Overview

- The EM algorithm in general form
- The EM algorithm for hidden markov models (brute force)
- The EM algorithm for hidden markov models (dynamic programming)

The Structure of Hidden Markov Models

- Have N states, states $1 \ldots N$
- Without loss of generality, take N to be the final or stop state
- Have an alphabet K. For example $K = \{a, b\}$
- Parameter π_i for $i = 1 \ldots N$ is probability of starting in state i
- Parameter $a_{i,j}$ for $i = 1 \ldots (N - 1)$, and $j = 1 \ldots N$ is probability of state j following state i
- Parameter $b_i(o)$ for $i = 1 \ldots (N - 1)$, and $o \in K$ is probability of state i emitting symbol o

An Example

- Take $N = 3$ states. States are $\{1, 2, 3\}$. Final state is state 3.
- Alphabet $K = \{the, dog\}$.
- Distribution over initial state is $\pi_1 = 1.0, \pi_2 = 0, \pi_3 = 0$.
- Parameters $a_{i,j}$ are

 \[
 \begin{array}{c|c|c|c}
 j=1 & j=2 & j=3 \\
 \hline
 i=1 & 0.5 & 0.5 & 0 \\
 i=2 & 0 & 0.5 & 0.5 \\
 \end{array}
 \]
- Parameters $b_i(o)$ are

 \[
 \begin{array}{c|c|c}
 o=the & o=dog \\
 \hline
 i=1 & 0.9 & 0.1 \\
 i=2 & 0.1 & 0.9 \\
 \end{array}
 \]
A Generative Process

- Pick the start state \(s_1 \) to be state \(i \) for \(i = 1 \ldots N \) with probability \(\pi_i \).
- Set \(t = 1 \)
- Repeat while current state \(s_t \) is not the stop state (\(N \)):
 - Emit a symbol \(o_t \in K \) with probability \(b_{s_t}(o_t) \)
 - Pick the next state \(s_{t+1} \) as state \(j \) with probability \(a_{s_t,j} \).
 - \(t = t + 1 \)

A Hidden Variable Problem

- We have an HMM with \(N = 3, K = \{e, f, g, h\} \)
- We see the following output sequences in training data

 - e g
 - e h
 - f h
 - f g

- How would you choose the parameter values for \(\pi_i, a_{i,j}, \) and \(b_i(o) \)?

Probabilities Over Sequences

- An output sequence is a sequence of observations \(o_1 \ldots o_T \) where each \(o_i \in K \)
e.g. the dog the dog dog the
- A state sequence is a sequence of states \(s_1 \ldots s_T \) where each \(s_i \in \{1 \ldots N\} \)
e.g. 1 2 1 2 1
- HMM defines a probability for each state/output sequence pair

e.g. the/1 dog/2 the/1 dog/2 the/2 dog/1 has probability
\[\pi_1 b_1(\text{the}) a_{1,2} b_2(\text{dog}) a_{2,1} b_1(\text{dog}) a_{1,3} \]

Formally:
\[P(s_1 \ldots s_T, o_1 \ldots o_T) = \pi_{s_1} \times \left(\prod_{i=2}^{T} P(s_i \mid s_{i-1}) \right) \times \left(\prod_{i=1}^{T} P(o_i \mid s_i) \right) \times P(N \mid s_T) \]

Another Hidden Variable Problem

- We have an HMM with \(N = 3, K = \{e, f, g, h\} \)
- We see the following output sequences in training data

 - e g h
 - e h
 - f h g
 - f g g
 - e h

- How would you choose the parameter values for \(\pi_i, a_{i,j}, \) and \(b_i(o) \)?
Hidden Markov Models

A hidden Markov model \((N, \Sigma, \Theta)\) consists of the following elements:

- \(N\) is a positive integer specifying the number of states in the model. Without loss of generality, we will take the \(N\)th state to be a special state, the final or stop state.
- \(\Sigma\) is a set of output symbols, for example \(\Sigma = \{a, b\}\)
- \(\Theta\) is a vector of parameters.

\(\Theta\) is a vector of parameters. It contains three types of parameters:
- \(\pi_j\) for \(j = 1 \ldots N\) is the probability of choosing state \(j\) as an initial state.
- \(a_{j,k}\) for \(j = 1 \ldots (N-1), \ k = 1 \ldots N\), is the probability of transitioning from state \(j\) to state \(k\).
- \(b_j(o)\) for \(j = 1 \ldots (N-1),\) and \(o \in \Sigma,\) is the probability of emitting symbol \(o\) from state \(j\).

Thus it can be seen that \(\Theta\) is a vector of \(N + (N-1)N + (N-1)|\Sigma|\) parameters.

- Note that we have the following constraints:
 - \(\sum_{j=1}^{N} \pi_j = 1.\)
 - for all \(j, \sum_{k=1}^{N} a_{j,k} = 1.\)
 - for all \(j, \sum_{o \in \Sigma} b_j(o) = 1.\)

An HMM specifies a probability for each possible \((x, y)\) pair, where \(x\) is a sequence of symbols drawn from \(\Sigma,\) and \(y\) is a sequence of states drawn from the integers \(1 \ldots (N - 1).\) The sequences \(x\) and \(y\) are restricted to have the same length.

