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Abstract. Recently, large breakthroughs have been observed in saliency
modeling. The top scores on saliency benchmarks have become domi-
nated by neural network models of saliency, and some evaluation scores
have begun to saturate. Large jumps in performance relative to previous
models can be found across datasets, image types, and evaluation met-
rics. Have saliency models begun to converge on human performance?
In this paper, we re-examine the current state-of-the-art using a fine-
grained analysis on image types, individual images, and image regions.
Using experiments to gather annotations for high-density regions of hu-
man eye fixations on images in two established saliency datasets, MIT300
and CAT2000, we quantify up to 60% of the remaining errors of saliency
models. We argue that to continue to approach human-level performance,
saliency models will need to discover higher-level concepts in images:
text, objects of gaze and action, locations of motion, and expected lo-
cations of people in images. Moreover, they will need to reason about
the relative importance of image regions, such as focusing on the most
important person in the room or the most informative sign on the road.
More accurately tracking performance will require finer-grained evalua-
tions and metrics. Pushing performance further will require higher-level
image understanding.

Keywords: saliency maps, saliency estimation, eye movements, deep
learning, image understanding

1 Introduction

Where human observers look in images can provide important clues to human
image understanding: where the main focus of the image is, where an action or
event is happening in an image, and who the main participants are. The collection
of human eye movements can help highlight image regions of interest to human
observers, and models can be designed to make computational predictions. The
field of saliency estimation has moved beyond the modeling of low-level visual
attention to the prediction of human eye fixations on images. This transition has
been driven in part by large datasets and benchmarks of human eye movements.
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Fig. 1. Recent progress in saliency modeling has significantly driven up performance
scores on saliency benchmarks. On first glance, model detections of regions of interest in
an image appear to approach ground truth human eye fixations (Fig. 3). A finer-grained
analysis can reveal where models can still make significant improvements. High-density
regions of human fixations are marked in yellow, and show that models continue to miss
these semantically-meaningful elements.

For a long while, the prediction scores of saliency models have increased at a
stable rate. The recent couple of years have seen tremendous improvements on
well-established saliency benchmark datasets [1]. These improvements can be at-
tributed to the resurgence of neural networks in the computer vision community,
and the application of deep architectures to saliency estimation. As a result, a
large number of neural network based saliency models have emerged in a short
period of time, creating a large gap in performance relative to traditional saliency
models that are based on hand-crafted features, and learning-based models that
integrate low-level features with object detectors and scene context [2,3,4,5,6].
Neural network-based models are trained to predict saliency in a single end-
to-end manner, combining feature extraction, feature integration, and saliency
value prediction.

These recent advances in the state-of-the-art and the corresponding satu-
ration of some evaluation scores motivate the questions: Have saliency models
begun to converge on human performance and is saliency a solved problem? In
this paper we provide explanations of what saliency models are still missing,
in order to match the key image regions attended to by human observers. We
argue that to continue to approach human-level performance, saliency models
will need to discover increasingly higher-level concepts in images: text, objects
of gaze and action, locations of motion, and expected locations of people in im-
ages. Moreover, they will need to reason about the relative importance of image
regions, such as focusing on the most important person in the room or the most
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informative sign on the road. In other words, more accurately predicting where
people look in images will require higher-level image understanding. In this pa-
per, we examine the kinds of problems that remain and what will be required to
push performance forward.

2 Related work

Computational modeling of bottom-up attention dates back to the seminal works
by Treisman and Gelade [7] (Feature Integration Theory), the computational ar-
chitecture by Koch and Ullman [8] and the bottom-up model of Itti et al. [9].
Parkhurst and Neibur were the first to measure saliency models against human
eye fixations in free-viewing tasks [10]. Followed by this work and the Attention
for Information Maximization model of Bruce and Tsotsos [11], a cascade of
saliency models emerged, establishing saliency as a subarea in computer vision.
Large datasets of human eye movements were constructed to provide training
data, object detectors and scene context were added to models, and learning ap-
proaches gained traction for discovering the best feature combinations [2,3,4,5,6].
Please refer to [12,13] for recent reviews of saliency models.

