 4
3.2 Example Visualizations: SUMMATRIX and SUMTREE 6

4 SUMMON Function Reference 8
4.1 SUMMON General Functions . 8
4.2 SUMMON Graphics . 11
4.3 SUMMON Primitives . 12
4.4 SUMMON Text constructs . 12
4.5 SUMMON Transforms . 12
4.6 SUMMON Input speci�cations . 13
4.7 SUMMON Miscellaneous . 13

1

1 Introduction

1.1 What is SUMMON

SUMMON is a python extension module that provides rapid prototyping of 2D visualiza-
tions. By heavily relying on the python scripting language, SUMMON allows the user to
rapidly prototype a custom visualization for their data, without the overhead of a designing
a graphical user interface or recompiling native code. By simplifying the task of designing a
visualization, users can spend more time on understanding their data.

SUMMON was designed with several philosophies. First, recompilation should be avoided
in order to speed up the development process. Second, design of graphical user interfaces
should also be avoided. Designing a good interface takes planning and time to layout buttons,
scrollbars, and dialog boxes. Yet a poor interface is very painful to work with. Even when
one has a good interface, rarely can it be automated for batch mode. Instead, SUMMON
relies on the python terminal for most interaction. This allows the users direct access to the
underlining code, which is more expressive, and can be automated through scripting.

Lastly, SUMMON is designed to be fast. Libraries already exist for accessing OpenGL in
python. However, python is relatively slow for real-time interaction with large visualizations
(trees with 100,000 leaves, matrices with a million non-zeros, etc.). Therefore, all real-time
interaction is handled with compiled native C++ code. Python is only executed in the
construction and occasional interaction with the visualization. This arrangement provides
the best of both worlds.

1.2 Features

Listed below is a short summary of the features o�ered in this version of SUMMON.

� Python module extension

� Fast OpenGL graphics

� Drawing arbitrary points, lines, polygons

� Binding inputs (keyboard, mouse, hotspots) to any python function

� SVG output (also PNG with ImageMagick)

� cross-platform (windows, linux)

2

2 Installing SUMMON

The latest version of SUMMON can be obtained from http://people.csail.mit.edu/rasmus/summon/.
Download the *.tar.gz archive and unzip it with the command:

tar zxvf summon-1.6.tar.gz

Before running or compiling SUMMON, the following libraries are required:
� python 2.4 (or greater)

� GL

� GLUT

� SDL (for threading)

2.1 Compiling SUMMON

SUMMON can be installed using the standard distutils (http://docs.python.org/inst/inst.html).
For example, in the summon-1.6 directory run:

python setup.py install

To install SUMMON in another location other than in /usr use:

python setup.py install --home=<another directory prefix>

2.2 Con�guring SUMMON

SUMMON expects to �nd a con�guration �le called summon config.py somewhere in the
python path. Distutils installs a default module installed in your python path. To cus-
tomize SUMMON with your own key bindings and behavior, you can write your own
summon config.py �le. Just be sure it appears in your python path somewhere before

SUMMON default con�guration �le. Alternatively, you can create a con�guration �le
.summon config in your home directory. The con�guration �le is nothing more than a
python script that calls the SUMMON function set binding in order to initialize the de-
fault keyboard and mouse bindings.

3 Using SUMMON

SUMMON can be used a stand-alone program and as a module in a larger python program.
The stand-alone version is installed in PREFIX/bin/summon and is called from the command
line as follows:

3

usage: summon [python script]

On execution, SUMMON opens an OpenGL window and evaluates any script that it is
given in the python engine. After evaluation, the SUMMON prompt should appear which
provides direct access to the python engine. Users should be familar with the python language
in order to use SUMMON.

The SUMMON prompt acts exactly like the python prompt except for the OpenGL
window and the appearence of a builtin module called summon. All of the commands needed
to interact with the visualization are within the summon module.

To learn how to use SUMMON, example scripts have been provided in the summon/examples/
directory. Examples of full edged visualizations, SUMMATRIX and SUMTREE, are also
given in the summon/bin/ directory. Their example input �les are given in summon/examples/summatrix/
and summon/examples/sumtree/, respectively.

3.1 Example Script

For an introduction to the basic commands of SUMMON, let us walk through the code
of the �rst example. To begin, change into the summon/examples/ directory and open up
example1.py in a text editor. Also use SUMMON to execute the example with following
command.

