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Motivation

The increasing availability of multi-modal data sets provides new opportunities for
visualization and analysis of extended geographic areas. A critical challenge for
enabling such analysis is to develop methods for fusing the data within a
mathematically-consistent framework.

Fig. 1 : Measurements and reconstruction obtained from 3 images and 1M LiDAR points.

The goal of this work is to obtain a probabilistic model that integrates multi-modal
noisy measurements in order to recover scene geometry and appearance.

Contributions

In this work we address several key modeling issues:
I Formulation of reconstruction as statistical inference within a Bayesian
framework with the ability to model measurement uncertainty.

I Principled multi-modal data fusion which leverages the relationship between
data sources.

We empirically demonstrate several advantages of the model including:
I The ability to obtain dense reconstructions in geometry and appearance.
I The need for fewer images given the geometric information in LiDAR.
I Higher level scene reasoning such as detection of moving objects and the
ability to measure physical scene quantities.

Graphical Model Representation

G1  : V1,V2,V4  

G3  : V3,V4,V8         .         .         .
G12: V1,V4,V8

V1: (X1,Y1,Z1)
V2: (X2,Y2,Z2)           .         .         .
V8: (X8,Y8,Z8)
θ1  : 1,2,4
θ3  : 3,4,8         .         .         .
θ12: 1,4,8
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Fig. 2 : Graphical model mepresentation and notional representation of the model.

Fully Bayesian probabilistic framework composed of the following elements:
I A collection of primitives described by their geometry and appearance.
I Measurement observation models (including noise characteristics).
I A smooth camera trajectory model.

The probabilistic model depicted in Fig. 2 factorizes as:
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Image Observation Model

I cn (u, v) = Am∗(u
′, v ′) +Q =⇒ Image likelihood:

p(I cn |G,A,Kc,Tc) =
∏
k

N (ik; am∗(k), r
2
m∗(k))

I Am∗ is the appearance of the m
th primitive

I Q ∼ N (q; 0, r 2m∗) where rm∗ ∝
∣∣n>v ∣∣−1

I Measurement uncertainty, rm∗, depends on
geometry of camera and primitive

I m∗, u′ and v ′ depend on u, v ,Kc,Tc, and G
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Fig. 3 : Canonical representation of rm∗

LiDAR Observation Model

LiDAR observation model is: Ln = L
k(n)
n +W .

I L
k(n)
n is the point that generated the measurement

I W ∼ N (w ; 0, σ2).

Data association problems:

1. Which primitive generated the measurement?
I Sample the association.

2. Which point on the primitive generated the
measurement?
I The closest point generated the measurement:
Ln|Gk ∼ N (d 2(Ln,Gk); 0, σ

2).
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Fig. 4 : Primitive Association

Inference
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Appearance posterior (closed form) is p(A|I,G,K ,T ) = N (a; µ̂, σ̂2) where
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µ + σ2
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r 2i

1 + σ2
∑n−1

i=0
1
r 2i
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, (1)

and zi are observed pixels generated by the same primitive appearance pixels.
Intrinsic Parameters posterior is

p(K |I,G,A,T ) ∝ p(K )
∏NI

n=1
p(In|G,A,K ,T ) . (2)

Extrinsic Parameters posterior is

p(Tn|G,A, In,K ,T\n,Zn) ∝ p(In|G,A,Tn,Kn)p(Zn|Tn)p(Tn|T\n) . (3)

Geometric Parameter posterior is given by

p(V|I,L,G; θ) ∝
NI∏
n=1

p(In|G,A,K ,T )
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NP∏
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The complicated form of p(In|G,A,K ,T ) prevents closed-form exact-inference
solutions for Eqs. (2-4). For computational reasons, we focus on MAP estimates of
the Eqs. (2-4).

Reconstructions

Fig. 5 : Left: Bundler+PMVS2 reconstruction; right: Proposed Method.

Reconstruction Comparisons

Fig. 6 : CLIF reconstruction, 3 views. Top: Bundler+PMVS2 [1,2], (151k points using 77 out of 100 images since not all
camera pose parameters were found). Bottom: proposed method (280k visible primitives).

Mesh Comparisons

Fig. 7 : Comparison to LiDAR-only, algorithms (left-to-right): [3], [4], proposed approach.

Fig. 8 : Left: Bundler+PMVS2+PoissonRecon [1,2,5] reconstruction of Stadium Stack, bottom: proposed approach.

Beyond Reconstructions

Fig. 9 : The proposed model allows higher-level scene reasoning. Top: Physical distance measurements of OSU Stadium,
bottom: detecting scene movers in an intersection.
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