One of the first attempts to leverage deep learning for saliency prediction
was Vig et al. [14], using convnet layers as feature maps to classify fixated local
regions. Kümmerer et al. [15] introduced the model DeepGaze, built on top of
the AlexNet image classification network [16]. Similarly, Liu et al. [17] proposed
the Multiresolution-CNN model in which three convnets, each on a different im-
age scale, are combined to obtain the saliency map. In the SALICON model [18],
CNNs are applied at two different image scales: fine and coarse. The SALICON
dataset, a large-scale crowd-sourced mouse movement dataset, made available to
the saliency community for training new deep models [18], has led to the emer-
gence of a number of other neural network models. For instance, DeepFix [19]
is a fully convolutional neural network built on top of the VGG network [20]
and trained on the SALICON dataset to predict pixel-wise saliency values in an
end-to-end manner. DeepFix has additionally been fine-tuned on MIT1003 [3]
and CAT2000 [21]. Pan et al. [22] also trained two architectures on SALICON in
an end-to-end manner: a shallow convnet trained from scratch, and a deeper one
whose first three layers were adapted from the VGG network (SalNet). Other
saliency models based on deep learning have been proposed for salient region
detection [23,24,25,26]. In this paper, we focus on predicting eye fixations rather
than detecting and segmenting salient objects in scenes.

While deep learning models have shown impressive performance for saliency
prediction, a finer-grained analysis shows that they continue to miss key elements
in images. Here we investigate where the next big improvements can come from.

3 Evaluating progress

We perform our evaluation on two datasets from the well-established MIT Saliency
Benchmark [1]. We use the data from this benchmark because it has the most
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comprehensive set of traditional and deep saliency models evaluated. The MIT300
dataset [27] is composed of 300 images from Flickr Creative Commons and per-
sonal collections. It is a difficult dataset for saliency models, as images are highly
varied and natural. Fixations of 39 observers have been collected on this datasets,
leading to fairly robust ground-truth to test models against. The CAT2000
dataset [21] is composed of 2000 images from 20 different categories, varying
from natural indoor and outdoor scenes to artificial stimuli like patterns and
sketches. Images in this dataset come from search engines and computer vision
datasets [28,29]. The test portion of this dataset, used for evaluation, contains
the fixations of 24 observers.

As of March 2016, of the top 10 (out of 57) models evaluated on MIT300,
neural network models filled 6 spots (and the top 3 ranks) according to many
metrics3. DeepFix [19] and SALICON [18], both neural network models, hold the
top 2 spots. The CAT2000 dataset, a recent addition to the MIT benchmark, has
19 models evaluated to date. DeepFix is the best model on the CAT2000 dataset
overall and on all 20 image categories. BMS (Boolean map based saliency) [30]
is the best-performing non neural network model across both datasets.

A finer-grained analysis on MIT300 (see Supplemental Material) shows that
on a per-image level, DeepFix and SALICON alternate in providing the best pre-
diction for ground-truth fixations. In the rest of the paper, our analyses are car-
ried out on these models. Performances of these models on the MIT benchmark
according to the benchmark metrics are provided in Table 1. We supplement
these scores with a measure of Information Gain (IG) as suggested in [31,32].
Definitions and interpretations of these metrics are provided in [32].

Saliency model AUC ↑ sAUC ↑ NSS ↑ CC ↑ KL ↓ EMD ↓ SIM↑ IG ↑
Human limit 0.92 0.81 3.29 1 0 0 1 1.80

DeepFix [19] 0.87 0.71 2.26 0.78 0.63 2.04 0.67 0.67

SALICON [18] 0.87 0.74 2.12 0.74 0.54 2.62 0.60 0.71

BMS [30] 0.83 0.65 1.41 0.55 0.81 3.35 0.51 0.22

IttiKoch4 0.75 0.63 0.97 0.37 1.03 4.26 0.44 -0.15

Chance 0.50 0.50 0 0 2.09 6.35 0.33 -1.67

Table 1. Scores of top-performing neural network models (DeepFix, SALICON) and
best non-neural network model (BMS) on MIT300 Benchmark. Top scores are bolded.
Lower scores for KL and EMD are better. There has been significant progress since
the traditional bottom-up IttiKoch model, but a gap remains to reach human-level
performance. Chance and human limit values have been taken from [1,32].

