
Aerial Reconstructions via Probabilistic Data Fusion
Supplemental Material

Randi Cabezas Oren Freifeld Guy Rosman John W. Fisher III
Massachusetts Institute of Technology

{rcabezas,freifeld,rosman,fisher}@csail.mit.edu

April 29, 2014

Abstract
This document is complementary to [2] and contains additional results, derivations and implementation details. It
is identical to the supplemental material submitted to Computer Vision and Pattern Recognition (CVPR) on April
2014.

Contents
1 Introduction 2

1.1 Experiment Parameters . 2

2 Data Overview 2
2.1 Lubbock Dataset . 2
2.2 CLIF 2007 Dataset . 2

3 Additional Reconstruction Results and Comparisons 5
3.1 Additional SfM Comparisons . 5
3.2 SfM Computation Time . 5
3.3 Surface Comparisons . 7
3.4 LiDAR-Only Comparisons . 7
3.5 Additional Reconstruction Results . 8

4 Mathematical Details 8
4.1 Lie Algebraic Representation of Primitives . 9
4.2 Appearance Computation . 10
4.3 Gaussian Process Prior . 11

5 Implementation Details 13
5.1 Efficient Image Likelihood Computation . 13
5.2 Efficient LiDAR Likelihood Computation . 14
5.3 Efficient Appearance Computation . 14
5.4 Efficient Geometry Computation . 17
5.5 Texture Atlas . 19

References 22

1

2 Data Overview

1 Introduction
This document supplements the paper Aerial Reconstructions via Probabilistic Data Fusion [2] (we henceforth refer to it

as ‘the paper’). It provides additional results, mathematical derivations and explanations, as well as implementation details.
As such, it is not a standalone document and it assumes the reader is familiar with [2]. This document is structured as fol-
lows. Section 2 provides a brief overview of the data sources used in this work. Section 3 provides additional reconstruction
comparisons that were omitted from the paper due to space constraints. These comparisons include vision-only Structure from
Motion (SfM) comparisons on the CLIF Intersection and CLIF Stadium Image Stack datasets using both points (Sec. 3.1) and
triangulated surfaces (Sec. 3.3). Comparisons to LiDAR-only work [7, 12] are presented in Sec. 3.4. Technical mathematical
details are provided in Sec. 4, including the Lie-algebraic representation of geometric primitives, derivations of appearance
updates, and use of a Gaussian Process to model mobile camera location. Implementation details are provided on Sec. 5,
including pseudo-code algorithms for CPU and GPU implementation. For videos and source code please see the project page
at: http://people.csail.mit.edu/rcabezas/.

1.1 Experiment Parameters
This section briefly outlines the parameter values used to produce the results presented both in [2] and in this document,

unless stated otherwise. The image noise model is assumed to be an isotropic independent-and-identically-distributed (iid)
zero-mean Gaussian with standard deviation 10 (assuming each color channel takes values in [0, 255]). The appearance prior
model is iid Gaussian with mean 128 and standard deviation 15. The LiDAR noise model is iid Gaussian with zero mean and
12 [cm] standard deviation. The canonical appearance for each primitive was set to be 16× 16 pixels. The GPS position noise
parameters are modeled as iid Gaussian with zero mean and with a standard deviation of 20 [ft]; the orientation is modeled as
iid Gaussian with zero mean and 5◦ standard deviation. Throughout the work, each observation pixel was allowed to influence
its corresponding latent appearance pixel as well as its 4 neighbors.

2 Data Overview
We now describe the data sources used in this work: the Lubbock and CLIF datasets. For more details on these datasets,

see [1].

2.1 Lubbock Dataset
The Lubbock Dataset (Fig. 1) consists of three images of Lubbock, Texas. The dimension of each of these images (Fig. 2)

is 1336× 891 pixels. The dataset also contains over 5 million LiDAR returns in a single tile (Fig. 2) of dimension 1000× 1000
[m2]. The LiDAR density is about one return per meter squared with vertical resolution of 10 [cm].

2.2 CLIF 2007 Dataset
The Columbus Large Image Format (CLIF) 2007 sample dataset [11] is used throughout this work. It consists of 50 frames,

each frame contains 6 cameras, Fig. 3. Each frame is originally 2672 × 4016 pixels, and in this work was downsampled to
822 × 1326. The area covered in one frame is approximately 1700 × 2200 [ft2], the approximated area of the sample set is
3500× 3800 [ft2] (i.e., visible across all the frames in the entire sequence). LiDAR for the Ohio State area was obtained from
[8]. The tile containing the stadium and surrounding area has over 727,000 returns. The return density is approximately one in
3× 3 [ft2]. An overview of the LiDAR tile is depicted in Fig. 3.

We focus on specific sites in the CLIF dataset, the stadium image stack (seen in top center image in Fig. 3), a cropped
version of the stadium and a cropped version of the intersection (bottom center image in Fig. 3). We will discuss these three
scenes next.

CLIF Stadium Image Stack consists of 49 images, one for each frame of camera one (Fig. 3, top center) from the CLIF
dataset. One image was excluded as it was corrupted at collection time. An overview of the camera positions (estimated) as
well as some sample images are shown in Fig. 4. This dataset uses the LiDAR tile described earlier.

CLIF Stadium Only dataset consists of a cropped version of the original CLIF frames (not downsampled). Each image in this
dataset is 1024× 768 pixels. Four sample images are shown in Fig. 5. This dataset uses the LiDAR tile described earlier.

REV: 281 APRIL 29, 2014 2

http://people.csail.mit.edu/rcabezas/

2 Data Overview

Figure 1: Overview of Lubbock dataset. Ground Truth Camera locations shown in red.

Figure 2: The three images of the Lubbock dataset and LiDAR (color coded according to height above ground)

Figure 3: Left: Overview of CLIF frame, six cameras. The stadium image stack consists of all the images in the top center
camera; the intersection can be seen in the bottom center camera. Right: LiDAR overview.

REV: 281 APRIL 29, 2014 3

2 Data Overview

Figure 4: Top: Overview of CLIF Image Stack dataset, 49 images (estimated camera location shown in red). Bottom: Four
sample images of the CLIF Image Stack dataset (left to right images 0,16,32,48)

Figure 5: Four sample images of the CLIF Stadium Only dataset (left to right images 0,16,32,48).

Figure 6: Three sample images of the CLIF Intersection dataset (left to right: images 0,14,29), as well as LiDAR tile.

REV: 281 APRIL 29, 2014 4

3 Additional Reconstruction Results and Comparisons

Image KeyPointScene
Number Size Detection Matching

Bundler PMVS2 Total

Intersection 45 441x374 47 80 294 68 489
Stadium Stack 49 822x1326 461 1,414 909 330 3,114
Multi-Camera 100 660x1024 645 3,203 4,252 528 8,628

Table 1: Bundler+PMVS2 time breakdown (all times are in [sec]). Runtimes obtained using 2.8GHz i7 CPU with 24GB RAM.