$ summon example1.py

The visualization should immediately appear in your OpenGL window. The following
controls are available:

left mouse button scroll
right mouse button zoom
Ctrl + right mouse button zoom x-axis
Shift + right mouse button zoom y-axis
arrow keys scroll
Shift + arrow keys scroll faster
Z zoom in
z zoom out
h home (make all graphics visible)
l toggle anti-aliasing
p output SVG of the current view
Ctrl + p output PNG of the current view
q quit

In your text editor, the example example1.py should contain the following python code:

4

#!/usr/bin/env summon

SUMMON examples

example1.py - basic commands

make summon commands available

from summon.core import *

syntax of used summon functions

add_group(<group>) : adds a group of graphics to the screen

group(<elements>) : creates a group from several graphical elements

lines(<primitives>) : an element that draws one or more lines

quads(<primitives>) : an element that draws one or more quadrilaterals

color(<red>, <green>, <blue>, [alpha]) : a primitive that specifies a color

clear the screen of all drawing

clear_groups()

add a line from (0,0) to (30,40)

add_group(group(lines(0,0, 30,40)))

add a quadrilateral

add_group(group(quads(50,0, 50,70, 60,70, 60,0)))

add a multi-colored quad

add_group(group(quads(

color(1,0,0), 100, 0,

color(0,1,0), 100, 70,

color(0,0,1), 140, 60,

color(1,1,1), 140, 0)))

add some text below everything else

add_group(group(

text("Hello, world!", # text to appear

0, -10, 140, -100, # bounding box of text

"center", "top"))) # justification of text in bounding box

center the "camera" so that all shapes are in view

home()

As you can see, the �rst line of the script imports all of the SUMMON functions
from the summon module into the current environment. The �rst of such functions is the
clear groups() command. All graphics are added and removed from the screen in sets
called groups. Groups provide a way to organize and reference graphical elements. The
clear groups() function removes all groups that may be on the screen.

The next line of python code in the example adds a single line to the screen. The line

5

is created with the lines function, which takes a series of numbers specifying the end-point
coordinates for the line. The �rst two numbers specify the x and y coordinates of one end-
point (0,0) and the last two specify the other end-point (30,40). Next, the line is placed in
a group using the group function which returns a group ready to be added to the screen.
Lastly, the add group function is called on the group. This function �nally places the line
on the screen. Although this may seem like a lot to type to draw a single line, in most uses
several lines and other graphics are placed a group before adding them to the screen.

The next line in the example adds a quadrilateral to the screen with the quads command.
The arguments to the quads function are similar to the lines function, except four vertices
(8 numbers) are speci�ed. Both functions can draw multiple lines and quadrilaterals (hence
their plural names) by supplying more coordinates as arguments.

The third group illustrates the use of color. Color is stateful, as in OpenGL, and all
vertices that appear after a color object in a group will be a�ected. The color function
creates a color object. Color objects can appear within graphical elements such as lines

and quads or directly inside a group. Since each vertex in this example quad has a di�erent
color, OpenGL will draw a quadrilateral that blends these colors.

Lastly, an example of text is shown. Once again the text is added to the screen using the
add group function. The arguments to the text function specify the text to be displayed,
a bounding box speci�ed by two opposite vertices, and then zero or more justi�cations
("center", "top", etc.) that will a�ect how the text aligns in its bounding box. There are
currently three types of text: text (bitmap), text scale (stroke), text clip (stroked text
that clips). The bitmap text will clip if it cannot �t within its bounding box. This is very
useful in cases where the user zooms out very far and no more space is available for the text
to �t. See the example text.py for a better illustration of the di�erent text constructs.

The �nal function in the script is home(). home() causes the SUMMON window to scroll
and zoom such that all graphics are visible. This is a very useful command for making sure
what you have drawn is visible in the window. The command can also be execute by pressing
the 'h' key. This key comes in handy when you "lose sight" of the visualization.

This is only a simple example. See the remaining scripts for examples of SUMMON's
more powerful features.

3.2 Example Visualizations: SUMMATRIX and SUMTREE

In the summon/bin/ directory are two programs, summatrix and sumtree that use summon
to visualize large datasets. There programs are written in python and so can be easily
extended. In my own work, I have extended the tree visualization program to integrate more
closely with biological data (executing CLUSTALW and MUSCLE on subtrees, displaying
GO terms, etc.). The purpose of writing visualization programs in this way, is to allow others
to easily overlay and integrate their own data.

6

Also in both visualizations the underling data is accessable through global python vari-
ables. That means if you have a very speci�c question like, "How many genes in my subtree
have a particular GO term?", you can quickly write a few lines of python to walk the tree and
answer the question youself. It would be very di�cult to anticipate all such questions during
the development of a visualization. And yet when visualizing, it can become frustrating if
you cannot fully interact with the data.