To begin to explore where these recent large gains in performance are coming
from, we visualize the most representative dataset images in Fig. 2. We define
representative images as those that best preserve model rankings when tested

3 As of July 2016, 8 of the top 10 (out of 62) models on MIT300 are neural networks.
4 Implementation from http://www.vision.caltech.edu/~harel/share/gbvs.php.

http://www.vision.caltech.edu/~harel/share/gbvs.php
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on, compared to the whole dataset. Our correlation-based greedy image selection
is described in the Supplemental Material. We find that a subset of k = 10
images can already rank the saliency models on the MIT benchmark with a
Spearman correlation of 0.97 relative to their ranking on all dataset images.
These images help to accentuate differences in model performance. By visualizing
the predictions of some of the top and bottom models on these images (Fig. 3),
we can see that driving performance is a model’s ability to detect people and
text in images in the presence of clutter, texture, and potentially misleading
low-level pop-out.

Fig. 2. Saliency model ranking is preserved when evaluating models on this subset of
10 images as when evaluating them on the whole 300-image benchmark. These images
help to accentuate differences in model performance. These images contain people at
varying scales, as well as text (small here) amidst distracting textures.

4 Quantifying where people and models look in images

To understand where models might fail, we must first understand where people
look. Our goal is to name all the image regions lying beneath the high-density
locations in fixation heatmaps. We computed fixation heatmaps aggregated over
all observers on an image (39 observers in the MIT300 dataset, for a robust
ground truth). Then we thresholded these ground truth heatmaps at the 95th
percentile and collected all the connected components. This produced an average
of 1-3 regions per image for a total of 651 regions.

The resulting region outlines were plotted on top of the original images and
shown to Amazon Mechanical Turk (MTurk) participants with the task of se-
lecting the labels that most clearly describe the image content that people look
at (Fig. 4a). The labels provided for this task were not meant to serve as an
exhaustive list of all objects, but to have good coverage of label types, with
sufficient instances per label. If an image contained multiple image regions, only
one would be displayed to participants at a time. Participants could select out
of 15 different label categories as many labels as were appropriate to describe
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Fig. 3. Some of the best and worst model predictions on a few of the representative
images from Fig. 2. Unlike traditional bottom-up models, recent neural network mod-
els can discover faces, text, and object-like features in images, prioritizing them over
textures and low-level features appropriately, to better approximate human fixations.

a region. For each image region, we collected labels from a total of 20 partici-
pants. Majority vote was used to assign labels to regions. A region could have
multiple labels in case of ties. For further analyses, related labels (e.g. “animal
face”, “part of an animal”, etc.) were aggregated to have sufficient instances per
label type (see Supplemental Material). Not all regions are easily nameable, and
in these cases participants could select the “background” or “other” labels. To
account for these image regions to which simple labels could not be assigned, a
second question-based MTurk task was deployed, described in the next section.

4.1 What do models miss?

Given labels for all the highly-fixated image regions in the MIT300 dataset, we
intersected these labeled regions with the saliency maps of different computa-
tional models. To determine if saliency models made correct predictions in these
regions, we calculated whether the mean saliency in these regions was within
the 95-th percentile of the saliency map for the whole image. We then tallied up
the types of regions that were most commonly under-predicted by models. In
Table 2 we provide the error percentages, by region type, where saliency models
assigned a value less than the percentile threshold to the corresponding regions.
Our analyses are performed over DeepFix and SALICON models on the MIT300
dataset, and on DeepFix on the CAT2000 dataset (additional analyses in the
Supplemental Material). The four categories chosen from the CAT2000 dataset
are ones that contain natural images with a variety of objects and settings.

About half the failure modes are due to misdetections of parts of people,
faces, animals, and text. Such failure cases can be ameliorated by training models
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Fig. 4. Two types of Mechanical Turk tasks were used for gathering annotations for
the highly-fixated regions in an image. These annotations were then used to quantify
where people look in images.

on more instances of faces (partial, blurry, small, non-frontal views, occluded),
more instances of text (different sizes and types), and animals. However, the
labels “background”, “object”, and “other” assigned to image regions by MTurk
participants originally accounted for about half of model errors on MIT300.