Primitives Camera Pose Geometry AppearanceScene
Visible/Total Time/Img # Iter Time Time/Iter Prim./Iter Time Time

Total

Intersection 3.2k/21k 0.977 20 904 7.3 24 1,359 0.262 2,263
Stadium Images 89k/227k 11.3 20 11,074 41 250 15,631 1.04 26,705
Multi-Camera 279k/479k 23.4 15 35,100 86 250 99,238 3.03 134,338

Table 2: Our time breakdown (all times are in [sec]; iterations in camera pose refer to updating each camera once; iterations in
geometry refer to updating a set of primitives once). Runtimes obtained using 2.8GHz i7 CPU with 24GB RAM and an NVIDA
GTX Titan.

CLIF Intersection dataset consists of 45 cropped portions of images from camera two and zero (bottom left and center in
Fig. 3) of the CLIF dataset. Only one image for each frame was used; i.e., the temporal order of the sequence was maintained.
Instances where the scene was split between two cameras where discarded. Sample images of the dataset are shown in Fig. 6.
A small cropped version (e.g., 20k returns) of the LiDAR tile described earlier was used for this dataset (Fig. 6).

3 Additional Reconstruction Results and Comparisons
This section provides additional reconstructions which showcase the differences between the proposed model and previ-

ous work. It begins by comparing the results obtained using the proposed method with vision-only work [4, 10], namely
Bundler+PMVS2. Next, the results of the proposed method are compared with the Bundler+PMVS2+PoissonRecon pipeline
[5], where this last step is introduced to obtain surface reconstructions from the point cloud obtained via SfM. This section
concludes in providing comparisons with LiDAR-only work of [7, 12] and additional photo-realistic reconstructions obtained
using the proposed method.

3.1 Additional SfM Comparisons
Additional qualitative reconstruction comparisons for the Intersection, Stadium only, and Stadium Image Stack datasets

are shown in this section. Note that we were not able to compare the reconstructions of the Lubbock scene since SfM fails
to produce a reconstruction. We hypothesize that SfM cannot produce reconstruction for this scene due the small number of
images used and the wide baseline between the images.

Comparisons between the reconstructions provided by the proposed method and Bundlers+PMVS2 are shown in Fig. 7-9.
These comparisons highlight the main differences between the proposed method and traditional SfM; i.e., the use of higher-
order primitives and images to represent the scene provides a dense reconstruction (as opposed to a sparse point cloud). More-
over, small scene details can be easily seen from the reconstructions obtained using the proposed method, leading to more
visually-appealing reconstructions.

3.2 SfM Computation Time
The runtime of Bundler+PMVS2 is shown in Table 1. The table shows that anywhere between 25% to 60% of the time,

Bundler+PMVS2 is detecting or matching keypoints. The scene parameter optimization takes the remaining portion of the
time. Overall, the computation time for each of the scenes is quite low. This is unsurprising as SfM implementations are highly
efficient since they must scale well to support the large number of images needed to accurately reconstruct a scene.

The runtime for the proposed model is shown in Table 2. The table shows that the algorithm spends a significant amount
of time computing scene geometry. These high run-times are mostly due to the large number of visible primitives in the scene.

REV: 281 APRIL 29, 2014 5

3 Additional Reconstruction Results and Comparisons

Figure 7: Top: Bundler+PMVS2 reconstruction of Intersection, 3 views (12k points). Bottom: Proposed model.

Figure 8: Top: Bundler+PMVS reconstruction of CLIF Stadium Only (3 views). Note that the reconstruction is inverted (156k
points). Bottom: Proposed model.

Figure 9: Top: PMVS reconstruction of CLIF Image Stack, 3 views. (77k points). Bottom: Proposed model.

REV: 281 APRIL 29, 2014 6

3 Additional Reconstruction Results and Comparisons

Figure 10: Top: Bundler+PMVS2+PoissonRecon reconstruction of Intersection, 3 views. Bottom: Proposed model.

Figure 11: Top: Bundler+PMVS2+PoissonRecon reconstruction of Stadium Stack, 3 views. Bottom: Proposed model.

We further note that on average the time per iteration for a single plane is under half a second. In order to reduce computation
time a closer look at the rendering pipeline is required.

3.3 Surface Comparisons
The results of the proposed method were also compared with the surfaces generated by the Bundler+PMVS2+PoissonRecon

[4, 5, 10] pipeline. Adding PoissonRecon to the processing pipeline produces a watertight surface from the oriented points
generated by PMVS2. The results are shown in Fig. 10 and Fig. 11. The figures highlight the benefits of the proposed approach
over the multi-step SfM pipeline; e.g., both horizontal and vertical surfaces are highly planar in the reconstructions obtained
using the proposed work as opposed to overly smooth as produced using the multi-stage SfM pipeline.

3.4 LiDAR-Only Comparisons
The results of the proposed model are compared with the LiDAR-only work of [7, 12]. Note that [7] does not attempt to

recover geometry, that work focuses on registering images and LiDAR; however, it introduces the concept of triangulation of
LiDAR at the ground level and uses it to demonstrate their registration algorithm. This method of producing a watertight mesh
is simple and provides suitable models.

The results of the comparisons are shown in Fig. 12, where the proposed method (with and without the Lie-algebraic
representation) is compared with [7] and [12]. When compared with the simple method of [7], our method produces smoother
surfaces with less jagged edges. This is expected since the method in [7] does not account for noise in the measurements and

REV: 281 APRIL 29, 2014 7

4 Mathematical Details

Figure 12: Comparison to LiDAR-only work for the Lubbock dataset, 3 different views (columns). Algorithms (top-
bottom): [7], [12], Proposed Method (using lie-algebraic representation), Proposed Method (no lie-algebraic representation).

fits the surface to every LiDAR point. The reconstructions produced by the proposed method are more similar to [12], where
planar surfaces are fairly smooth yet allowing sharp transitions between ground and roofs.

Note that some of the building sides produced by [12] are qualitatively better than those produced with the proposed method
(e.g., last column of Fig. 12); however, the proposed method can be easily improved to handle these cases by introducing better
scene priors, e.g., an explicit assumption of smoothness will regularize the building sides and produce satisfactory results.

3.5 Additional Reconstruction Results
Figure 13 shows additional reconstruction views of the Stadium-Only dataset. Each column in the figure corresponds to a

reconstructed view (top) as seen from a given observation view (bottom). The figure highlights the fact that the proposed method
produces photo-realistic reconstructions where even fine scene details, (e.g., parking-lot lines and marking in the football field)
can be clearly seen.

4 Mathematical Details
This section contains important mathematical details and derivations including the Lie-algebraic representation, the deriva-

tion of the appearance computation and our use of the Gaussian Process.

REV: 281 APRIL 29, 2014 8

4 Mathematical Details

Figure 13: Stadium Reconstruction. Top: reconstructions; Bottom: original images (images: 0,16,32,48).

