Urb-IoT 2014

Developing a RESTful Communication Protocol and an

Energy Optimization Algorithm for a Connected Sustainable Home

Sotirios D. Kotsopoulos, Federico Casalegno, Wesley Graybill, Adrià Recasens Massachusetts Institute of Technology

- 1. Problem statement
- 2. Architectural solutions
- 3. Communication structure
- 4. RESTful protocol
- 5. Android Application
- 6. pSulu: Energy optimizer
- 7. Contributions and future work

ADDRESSING THE GLOBAL ENERGY CHALLENGE: IMPROVING ENERGY EFFICIENCY IN RESIDENTIAL BUILDINGS

In 2012, residential buildings consumed nearly 40% of total energy usage in the U.S. Heating and cooling accounted for 48% of the residential energy consumption.

Deployment of:

- 1. Passive and active building technologies
- 2. Modular, prefabricated, transportable structure
- 3. Actuated components and switchable materials in windows
- 4. Cogeneration plant (solar + heat) electricity
- 5. pSulu: Real-time energy optimizer
- 6. Full implementation of the Web of the Things paradigm in home automation

2. ARQUITECTURAL SOLUTIONS

2. ARQUITECTURAL SOLUTIONS

3. COMMUNICATION STRUCTURE

Communication constrains

- 1. Non-dependency on device-specific protocols
- 2. Scalability for large number of devices
- 3. Compatibility with existing technology
- 4. Security

Naïve approach

Web of the Things paradigm

Façade communication structure

Representational State Transfer (REST) Architecture

- 1. Scalability of the component interactions
- 2. Generality of interfaces
- 3. Independence in the deployment of components
- 4. Existence of intermediaries that make the system safest

- Path Structure

- Uniform Resource Identifier (URI)
- Directory-based URI structure
- Path example: /home/window/c00

- Data Structure:

- JavaScript Object Notation
- Example: {"id":"c00","tint":2,"privacy":true,"open":8,"url":"/home/window/c00","previous": "/home/window"}

- Commands:

- GET: Retrieve the state of one resource
- PUT: Change the state of one resource

5. APPLICATION: ANDROID APP

5. APPLICATION: ANDROID APP

Chance-constrained qualitative state plan

Intuitive explanation of the algorithm

Simulation of control system

Results of execution of the PID (proportional-integral-derivative), Sulu, and p-Sulu controllers on January 1 and July 1.

Comparison of energy use over a week-long schedule

	Winter		Summer	
	Energy	Violation Rate	Energy	Violation Rate
p-Sulu	1.9379×10^4	0.000	3.4729×10^4	0
Sulu	1.6506×10^4	0.297	_	_
PID	3.9783×10^4	0	4.1731×10^4	0
	Sp	oring	Au	tumn
	Sp Energy	oring Violation Rate	Au Energy	tumn Violation Rate
p-Sulu		0	<u> </u>	
p-Sulu Sulu	Energy	Violation Rate	Energy	Violation Rate

19.8% of improving of pSulu over PID

CONTRIBUTIONS & FUTURE WORK

CONTRIBUTIONS OF THE CSH RESEARCH

- O Deployment of passive and active building systems.
- O Lightweight, modular, prefabricated, and transportable structure made out of natural materials.
- RESTful protocol compatible with common browsers
- O Unified communication interface to communicate with all the home-devices
- O Real-time energy optimizer.
- O First known full application of the WoT paradigm in home automation

References

Guinard, D., Trifa, V., and Wilde, E. 2010. A Resource Oriented Architecture for the Web of Things. In *Proceedings of Internet of Things International Conference*, Tokyo, Japan, 1-8.

Fielding, R.T. 2000. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Thesis. University of California, Irvine.

Graybill, W. 2012. Robust, Goal-Directed Planning and Plan Recognition for the Sustainable Control of Homes. Master's Thesis, MIT.

Guinard, D., and Trifa, V. 2009. Towards the Web of Things: Web Mashups for Embedded Devices. In *Proceedings of WWW 2009ACM*.

Kovatsch, M., Weiss, M., and Guinard, D. 2010. Embedding Internet Technology for Home Automation. In *Proceedings of 2010 IEEE Conference on Emergent Technologies and Factory Automation*, Bilbao, Spain, 1-8.

Kamilaris A., and Pitsilidis, A. 2011. The Smart Home meets the Web of Things. *International Journal of Ad Hoc and Ubiquitus Computing*, Volume 7, Issue 3, May 2011, 145-154

Kolter, J. Z., and J. Ferreira, J. 2011. A large-scale study on predicting and contextualizing building energy usage. In *Proceedings of Twenty-Fifth AAAI Conference on Artificial Intelligence, Special Track on Computational Sustainability, AI*.