A second MTurk task was designed to better understand the content found
in these harder-to-name image regions. Participants were asked to answer binary
questions, such as whether or not a highlighted region in an image is an object of
gaze or action in the image (see Fig. 4b and Supplemental Material). The results
of this task allowed us to further break down model failure modes, and account
for 60% of total mispredictions on MIT300 and 39%-98% of mispredictions on
four categories of CAT2000. The remaining failure modes (labeled Other) vary
from image to image, caused by low-level features, background elements, and
other objects or parts of objects that are not the main subjects of the photograph,
nor are objects of gaze or action. Later in this paper, the most common failure
modes are explored in greater detail. Examples are provided in Fig. 6.

4.2 What can models gain?

With the region annotations obtained from our MTurk tasks, we performed
an analysis complementary to the one in Sec. 4.1. Instead of computing model
misses across image regions of different types, here we estimate the potential
gains models could have if specific image regions were correctly predicted. A
region is treated as a binary mask for the image, and a modified saliency map
is computed as a combination of the original saliency map and ground truth
fixation map. For each region type (e.g. “part of a person”, “object of gaze”), we
compute modified saliency maps. We replace model predictions in those regions
with ground truth values obtained from the human fixation map (e.g., Fig. 5,
top row). Fig. 5 provides the score improvements of the modified models on
the MIT300 benchmark. This analysis is meant to provide a general sense of
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Dataset MIT300 CAT2000

Model DeepFix SALICON DeepFix

Image category All Social Action Indoor Outdoor

Part of main subject 31% 36% 49% 68% 12% 24%

Unusual element 18% 16% 33% 63% 8% 8%

Location of action/motion 16% 16% 67% 78% 8% 11%

Text 16% 13% 6% 5% 8% 29%

Part of a person 15% 14% 23% 37% 8% 5%

Possible location for a person 15% 7% 6% 24% 10% 11%

Object of action 14% 15% 27% 51% 0% 3%

Object of gaze 11% 11% 50% 44% 0% 0%

Part of a face 6% 8% 46% 7% 0% 0%

Part of an animal 5% 5% 3% 10% 0% 0%

Other 40% 40% 3% 2% 61% 37%
Table 2. Labels for under-predicted regions on MIT300 and CAT2000 datasets. Per-
centages are computed over 681 labels assigned to 651 regions (some regions have
multiple labels so percentages do not add up to 100%). See Fig. 6 for visual examples.

Fig. 5. Improvements of DeepFix and SALICON models on MIT300 if specific regions
were accurately predicted. Performance numbers are over all 300 benchmark images,
where regions from the ground truth fixation map are substituted into each model’s
saliency maps to examine the change in performance (top row). The percentage score
improvement is computed as a fraction of the score difference between the original
model score and the human limit (from Table 1).
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Fig. 6. Regions often fixated by humans but missed by computational models.

the possible performance boost if different prediction errors are ameliorated.
We include performance boosts of Normalized Scanpath Saliency (NSS) and
Information Gain (IG) scores, which follow the distribution of region types in
Table 2. The complete set of scores is provided in the Supplemental Material. It
is important to note that the Area under ROC Curve (AUC) metrics have either
saturated or are close to saturation. The focus of saliency evaluation should turn
instead towards metrics that can continue to differentiate between models, and
that can measure model performances at a finer-grained level (Sec. 5).

4.3 The importance of people

A significant part of the regions missed by saliency models involve people (Ta-
ble 2): people within the salient region, or people acting on or looking at a salient
object. In this section we provide a deeper analysis of the images containing peo-
ple. To expand our analysis, we annotated all the people’s faces in the MIT300
images with bounding boxes. This provided a more complete set of annotations
than the regions extracted for the MTurk labeling tasks, where only the top 1-3
most highly-fixated regions per image were labeled. In this section we compute
the importance of faces in an image following the approach of Jiang et al. [18]:
given a bounding box for an object in an image, the maximum saliency value
falling within the object’s outline is taken as the object’s importance score (the
maximum is a good choice for such analyses as it does not scale with object size).
This will be used to analyze if saliency models are able to capture the relative
importance of people in scenes.