4.1 Lie Algebraic Representation of Primitives
This section details the Lie algebraic representation of the primitives used in this work (i.e., triangles). As mentioned in the

paper this representation has several advantages over naive vertex representation. It allows us to work in a linear space while
at the same time provides a convenient way to decompose primitive deformations into rotation, scale and skew components; a
fact that we exploit in our inference algorithms.

A triangle may be parametrized by its vertices using 9 degrees-of-freedom (DOF); viewing it as the result of a transformation
applied to some reference triangle leads to another 9-DOF parametrization: 3 for global translation and 6 for triangle-to-triangle
deformation. Such a 6-DOF deformation can be parametrized using a 6-dimensional Lie group [3]. This has several advantages,
including a principled notion of a triangle-to-triangle relationship. Importantly, while the group is nonlinear, it has an associated
linear space known as the Lie algebra. The Lie-algebraic representation enables us to work on a linear space, using a map from
it onto the space of all triangles sharing the same origin; the map is given as follows (see [3] for more details).

Let [v0, ṽ1, ṽ2] ∈ R3×3 denote the vertices of a reference triangle. Let X def
= [v1, v2]

def
= [ṽ1 − v0, ṽ2 − v0] ∈ R3×2. The

pair (v0, X) fully describes the triangle. If Q ∈ R3×3 is invertible, then (v0, QX) is a new triangle. In general such a Q has 9
DOF, but we can impose a 6−DOF structure on it. Let Q = RRTXASRX such that R ∈ SO(3);

A =

1 U 0
0 V 0
0 0 1

 ; S =

S′ 0 0
0 S′ 0
0 0 1

 ; V = ev ;S′ = es (1)

where U , v and s are reals, and RX is fully defined by X:

RX =

|v1| t 0

0
√
|v2|2 − t2 0

0 0 |v1 × v2|

 [v1, v2, v1 × v2]
−1
, (2)

where t =
vT1 v2
|v1| . While Q has only 6 DOF, it can be shown that if Q is the space of all Q’s with this structure, then {QX :

Q ∈ Q} = {AX : detA 6= 0}. The nonlinear Q is isomorphic to a 6-dimensional matrix Lie group of 6× 6 matrices. Letting
[ω1, ω2, ω3, u, v, s] denote an element of R6 (viewed as the Lie algebra), a parametrization Q (ω1, ω2, ω3, u, v, s) is given by

U =

u, if v = 0
u

v
(ev − 1) , otherwise

(3)

while R = R(ωx, ωy, ωx) using well-known Rodrigues’ formula, and s and v affect A and S as described above.

REV: 281 APRIL 29, 2014 9

4 Mathematical Details

4.2 Appearance Computation
In this section we derive the update equations for the appearance conditioned on all other parameters.

4.2.1 Observation Model

As discussed in the paper, the image observation model is:

Icn(u, v) = Am∗(u
′, v′) +Qn, (4)

where Qn ∼ N (q; 0, r2m∗), Icn is the nth image of camera c, Am∗ is the m∗ triangle appearance, and (u, v) is the projected
image coordinates of the appearance at coordinate (u′, v′). We note that (u, v) and (u′, v′), are related implicitly via the 3D
point (x, y, z), or explicitly via the homography between image Ak and In. For any pixels (u, v), and (u′, v′) that are in
correspondence, we will denote the observation and underlying latent appearance by z = In(u, v) and a = Am∗(u

′, v′).
Using this notation, Eq. (4) can be written as z = a+ q. It follows that z|a ∼ N (z; a, r), and z ∼ N (z;µ, σ2 + r2). If we

let A have a Normal prior, such that A ∼ N (a;µ, σ2). So then our task is to estimate A.

4.2.2 Derivation - Multiple Observations - different noise

Assume that observation is the same as before In(u, v) = Am∗(u
′, v′) + Qn, but with Qn ∼ N (q; 0, rn), i.e., the noise

variance depends on the image. As before z = a+ q, but let’s denote the different variance explicitly as z = a+ qn. Then,

p(a|z) =

∏n−1
i=0 p(zi|a)p(a)∏n

j=1 p(zj)
∝ N (a;µ;σ2)

n−1∏
i=0

N (zi; a, r
2
i) =

1√
2πσ2

exp

{
− (a− µ)2

2σ2

} n−1∏
i=0

1√
2πr2i

exp

{
− (zi − a)2

2r2i

}

Let us define ṙ =
∏n−1
j=0 rj , and ṙ\i =

∏n−1
j=0,j 6=i rj then,

p(a|z) ∝ 1

(2π)
n+1
2 ṙσ

exp

{
− (a− µ)2

2σ2
−
n−1∑
i=0

(zi − a)2

2r2i

}
︸ ︷︷ ︸

C

It can be shown that

C = −
ṙ2 + σ2

∑n−1
i=0 ṙ

2
\i

2ṙ2σ2

[
(a− µ̂)

2
+ c′

]
,

where

µ̂ =
µṙ2 + σ2

∑n−1
i=0 ṙ

2
\izi

ṙ2 + σ2
∑n−1
i=0 ṙ

2
\i

, and c′ =
µ2ṙ2 + σ2

∑n−1
i=0 ṙ

2
\iz

2
i

ṙ2 + σ2
∑n−1
i=0 ṙ

2
\i

− µ̂2 .

Substituting C and performing a small amount of algebra leads to

p(a|z) ∝ N (a; µ̂, σ̂2)

where

µ̂ =
µṙ2 + σ2

∑n−1
i=0 ṙ

2
\izi

ṙ2 + σ2
∑n−1
i=0 ṙ

2
\i

=
µ
∏n−1
i=0 r

2
i + σ2

∑n−1
i=0

(∏n−1
j=0,j 6=i r

2
j

)
zi∏n−1

i=0 r
2
i + σ2

∑n−1
i=0

(∏n−1
j=0,j 6=i r

2
j

) (5)

σ̂ =
ṙσ√

ṙ2 + σ2
∑n−1
i=0 ṙ

2
\i

=
σ
∏n−1
i ri√∏n−1

i=0 r
2
i + σ2

∑n−1
i=0

(∏n−1
j=0,j 6=i r

2
j

) (6)

REV: 281 APRIL 29, 2014 10

4 Mathematical Details

4.2.3 Special Case

As a sanity check, we double check that the multiple observation with same noise is a special cases of the general update
derived earlier. To obtain the multiple observation case, we can let rj = r, ∀j ∈ [0, n − 1], with this definition, ṙ = rn, and
ṙ\i = rn−1. Plugging the new values for ṙ and ṙ\i into the general updates of equations (5) and (6) and factoring out a common
term from numerator and denominator we obtain:

µ̂ =
µr2 + σ2

∑n−1
i=0 zi

r2 + nσ2
(7)

σ̂ =
rσ√

r2 + nσ2
(8)

Thus Eq. (7) and Eq. (8) refer to the multiple observation with same noise model.