Example input �les for both programs can be found under the summon/examples di-
rectory. Both programs will print their usage if run with no arguments. Here are some
recommended examples:

$ sumtree -n olfactory-genes.tree

$ sumtree -n olfactory-genes.tree -t 10

$ summatrix -i human mouse.imat

7

4 SUMMON Function Reference

All help information is also available from the SUMMON prompt. Use help(command) to
get required arguments and a usage description.

4.1 SUMMON General Functions

add group(group)

adds drawing groups to the current model

assign model(windowid, 'world'|'screen', modelid)

assigns a model to a window

call proc(proc)

executes a procedure that takes no arguments

clear all bindings()

clear all bindings for all input

clear binding(input)

clear all bindings for an input

clear groups()

removes all drawing groups from the current display

close window([id])

closes a window

del model(modelid)

deletes a model

focus(x, y)

focus the view on (x,y)

get bgcolor()

gets background color

get group(groupid)

creates a tuple object that represents a group

8

get model(windowid, ['world'|'screen'])

gets the model id of a window

get models()

gets a list of ids for all models

get mouse pos('world'|'screen'|'window')

gets the current mouse position in the requested coordinates

get root id()

gets the group id of the root group

get visible()

gets visible bounding box

get window()

gets the id of the current window

get window name(id)

get the name of a window

get window size()

gets current window's size

get windows()

gets a list of ids for all open windows

home()

adjust view to show all graphics

insert group(groupid, group)

inserts drawing groups under an existing group

new model()

creates a new model and returns its id

new window()

creates a new window and returns its id

redraw call(func)

9

calls function 'func' on every redraw

remove group(groups)

removes drawing groups from the current display

replace group(groupid, group)

replaces a drawing group on the current display

set antialias(True|False)

sets anti-aliasing status

set bgcolor(red, green, blue)

sets background color

set binding(input, proc|command name)

bind an input to a command or procedure

set model(modelid)

sets the current model

set visible(x1, y1, x2, y2)

change display to contain region (x1,y1)-(x2,y2)

set window(id)

sets the current window

set window name(id name)

sets the name of a window

set window size(x, y)

sets current window's size

show group(groupid, True|False)

sets the visibilty of a group

timer call(delay, func)

calls a function 'func' after a delay in seconds

trans(x, y)

10

translate the view by (x,y)

version()

prints the current version

vertices(x, y, * more)

creates a list of vertices

zoom(factorX, factorY)

zoom view by a factor

zoomx(factor)

zoom x-axis by a factor

zoomy(factor)

zoom y-axis by a factor

4.2 SUMMON Graphics

points(* vertices|colors)

plots vertices as points

lines(* vertices|colors)

plots vertices as lines

line strip(* vertices|colors)

plots vertices as connected lines

triangles(* vertices|colors)

plots vertices as triangles

triangle strip(* vertices|colors)

plots vertices as connected triangles

triangle fan(* vertices|colors)

plots vertices as triangles in a fan

quads(* vertices|colors)

11

plots vertices as quads

quad strip(* vertices|colors)

plots vertices as connected quads

polygon(* vertices|colors)

plots vertices as a convex polygon

4.3 SUMMON Primitives

vertices(x, y, * more)

creates a list of vertices

color(red, green, blue, [alpha])

creates a color from 3 or 4 values in [0,1]

4.4 SUMMON Text constructs

text(string, x1, y1, x2, y2, ['left'|'center'|'right'], ['top'|'middle'|'bottom'])

draws text justi�ed within a bounding box

text scale(string, x1, y1, x2, y2, ['left'|'center'|'right'], ['top'|'middle'|'bottom'])

draws stroked text within a bounding box

text clip(string, x1, y1, x2, y2, minheight, maxheight, ['left'|'center'|'right'],

['top'|'middle'|'bottom'])

draws stroked text within a bounding box and height restrictions

4.5 SUMMON Transforms

translate(x, y, * elements)

translates the coordinate system of enclosed elements

rotate(angle, * elements)

12

rotates the coordinate system of enclosed elements

flip(x, y, * elements)

ips the coordinate system of enclosed elements over (x,y)

scale(x, y, * elements)

scales the coordinate system of enclosed elements

4.6 SUMMON Input speci�cations

input motion('left'|'middle'|'right', 'up'|'down', ['shift'], ['ctrl'], ['alt'])

speci�es a mouse motion input

input key(key, ['shift'], ['ctrl'], ['alt'])

speci�es a keyboard input

input click('left'|'middle'|'right', 'up'|'down', ['shift'], ['ctrl'], ['alt'])

speci�es a mouse click input

4.7 SUMMON Miscellaneous

hotspot('over'|'out'|'click', x1, y1, x2, y2, proc)

constructs hotspot for a region that activates a python procedure 'proc'

hotspot click(cannot be invoked on commandline)

activates a hotspot with a 'click' action

13