Across the images in MIT300 containing only one face (53 images), the face
is the most highly fixated region in 66% of the images, and the DeepFix model
correctly predicts this in 77% of these cases. Out of the 53 images with faces,
the saliency of the face is underestimated (by more than 10% of the range of
saliency values) by the DeepFix model in 15 cases, and overestimated in 3 cases.
In other words, across these images, the DeepFix model does not assign the
correct relative importance to the face relative to the rest of the image elements
in a third of the total cases. Some of these examples are provided in Fig. 7
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Fig. 7. Saliency prediction fail-
ure cases for faces: (a) Face
saliency is underestimated when
faces are small, non-frontal,
or not centered in an image;
(b) Sometimes the actions in a
scene are more salient to human
observers than the participants,
but saliency models can overes-
timate the relative saliency of
the faces; (c) Face detection can
fail on depictions (such as in
posters and photographs within
the input images) which often
lack the context of a body, or
appear at an unusual location in
the image.

and in the Supplemental Material. Note that the importance of faces extends to
depictions of faces as well: portraits or posters containing human faces in images.
Human attention is drawn to these regions, but models tend to miss these faces,
perhaps because they are lacking the necessary context to discover them.

Similarly to the analysis in Sec. 4.2, here we quantify the performance boost of
saliency models if the saliency of faces were always correctly predicted. We used
the same procedure: to create the modified saliency map for an image we assign
the ground truth saliency value to the bounding box region and the predicted
output of the model to the remaining part of the image. The DeepFix model’s
Normalized Scanpath Saliency (NSS) score on the MIT300 benchmark improves
by 7.8% of the total remaining gap between the original model scores and human
limit, when adding ground truth in the face bounding boxes. Information Gain
(IG) also goes up 1.8%. A full breakdown of all the scores is provided in the
Supplemental Material. Improving the ability of models to detect and assign
correct relative importance to faces in images can provide better predictions of
human eye fixations.

4.4 Not all people in an image are equally important

Considering images containing multiple faces, we measure the extent to which
the computational prediction of the relative importance of the different faces
matches human ground-truth fixations. For all the faces labeled in an image, we
use the human fixation maps to compute the importance score for each face, and
analogously we use the saliency map to assign a predicted importance score to
the same faces. Since both fixation and saliency maps are normalized, each face
in an image will receive an importance score ranging from 0 to 1. A score of 1
occurs when the face bounding box overlapped a region of maximum density in
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the corresponding fixation/saliency map. Interpreted in terms of ground truth,
this is the face that received the most fixations.

Across the images with more than one visible face, the average Spearman
correlation between the ground truth and predicted face importance values is
0.53. This means that for many images, the relative ordering assigned by the
saliency model to people does not match the importance given by human fixa-
tions. As depicted in Fig. 8, discovering the most important person in the image
is a task that requires higher-level image understanding. Human participants
tend to fixate people in an image that are central to a depicted action, a con-
versation, or an event; people who stand out from the crowd (based on some
high-level features like facial expression, age, accessories, etc.).

Fig. 8. Although recent saliency models have begun to detect faces in images with high
precision, they do not assign the correct relative importance to different faces in an
image. This requires an understanding of the interactions in an image: who is participat-
ing in an action and who has authority. Facial expressions, accessories/embellishments,
facial orientation, and position in a photo also contribute to the importance of individ-
ual faces. We assign an importance score to each face in an image using the maximum
ground truth (fixation) or predicted (saliency) density in the face bounding box. These
importance scores, ranging from 0 to 1, are included above each bounding box.

4.5 The informativeness of text

In the MIT300 and CAT2000 datasets, most text, large or small, has attracted
many human fixations, with regions containing text accounting for 7% of all
highly-fixated image regions. While text has been previously noted as attracting
human visual attention [33], not all text is equal. The informativeness of text
in the context of the rest of the image, or the interestingness of the text on its
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own can affect how long individual observers fixate it, and what proportion of
observers look at it. There are thus a number of reasons why the human ground
truth might have a high saliency on a particular piece of text, and some of those
reasons depend on understanding the text itself - something that computational
models currently lack (Fig. 9).