4.3 Gaussian Process Prior
Oblique aerial images used in this work are taken from a moving platform. This type of data has certain characteristics

that can be incorporated as prior knowledge. For example, we can expect that that plane collecting the measurements follows
a smooth trajectory. This implies that the camera collecting the images will also have a smooth position as a function of time
(assuming a rigid attachment of camera to plane). We can incorporate this information as a prior in the form of a Gaussian
Process Prior. For more on Gaussian Processes see [6, 9].

4.3.1 Definition

A Gaussian Process is a collection of infinite random variables, any finite number of which have a Gaussian distributions.
A Gaussian process (GP) is a generalization of a multivariate Gaussian distribution to infinitely many variables. A GP can
be fully specified by a mean function m(x) and a covariance kernel k(x, x′), so that f(x) ∼ GP (m(x), k(x, x′)) where x is
one-dimensional variable (chosen for simplicity of exposition, GPs can easily be extended to multidimensional case).

In practice we do not need to instantiate the infinite collection of random variables, instead we can focus on a finite collection
of them f = [f(x1), f(x2), . . . , f(xn)]

>, if we letm(x) = 0 for all x, then f ∼ N (0,Σ) where Σij = k(xi, xj), ∀i, j ∈ [1, n].
For many applications m(x) can be made zero and k(x, x′) can take the squared exponential function:

k(x, x′) = υ2 exp

(
− (x− x′)2

2`2

)
(9)

The hyper-parameters, υ and `, in the square exponential function, Eq. (9), have specific interpretation. The lengthscale, `,
controls the level of variability expected in the input. Larger lengthscales indicate that the function is expected to vary slowly,
while shorter lengthscales indicate rapid changes in the function values. The signal variance, υ, defines the vertical scale of
variations of a typical function, see Fig. 14 for samples of a GP drawn with different hyper-parameters.

4.3.2 Inference

Typically, GPs are used as priors. In the case when the likelihood is Gaussian, this results in a closed form, Gaussian,
posterior. We will present the prototypical predictive case here. Let us assume we have noisy observations of a smooth function
tN = {xn, yn}Nn=1, the task is to infer the function f(x). Assume you have a prior over functions that is a Gaussian Process,
such that f(x) ∼ GP(0, k(x, x′)), and that the observation model is p(y|x, f(x)) = N (f , σ2I), where I is the identity matrix
and σ2 represent some suitable noise. Then, the posterior over f(x) is also a GP:

f(x)|x,y ∼ GP (µpost(x), kpost(x, x
′))

where

µpos(x) = k(x,x)
[
K(x,x) + σ2I

]−1
y and kpost(x, x

′) = k(x, x′)− k(x,x)
[
K(x,x) + σ2I

]−1
k(x, x′).

REV: 281 APRIL 29, 2014 11

4 Mathematical Details

x

y

Gaussian-Process-Random-Samples-(v=10,-l=6)

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

10

x

y

Gaussian-Process-Random-Samples-(v=10,-l=3)

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

x

y

Gaussian-Process-Random-Samples-(v=5,-l=6)

0 5 10 15 20 25 30
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
y

Gaussian-Process-Random-Samples-(v=5,-l=3)

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

Figure 14: Random Samples from a Gaussian process with different hyperparameters (5 samples per plot). Left: column has a
large lengthscale, producing smooth samples; Right: column has smaller lengthscale resulting in rapidly varying samples. Top
and bottom rows have different signal variances, hence their amplitude ranges vary according.

4.3.3 Hyperparameters

The covariance kernel typically has a few hyper-parameters. For example, the square exponential covariance in Eq. (9), has
two hyper-parameters: the lengthscale and the scale variance. These parameters can be manually tuned or learned from the
data. An effective way of learning parameters involves looking at the posterior probability of the hyper-parameters θ:

p(θ|x,y, f) ∝ p(y|x, f ,θ)p(θ)

where the first term on the RHS is data likelihood and the second is a prior over the parameters. Taking the log of the marginal
likelihood, we obtain

log p(y|x, f ,θ) = −1

2
log |K| − 1

2
y>K−1y − n

2
log (2π)

(where K is shorthand for the covariance matrix) which we can optimize over to get the hyper-parameters.
Typically the gradient useful in the optimization, we can compute the gradient of the log likelihood with respect to the ith

hyper-parameter as:

∂

∂θi
log p(y|x, f ,θ) = −1

2
Trace

(
K−1

∂K

∂θi

)
+

1

2
y>K−1

∂K

∂θi
K−1y

Taking the partial derivative of the matrix K with respect to θi is just taking the partial derivatives of each entry. Alternatively
we can take the partial of the covariance kernel, and build the new ∂K using the modified kernel. For the square exponential
covariance, the partial derivative of the kernels with respect to the parameters, kυ(x, x′) and k`(x, x′), are

∂k(x, x′)

∂υ
=

∂

∂υ

[
υ2 exp

(
− (x− x′)2

2`2

)]
, and

∂k(x, x′)

∂`
=

∂

∂`

[
υ2 exp

(
− (x− x′)2

2`2

)]
= 2υ exp

(
− (x− x′)2

2`2

)
︸ ︷︷ ︸

kυ(x,x′)

= υ2
(x− x′)2

`3
exp

(
− (x− x′)2

2`2

)
︸ ︷︷ ︸

k`(x,x′)

.

REV: 281 APRIL 29, 2014 12

5 Implementation Details

Algorithm 1 Image Likelihood Evaluation (all cameras) – CPU/GPU.

1: Compute image noise variance for all primitives in all images. . See Algorithm 2
2: Set ll = 0 and C = 0; . Log-likelihood and Partition Function initialization
3: for c = 0:1:NC do
4: for i = 0:1:N c

I do
5: Render texture map world as viewed from image i, transfer framebuffer image to main memory, denote Î .
6: Render Triangle map as viewed from image i, transfer framebuffer image to main memory, denote Itri.
7: for p=0:1:size(Ii) do
8: Map Itri to plane number, denote m.
9: Set σ = wmi

10: Set ll = ll − (Ii(p)−Î(p))2
2σ2 . Computes the log-likelihood

11: Set C = C − log σ
√

2π . Computes partition function
12: end for
13: end for
14: end for
15: return ll + C. . Returns a normalized log-likelihood

5 Implementation Details
This section discusses important technical details for implementing the proposed model. Importantly, efficient implemen-

tations are provided for the image and LiDAR likelihoods. Furthermore, efficient implementation of latent appearance and
geometry are discussed. Throughout this section pseudo-code algorithms for CPU and GPU implementation are provided.

5.1 Efficient Image Likelihood Computation
Estimation of camera pose and world geometry relies heavily on the evaluation of the image likelihood. Furthermore, since

geometry estimation takes a significant portion of the runtime, fast and efficient computation of this likelihood is crucial. In this
section we describe how we implement the image likelihood computation and how we leverage the power of graphics hardware
to obtain high performance.

Recall the image likelihood is given by:

p(I|G,A,K,T) =

NC∏
c=1

NcI∏
n=1

∏
k∈Snc

p(In,ck |G,A,K
c, T c) . (10)

The evaluation of the data term in Eq. (10) requires identifying the association between an observation pixel and a world
appearance pixel, then evaluating a Gaussian distribution. This computation can be done efficiently in the OpenGL pipeline
with two renders: the first maps observation pixels to primitives (in order to identify noise level); while, the second maps
appearance pixels to observation pixels. With the information provided in these two renders we can turn one image evaluation
into:

p(Icn|G,A,Kc, T c) =
∏
k∈Scn

N (ik − îk; 0, r2m∗) , (11)

where î is the textured mapped world as viewed from image n.
The evaluation of Eq. (11) can be seen in Algorithm 1. The purpose of the triangle-mapping render is to identify the noise

level that should be associated with the Gaussian evaluation. Note we are not interested in knowing which primitive generated
the observation, but only in its appearance value – which we obtain from the texture mapping. The pseudo-code of the image
likelihood computation in GPU is identical to that of the CPU. While some implementation details do change (e.g., variable
increments must treated atomically), we omit those for the sake of brevity. Table 3 shows the computation time and speed-up
factors for the image likelihood computation for several datasets. As can be seen, the GPU implementation is at least four times
faster than CPU.

REV: 281 APRIL 29, 2014 13

5 Implementation Details

Data Lubbock CLIF (subset) CLIF (all)

Triangles 80,000 227,000 227,000
Images 3 24 50
Image Size 1336x891 822x1326 822x1326
Texture/Atlas Size 8/512 16/1024 16/1024
CPU Time (s) 0.295 2.865 5.858
GPU Time (s) 0.066 0.424 0.873
Speed up 4.47 6.76 6.71

Table 3: CPU/GPU image likelihood evaluation speed-up (times estimated by averaging over 5 runs of the algorithm), GPU
used was an NVIDIA GTX-580 graphics card.

Figure 15: LiDAR and primitive association. (Points associated with input primitive colored according to distance to the
primitive, other points shown in orange-magenta color).

5.2 Efficient LiDAR Likelihood Computation
Recall that for the LiDAR observation model, we need to address a data association problem. To this aim, we sample the

association from a categorical distribution with probabilities inversely proportional to the distances between a measurement and
the set of primitives. The desire to avoid exhaustive distance computation for each LiDAR and primitive pair coupled with the
intuition that far way primitives are highly unlikely to generate an observation leads us to the idea of using a k-d tree to prune
the set of potential associations to analyze.

Ideally, we would like to build the k-d tree over the set of primitives. Then, for each input LiDAR measurement, identify a
set of nearby primitives. However, this idea is prohibitive as the set of primitives is changing (i.e., we are learning the geometry
parameters) which would require re-learning the tree every time a primitive changes. Instead we build the tree over the static
LiDAR observations; this has the advantage that it only needs to be done once. We may then query the LiDAR tree with a
primitive and obtain a candidate list of measurements for association. Fig. 15 shows several association examples.

The procedure outlined above, is used to provide candidate associations. The actual association is sampled from the categor-
ical distribution as described earlier. It is important to point out that as outlined the k-d tree procedure allows multiple primitives
to be associated with a given measurement and multiple measurements to be associated with a given primitive. Moreover, there
could be primitives with no associated LiDAR points; however, the converse is not allowed as every LiDAR measurement
must be associated by a primitive or be labeled as an outlier. To ensure this is the case, we must identify non-associated inlier
measurements and attribute candidate associations via exhaustive search. Empirically we find that using the k-d tree reduces
the computation time on average by two orders of magnitudes over exhaustive search.

5.3 Efficient Appearance Computation
We now discuss the implementation details for fast appearance estimation. Computationally, our goal is to utilize the

power of GPUs as not only a rendering pipeline but also as a general-purpose parallel processor. Recall that Am denotes the
appearance of mth primitive, an image of a user-specified size. We are interested in learning the distribution of color for each
pixel according to the update equations (5) and (6). For a set of camera parameters and world structure, the appearance equation
requires collecting all of the observation pixels (image pixels) that correspond to a given pixel in the primitive appearance
and weighting them appropriately to produce the desired texture. Note that this procedure should be applied only to visible

REV: 281 APRIL 29, 2014 14

5 Implementation Details

Triangle Mapping

Unique TextureTexture Mapping

Gk Appearance

Image

Triangle Mapping

Unique TextureTexture Mapping

Gk Appearance

Image

Figure 16: Appearance computation procedure. First determine which primitive generated the observation using a triangle
mapping, secondly using the texture mapping determine which pixel generated the observation.

Data Lubbock CLIF (subset)

Triangles 80,000 80,000 227,000 227,000
Images 3 3 24 24
Texture /Atlas Size 8/512 16/1024 8/1024 16/1024
CPU Time (s) 1.361 2.435 8.145 11.304
GPU Time (s) 0.201 0.193 1.826 1.9404
Speed up 6.7 12.6 4.5 5.8

Table 4: CPU/GPU speedup (times are the average of 5 estimations), all test done on an NVIDIA GTX-580 graphics card.

primitives, as appearance information is not available for occluded or out-of-view primitives.
The mapping of image observation to triangle appearance can been seen in Fig. 16. The mapping can be explained in two

parts. The first part (Fig. 16, top row) maps every observation pixel to a triangle via a color mapping which depends on the
primitive. This data association problem can be solved efficiently by using the GPU rendering pipeline to encode the index of
the primitive as an RGB triplet. Consequently, observing a particular triplet corresponds to observing a particular primitive. The
second part of the mapping involves determining which pixel in the appearance map generated the observation. This mapping
can be seen in the bottom row of Fig. 16. For this mapping we create a unique texture, the same size as the appearance map
where each RGB triplet encodes the pixel location, then a similar mapping as that for primitive number can be used.

We can put these two pieces together and obtain the appearance estimation method shown in Algorithm 2 for a CPU
computation or Algorithm 3 for GPU computation. The main distinction between CPU and GPU implementation is that on
CPU all the rendering is done ahead of time and stored, then the textures are computed; in the GPU implementation due to
memory constraints, renders are done one at a time and aggregated to the texture after all images are added.

In terms of computational complexity both CPU and GPU algorithms are bounded by the number of images and the size
of each image. The main limitation of the CPU algorithm is the data transfer between main memory and device memory,
since it requires transferring two images from device to main memory for each observation, and then transferring all the
appearance textures from main memory to device memory. The GPU implementation does not suffer from this problem since
the texture maps are never transferred, i.e., they remain in device memory and are accessed via the texture accumulation kernel;
similarly, the texture data always remains in device memory. Hence the main limitation of the GPU computation is the render
itself. Table 4 shows the computation time and speed up factors for several datasets. We can see from the table that the GPU
implementation is at least four and a half times times faster than CPU.

REV: 281 APRIL 29, 2014 15

5 Implementation Details

Algorithm 2 Appearance Estimation – CPU.