To expand our analysis on text regions, we annotated all instances of text
present in the MIT300 dataset with bounding boxes. The DeepFix model’s NSS
scores improves by 7.8% of the total remaining gap between the original model
scores and human upper bound, when adding ground truth in the text bound-
ing boxes. Its IG score improves by 4.4%. A full breakdown of all the scores
and discussion are provided in the Supplemental Material. Overall, an accu-
rate understanding of text is another step towards better predictions of human
fixations.

Fig. 9. Example images containing text that receive many fixations by human ob-
servers, but whose saliency is under-estimated by computational models. Text labels
can be used to give the observer more information. For instance, the description of a
warning or a book are more informative to observers than the warning or book title it-
self. These regions receive more eye fixations. The informativeness of text also depends
on the context of the observer: most observers fixated the only piece of English text
on the box of chocolates.



Where should saliency models look next? 13

4.6 Objects of gaze and action

Another common source of missed predictions are objects of gaze and/or action.
These are objects or, more generally, regions in an image that are looked at or
interacted with by one or more persons in an image. In Fig. 10, we include 4
images from the MIT300 dataset that include objects of gaze missed by both
DeepFix and SALICON. In the last column of Fig. 10 we also show the predic-
tions that can be made possible by a computational model specifically trained
to predict gaze [34]. For each person in an image, this model predicts the scene
saliency from the vantage point of the individual selected (details in Supple-
mental Material). Training saliency models to explicitly follow gaze can improve
their predictive power of modeling the saliency of the entire scene [35].

The gaze-following model only works when gaze information can be extracted
from the orientation of the head and, if visible, the location and orientation
of the eyes. However, the orientation of the body and location of body parts
(specifically the hands) can provide additional clues as to which objects in an
image are relevant from the vantage point of different people in the image, even
if not fully visible. Detecting such objects of action remains a problem area for
saliency models (some failure cases are provided in the Supplemental Material).

5 Conclusion

As the number of saliency models grows and score differences between models
shrink, evaluation procedures should be adjusted to elucidate differences be-
tween models and human eye movements. This calls for finer-grained evaluation
metrics, datasets, and prediction tasks. Models continue to under-predict cru-
cial image regions containing people, actions, and text. These are precisely the
regions with greatest semantic importance in an image, and become essential for
saliency applications like image compression and image captioning. Aggregating
model scores over all image regions and large image collections conceals these
errors. Moreover, traditionally favored saliency evaluation metrics like the AUC
can not distinguish between cases where models predict different relative impor-
tance values for different regions of an image. As models continue to improve in
detection performance, measuring the relative values they assign to the detected
objects is the next step. This can be accomplished with metrics like the Nor-
malized Scanpath Saliency (NSS) and Information Gain (IG), which take into
account the range of saliency map values during evaluation [32]. Finer-grained
tasks like comparing the relative importance of image regions in a collection or
in a panel such as the one in Fig. 11 can help further differentiate model per-
formances. Finer-grained datasets like CAT2000 [21] can help measure model
performance per image type.

Recent saliency models with deep architectures have shown immense progress
on saliency benchmarks, with a wide performance gap relative to previous state-
of-the-art. In this paper we demonstrated that a finer-grained analysis of the
top-performing models on the MIT Saliency Benchmark can uncover areas for
further improvement to narrow the remaining gap to human ground truth.
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Fig. 10. Both top neural network saliency models perform worse on these images than
on any other images in the MIT300 dataset labeled with objects of gaze. The yellow
outlines highlight high-density regions in the ground truth fixation map that were
labeled by MTurk participants as regions on which the gaze of someone in the image
falls. A model that explicitly predicts the gaze of individuals in an image can locate
these objects of gaze [34]. The last row is a failure of the gaze-following model, requiring
an understanding of actions that is beyond just gaze.

Fig. 11. A finer-grained test for saliency models: determining the relative importance
of different sub-images in a panel. (a) A panel image from the MIT300 dataset. (b) The
saliency map predictions given the panel as an input image. (c) The maximum response
of each saliency model on each subimage is visualized (as an importance matrix).
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