1: Compute unique world projection for all images, Imaptri . associates each pixel with a primitive
2: Compute unique texture projection into all images, Imaptex . associates each pixel with a texture coordinate
3: for k = 1:1:Np do . compute image noise level
4: wk = 1
5: Compute plane normal nk
6: for i = 0:1:Ni do
7: Compute image view direction vi
8: Compute triangle-image weight wik = 1

|v>i nk|
9: Compute triangle weight wk = wk ∗ wik

10: end for
11: end for
12: Allocate memory for Atexk and Aweightk , set to zero . the un-normalized texture values and weights respectively
13: for c = 1:1:NC do . Loop over cameras
14: for i = 1:1:N c

I do . Loop over images
15: for p=0:1:size(Ii) do . Loop over pixels for ith image
16: Compute triangle source of Ii(p), by looking at Imaptri (p), denote T . identify primitive
17: Compute texture location of Ii(p), by looking at Imaptex (p), denote P . identify appearance pixel
18: Compute triangle-image weight wiT = 1

|v>i nT |
19: Compute iteration weight w = wT

wiT

20: Set AtexT (P) = AtexT (P) + wIi(p)

21: Set AweightT (P) = AweightT (P) + w
22: Optional: Fill in neighbors of p (as lines 20-21). . allows observation to influence multiple appearance pixels
23: end for
24: end for
25: end for
26: Compute and save weighted texture as Ak = Atexk /Aweightk

27: Optional: Fill in empty pixels in Gk, with four neighbor average.
28: De-allocate memory.

Algorithm 3 Appearance Estimation pseudo-code - GPU.

1: Compute image noise level. . lines 3-11 in Algorithm 2
2: Create Triangle Map and Texture Map framebuffers (assign 2 textures pointers with depth and color to each)
3: Allocate device memory for Atex,Aweight, Imaptri , and Imaptex .
4: for c = 1:1:NC do . Loop over cameras
5: for i = 1:1:N c

I do . Loop over images
6: Bind Triangle Map framebuffer, render triangle map as viewed from image i.
7: Bind Texture Map framebuffer, render texture map as viewed from image i.
8: Call texture Accumulation kernel. . Same as pixel loop in Algorithm 2
9: end for

10: end for
11: Call texture normalize kernel. . Computation of line 26 in Algorithm 2
12: De-allocate memory.

REV: 281 APRIL 29, 2014 16

5 Implementation Details

5.4 Efficient Geometry Computation
In this section we discuss the implementation details for inferring world-geometry parameters; i.e., we are concerned with

evaluating

p(V|I,L,G; θ) ∝
NI∏
n=1

p(In|G,A,K, T)

NL∏
l=1

p(Ll|G)

NP∏
m=1

p(Gm|V; θ) . (12)

Recall that the evaluation of the likelihoods in this equation might be computationally intensive; while the savings established
in Sections 5.1 and 5.2 help in reducing the overall computation time of one primitive, the sheer number of primitives for
which Eq. (12) needs to be evaluated quickly increases the computation time. This is particularly true for optimization where
Eq. (12) becomes the objective function, and thus requires being evaluated thousands of times per primitives. We note that when
evaluating the image likelihood as a function of a set of primitives, only a very small subset of pixels change. This observation,
coupled with the desire to reduce computation time motivates evaluations of Eq. (12) for multiple primitives in parallel.

The evaluation of Eq. (12) for multiple primitives at a time has the advantage of reducing the number of draws required to
compute the image likelihood, which is the computational bottleneck. However, in order to take advantage of these savings, the
optimization routines used must propose independent perturbations for the triangles in question; these perturbations must be
combined to produce a single render and the likelihood for each primitive must be computed separately, then the optimization
scheme must make decoupled decisions based on each likelihood evaluation. Assuming that this is the case, let us investigate
the necessary changes to compute image likelihoods in the multi-primitive case.

5.4.1 Image Likelihood Evaluation under Multiple Primitives

In order to extend the approach to multiple primitives we must account for image pixel association and the generating
primitive. The pixels in the image likelihood, Eq. (10), can be separated into those generated by the primitives which we are
optimizing over, P , and those that are not. Then the image likelihood takes the form:

p(I|G,A,K,T) =

NC∏
c=1

NcI∏
n=1

∏
k∈P

p(In,ck |G,A,K
c, T c)

∏
k∈Scn\P

p(In,ck |G,A,K
c, T c)

 (13)

where Scn is the set pixel in image n of camera c. We are interested in the set of pixels generated by the primitives we are
optimizing over, P , and the interactions between this set and the other pixels. Importantly, we are assuming that there is no
interaction between elements in the set. To better understand the bookkeeping necessary to achieve the correct calculation,
let us concentrate on calculating the partial likelihood for the pixels associated with a single primitive. We begin by noticing
that between any two likelihood evaluations, there are two possible changes: first, the set of pixels over which the evaluation
takes place can change; second, the value of the underlying rendered image can change. Let us denote the value of the initial
rendered image by f0(·), and the value of the new image by f1(·); furthermore, let us denote the evaluation masks by M0 and
M1 respectively. With this notation, we can calculate the change between the image likelihood as:

δ01(M0,M1) = f1(M0 ∪M1)− f0(M0 ∪M1). (14)

We note that δ01(M0,M1) properly accounts for changes in the evaluation mask and the function values. If we want to obtain
the new absolute likelihood, as opposed to the change, we simply add the initial total likelihood and the change,

f1(M1) = f0(M1 ∪M0) + δ01(M0,M1)− f1(M̄1 ∩M0) (15)

We easily see special cases of this general computation from Eq. (14), e.g., if the evaluation masks remain the same, M0 = M1,
then we are simply taking the difference between the image values. If in addition f0 = f1, then δ01 = 0 and there is no change.

Now that we understand how to compute the incremental likelihood for a single triangle, the extension to the multi-triangle
case follows trivially: we simply let each triangle have its own evaluation mask. Computationally, we can evaluate the multi-
primitive image likelihood as shown in Algorithms 4 and 5. The computation is divided into an initialization step and a
subsequent computation since the initial step is much simpler; it only requires being able to evaluate current values. On the
other hand, subsequent evaluations are slightly more involved since for every pixel that we encounter we have to compute not
only its current triangle association but also its past association.

Several observations can be made from the algorithms, first we notice that memory usage has dramatically increased, (i.e.,
more than doubled using 4 byte floats for ll), since we must maintain all the previous pixel likelihood values for each image,

REV: 281 APRIL 29, 2014 17

5 Implementation Details

Algorithm 4 Multi-Primitive Image Likelihood Evaluation - Initialization - CPU/GPU.

1: Select N planes compute the likelihood over.
2: Initialize an array of N structure planeLL, with members: imgLL, and imgPxCount (set all to zeros)
3: Initialize array of Ni structure imEvalMask, with members: mask, ll, and llpixelToAdd. Set mask and ll to the size of the

corresponding ith image.
4: for c = 1:1:NC do . camera loop
5: for i = 1:1:N c

I do . image loop
6: for p ∈ Sci do . pixel loop
7: Compute pixel log likelihood, denote ll.
8: Set imEvalMask[i].ll[p]=ll
9: Identify triangle associated with current pixel, denote T.

10: if optimizing over T then
11: imEvalMask[i].mask[p]=T
12: planeLL[k].imgLL += ll; . the kth entry is associated with triangle T
13: end if
14: end for
15: end for
16: end for
17: Maintain imEvalMask and planeLL in memory.

Algorithm 5 Multi-Primitive Image Likelihood evaluation - Subsequent evaluations - CPU/GPU.

1: Set all members of planeLL to zero, except imgLL.
2: for c = 1:1:NC do . camera loop
3: for i = 1:1:N c

I do . image loop
4: for p ∈ Si do . pixel loop
5: Compute pixel log likelihood, denote ll.
6: Identify world triangle associated with pixel p, denote T .
7: Identify previous triangle association at pixel p, T̂ = imEval[i].mask[p].
8: if optimizing over T or T̂ then . multi-plane bookkeeping
9: if optimizing over T then

10: Set index = k; . where k is the position of triangle T in planeLL structure
11: Set planeLL[index].imgLL += ll
12: Increment planeLL[index].imgPxCount by one.
13: else if optimizing over T̂ then
14: Set index = k;
15: Set planeLL[index].imgLL += ll
16: Increment planeLL[index].imgPxCount by one.
17: end if
18: Subtract previous ll, planeLL[index].imgLL -=imEvalMask[i].ll[p]
19: end if
20: Set imEvaMask[i].ll[p] = ll . update likelihood and mask for the next iteration.
21: Set imEvaMask[i].mask[p] = T
22: end for
23: end for
24: end for
25: Read off likelihood values from planeLL[·].imgLL

REV: 281 APRIL 29, 2014 18

5 Implementation Details

50 100 150 200 250
10

1

10
2

10
3

10
4

T
im

e
 (

s
)

Single Plane Optimization

Multi Plane Optimization

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

M
a
rg

in
a
l
T

im
e

 C
o
s
t/

it
e

ra
ti
o

n
 (

s
)

Cost (per iteration) for additional planes

50 100 150 200 250
10

−1

10
0

10
1

10
2

10
3

Number of Planes Optimized over

S
p
e

e
d
 U

p
 F

a
c
to

r

Single/Multi Speed Up factor

Figure 17: Computation time comparison for single and multi-plane optimization for the CLIF Intersection scene. Top plot:
Cost for each method as a function of number of planes being optimized. Middle plot: per iteration additional cost as a function
additional planes added (base is 1). Bottom plot: speed up factor.

as well as the evaluation mask. This large memory consumption is prohibitive for graphic hardware, where memory is limited.
Furthermore, the use of structures in graphics hardware is cumbersome, since memory management can be difficult. As a
result, graphics implementation requires unrolling the structures into one continuous array, creating extra bookkeeping details
or creating extra kernels to handle memory operations.

All results presented here and in the paper used the multi-primitive evaluations. In terms of computational complexity, the
multi-primitive evaluations are substantially faster than the single primitive evaluations. This is seen in the top plot of Fig. 17,
where the computation time for the multiple-primitive estimation is always lower than single plane (the exception being when a
single primitive is optimized, in this case the added bookkeeping is slightly slower). The overall speed-up factor between single
and multi-primitive is seen in the bottom plot of Fig. 17. From the figure, we see that the gains are anywhere between slightly
less than one and over two orders of magnitude.

5.5 Texture Atlas
As we saw in Sec. 5.1, the ability to render a textured mapped scene is crucial for the image likelihood computation.

Furthermore, as hinted above, the limiting factor of the GPU implementation is the speed of the rendering itself, rather than
the computation. In order to reduce overhead, we use texture atlases. These allow us to reduce the number of texture binding
needed at drawing time.

According to the proposed model, each triangle has a canonical texture, corresponding to a right triangle of user-specified
size. This modeling choice has several consequences: 1) texture coordinates are static; 2) computed textures are subject to
different scaling for each direction; 3) rendered texture pixel need not be square. The first of these points is essential in practice,
since the texture coordinates do not need to be re-calculated when the geometry of a triangle is changed, yielding substantial
computational savings; however, these savings come at a cost - the latter two points. Furthermore the use of right triangles has
the added benefit of allowing two canonical textures to be stored using a single square texture (the only type OpenGL allows).
Thus providing us the ability of storing two textures per image.

Note that there are two user parameters: the texture size, T , (textures will be T × T) and the atlas size, A, (atlases will

REV: 281 APRIL 29, 2014 19

5 Implementation Details

(0,0)

(3t,3t)

(3t,0)

(0,3t)

0
1

2 3
4

5

6
7

8
9

10

11

12
13

14
15 16

17

(t,0) (2t,0)

(0,t)

(0,2t)

T3
k

T1
k

T2
k

T1
k+1 T2

k+1

T3
k+1

(0,0)

(1,1)

(1,0)

(0,1)

0
1

2 3
4

5

6
7

8
9

10

11

12
13

14
15 16

17

U

v

(0,0)

(3t,3t)

(3t,0)

(0,3t)

0
1

2 3
4

5

6
7

8
9

10

11

12
13

14
15 16

17

(t,0) (2t,0)

(0,t)

(0,2t)

T3
k

T1
k

T2
k

T1
k+1 T2

k+1

T3
k+1

(0,0)

(1,1)

(1,0)

(0,1)

0
1

2 3
4

5

6
7

8
9

10

11

12
13

14
15 16

17

U

v
Figure 18: Texture Atlas Pictorial Depiction. Left: sample atlas where the number indicate which triangle the texture belongs
to; Right: vertex drawing order (1,2,3).

be A × A). Due to openGL implementation constraints both need to be powers of two and A ≥ T . The general idea of a
texture atlas is pictorially depicted in Fig. 18. In the reminder of this section we describe the initialization, update and drawing
procedure for the texture atlas.

5.5.1 Initializing

Assuming that the number of triangles is known (denote M , and triangles are indexed by k, where k ∈ [0,M −1]), then the
initial set up of the texture atlas is seen in Algorithm 6. The algorithm can be broken down into three main parts, first allocating
main memory to contain the list of triangle properties, including the atlas associated with each primitive as well as its texture
neighbor. A texture neighbor, is the triangle that shares the texture square in the texture atlas (e.g., 0 and 1, or 14 and 15 in
Fig. 18); this information will be needed for the texture updates later.

The second part of the algorithm computes the texture coordinate in the atlas, this computation is dependent on the triangle’s
ordering. The last step of the algorithm is to transfer all parameters to device memory.

Algorithm 6 Texture Atlas Initialization.

1: Set the values of A and T .
2: Compute N = bAT c, the number of textures per dimension.
3: Compute Na = d M2N2 e, the number of atlases needed to represent all the triangles.
4: Create an array of Na atlases in device memory, each of size A×A, initialize them to zero, denote pAtlas.
5: Create pTex an array that contains the atlas index for each triangle.
6: Create texNeigh an array that contains the texture neighbor (either up or down for each triangle.
7: Compute δ = 1

A , the one pixel offset in the diagonal between the top and bottom texture.
8: Compute Texture Coordinates using the counter-clockwise order shown in Fig. 18.
9: for k = 0:1:M-1 do

10: pTex[k] = pAtlas[k mod 2N2]. . assigns atlas to triangle
11: if k mod 2 == 0 then
12: Compute: x = (k2 mod N2

A2) mod N
A and y =

[(k2 mod N2

A2)−x]A
N

13: T k1 = (x, y + δ)
14: T k2 = (x− δ, y + 1

N)
15: T k3 = (x, y + 1

N)
16: Set texNeigh = k + 1;
17: else
18: Compute: x = (k−12 mod N2

A2) mod N
A and y =

[(k−1
2 mod N2

A2)−x]A
N

19: T k1 = (x+ δ, y)
20: T k2 = (x+ 1

N , y)
21: T k3 = (x+ 1

N , y + 1
N − δ)

22: Set texNeigh = k − 1;
23: end if
24: end for
25: Create device vertex array, normal array, texture coordinate array, and transfer primitive information.

REV: 281 APRIL 29, 2014 20

5 Implementation Details

Method Texture Size Atlas Size Number of Render Time
Atlases (micro seconds)

Single Textures 8 - - 110,000 - 115,000
Texture Atlas 8 256 40 9.4 - 11.5
Texture Atlas 8 512 10 6.9 - 8.5
Texture Atlas 8 1024 3 5.5 - 7.3
Texture Atlas 8 2048 1 5.1 - 6.9
Texture Atlas 8 4096 1 5.7 - 7.2
Texture Atlas 8 8192 1 5.7 - 7.2

Table 5: Render time for different texture methods on 80k triangles (tested: on NVIDIA GTX-580).

5.5.2 Update

Suppose we want to update the texture of the kth triangle, with some texture image, data. The update procedure is seen in
Algorithm 7. The update procedure consists of first identifying the orientation of the kth triangle and its neighbor; then building
the replacement image texData accordingly. Once the replacement image has been created, it can be uploaded to the texture
atlas using glTexSubImage2D with the proper starting and ending coordinates.

Algorithm 7 Texture update for the kth primitive.

1: if texNeigh is valid then . check status of neighbor triangle
2: if k mod 2 == 0 then . Orient the texture data
3: topTex = data, bottomTex = texNeigh.
4: else
5: topTex = texNeigh, bottomTex = data.
6: end if
7: Construct texData using the correct portions of topTex and bottomTex.
8: else
9: texData = data.

10: end if
11: if k mod 2 == 0 then
12: x = (k2 mod N2

A2) mod N
A

13: y =
[(k2 mod N2

A2)−x]A
N

14: else
15: x = (k−12 mod N2

A2) mod N
A

16: y =
[(k−1

2 mod N2

A2)−x]A
N

17: end if
18: Replace part of the atlas image (e.g., using glTexSubImage2D, with x and y as offsets, and texData as texture data).

5.5.3 Draw

The draw routine for texture atlases consists of Algorithm 8. It is important to point out that the draw order is counter-
clockwise as shown in Fig. 18.

5.5.4 Resulting Speed-up Gain

Render times using texture atlases are shown in Table 5. From the render times we can see that using texture atlases provides
a five orders of magnitude speed up over individual textures. Furthermore, from the table we can see that the atlases advantages
plateau when all primitives are drawn using a single atlas. Importantly, increasing the size of the atlas beyond this point can
be detrimental as the atlas might be larger than what the graphics hardware can cache (as seen in the last two rows of Table 5).

REV: 281 APRIL 29, 2014 21

References

Algorithm 8 Draw routine using texture atlases.

1: Bind vertex, normal, texture coordinate, and index arrays.
2: Compute lastDrawCount = M mod 2N2. . this is the number of primitives in the last atlas
3: for i = 0 : 2N2 : M − lastDrawCount do
4: Bind pTex[i] Texture.
5: Draw 2N2 primitives in order. (e.g., using glDrawRangeElements)
6: end for
7: if lastDrawCount 6= 0 then
8: Bind pTex[i+ 1] Texture.
9: Draw lastDrawCount primitives in order.

10: end if

References
[1] R. Cabezas. Aerial Reconstructions via Probabilistic Data Fusion. SM Thesis, Massachusetts Institute of Technology, 2013.

http://people.csail.mit.edu/rcabezas/. 2
[2] R. Cabezas, O. Freifeld, G. Rosman, and J. W. Fisher III. Aerial Reconstructions via Probabilistic Data Fusion. CVPR, 2014. 1, 2
[3] O. Freifeld and M. Black. Lie bodies: a manifold representation of 3D human shape. ECCV, 2012. 9
[4] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis. PAMI, 2010. 5, 7
[5] M. Kazhdan and H. Hoppe. Screened Poisson Surface Reconstruction. ACM Trans. Graph., 32(3):29:1–29:13, July 2013. 5, 7
[6] D. J. C. Mackay. Information Theory , Inference , and Learning Algorithms. Cambridge University Press, 2003. 11
[7] A. Mastin, J. Kepner, and J. Fisher. Automatic registration of LIDAR and optical images of urban scenes. CVPR, 2009. 2, 5, 7, 8
[8] Ohio Statewide Imagery Program and Ohio Geographically Referenced Information Program. Ohio LiDAR Data.

http://gis3.oit.ohio.gov/geodata/. 2
[9] C. Rasmussen and C. Williams. Gaussian processes for machine learning. The MIT Press, 2006. 11

[10] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the World from Internet Photo Collections. IJCV, 2007. 5, 7
[11] US Air Force. Columbus Large Image Format Dataset 2007. https://www.sdms.afrl.af.mil/index.php?collection=clif2007. 2
[12] Zhou, Q.Y., Neumann, U. 2.5D Dual Contouring: A Robust Approach to Creating Building Models from Aerial LiDAR Point Clouds.

ECCV, 2010. 2, 5, 7, 8

REV: 281 APRIL 29, 2014 22

http://people.csail.mit.edu/rcabezas/
http://gis3.oit.ohio.gov/geodata/
https://www.sdms.afrl.af.mil/index.php?collection=clif2007

	Introduction
	Experiment Parameters

	Data Overview
	Lubbock Dataset
	CLIF 2007 Dataset

	Additional Reconstruction Results and Comparisons
	Additional SfM Comparisons
	SfM Computation Time
	Surface Comparisons
	LiDAR-Only Comparisons
	Additional Reconstruction Results

	Mathematical Details
	Lie Algebraic Representation of Primitives
	Appearance Computation
	Gaussian Process Prior

	Implementation Details
	Efficient Image Likelihood Computation
	Efficient LiDAR Likelihood Computation
	Efficient Appearance Computation
	Efficient Geometry Computation
	Texture Atlas

	References