E.g., say we have an HMM with \(N = 3, \Sigma = \{a, b\},\) and with some choice of the parameters \(\Theta.\) Take \(x = \langle a, a, b, b \rangle\) and \(y = \langle 1, 2, 2, 1 \rangle.\) Then in this case,

\[
P(x, y|\Theta) = \pi_1 a_{1,2} a_{2,2} a_{2,1} b_1(a) b_2(a) b_2(b) b_1(b)
\]

In general, if we have the sequence \(x = x_1, x_2, \ldots x_n\) where each \(x_j \in \Sigma,\) and the sequence \(y = y_1, y_2, \ldots y_n\) where each \(y_j \in 1 \ldots (N - 1),\) then

\[
P(x, y|\Theta) = \pi_{y_1} a_{y_1, N} \prod_{j=2}^{n} a_{y_{j-1}, y_j} \prod_{j=1}^{n} b_{y_j}(x_j)
\]
EM: the Basic Set-up

- We have some data points—a “sample”—$$x_1, x_2, \ldots x^m$$.

- For example, each $$x^i$$ might be a sentence such as “the dog slept”: this will be the case in EM applied to hidden Markov models (HMMs) or probabilistic context-free-grammars (PCFGs). (Note that in this case each $$x^i$$ is a sequence, which we will sometimes write $$x_1^i, x_2^i, \ldots x_{n_i}^i$$ where $$n_i$$ is the length of the sequence.)

- Or in the three coins example (see the lecture notes), each $$x_i$$ might be a sequence of three coin tosses, such as HHH, THT, or TTT.

- We have a parameter vector $$\Theta$$. For example, see the description of HMMs in the previous section. As another example, in a PCFG, $$\Theta$$ would contain the probability $$P(\alpha \rightarrow \beta|\alpha)$$ for every rule expansion $$\alpha \rightarrow \beta$$ in the context-free grammar within the PCFG.

- We have a model $$P(x, y|\Theta)$$: A function that for any $$x, y, \Theta$$ triple returns a probability, which is the probability of seeing $$x$$ and $$y$$ together given parameter settings $$\Theta$$.

- This model defines a joint distribution over $$x$$ and $$y$$, but that we can also derive a marginal distribution over $$x$$ alone, defined as

$$P(x|\Theta) = \sum_y P(x, y|\Theta)$$

- Given the sample $$x_1, x_2, \ldots x^m$$, we define the likelihood as

$$L'(\Theta) = \prod_{i=1}^{m} P(x^i|\Theta) = \prod_{i=1}^{m} \sum_{y} P(x^i, y|\Theta)$$

and we define the log-likelihood as

$$L(\Theta) = \log L'(\Theta) = \sum_{i=1}^{m} \log P(x^i|\Theta) = \sum_{i=1}^{m} \log \sum_{y} P(x^i, y|\Theta)$$
The maximum-likelihood estimation problem is to find
\[\Theta_{ML} = \arg \max_{\Theta \in \Omega} L(\Theta) \]
where \(\Omega \) is a parameter space specifying the set of allowable parameter settings. In the HMM example, \(\Omega \) would enforce the restrictions \(\sum_{j=1}^{N} \pi_j = 1 \), for all \(j = 1 \ldots (N - 1) \), \(\sum_{k=1}^{N} a_{j,k} = 1 \), and for all \(j = 1 \ldots (N - 1) \), \(\sum_{o \in \Sigma} b_j(o) = 1 \).

In a PCFG, each sample point \(x \) is a sentence, and each \(y \) is a possible parse tree for that sentence. We have
\[P(x, y|\Theta) = \prod_{i=1}^{n} P(\alpha_i \rightarrow \beta_i|\alpha_i) \]
assuming that \((x, y) \) contains the \(n \) context-free rules \(\alpha_i \rightarrow \beta_i \) for \(i = 1 \ldots n \).

For example, if \((x, y) \) contains the rules \(S \rightarrow NP \ VP \), \(NP \rightarrow Jim \), and \(VP \rightarrow sleeps \), then
\[P(x, y|\Theta) = P(S \rightarrow NP \ VP|S) \times P(NP \rightarrow Jim|NP) \times P(VP \rightarrow sleeps|VP) \]

Products of Multinomial (PM) Models

- In both HMMs and PCFGs, the model can be written in the following form
\[P(x, y|\Theta) = \prod_{r=1,\ldots,|\Theta|} \Theta_r^{\text{Count}(x,y,r)} \]
Here:
- \(\Theta_r \) for \(r = 1 \ldots |\Theta| \) is the \(r \)'th parameter in the model
- \(\text{Count}(x, y, r) \) for \(r = 1 \ldots |\Theta| \) is a count corresponding to how many times \(\Theta_r \) is seen in the expression for \(P(x, y|\Theta) \).

- We will refer to any model that can be written in this form as a product of multinomials (PM) model.
The EM Algorithm for PM Models

- We will use Θ^t to denote the parameter values at the t'th iteration of the algorithm.

- In the initialization step, some choice for initial parameter settings Θ^0 is made.

- The algorithm then defines an iterative sequence of parameters $\Theta^0, \Theta^1, \ldots, \Theta^T$, before returning Θ^T as the final parameter settings.

- Crucial detail: deriving Θ^t from Θ^{t-1}

The EM Algorithm for PM Models: Step 1

- For example, say we are estimating the parameters of a PCFG using the EM algorithm. Take a particular rule, such as $S \rightarrow NP VP$. Then at the t'th iteration,

$$\overline{\text{Count}}(S \rightarrow NP VP) = \sum_{i=1}^{m} \sum_{y} P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, S \rightarrow NP VP)$$

The EM Algorithm for PM Models: Step 2

- Step 2: Calculate the updated parameters Θ^t. For example, we would re-estimate

$$P(S \rightarrow NP VP|S) = \frac{\overline{\text{Count}}(S \rightarrow NP VP)}{\sum_{S \rightarrow \beta \in R} \overline{\text{Count}}(S \rightarrow \beta)}$$

Note that the denominator in this term involves a summation over all rules of the form $S \rightarrow \beta$ in the grammar. This term ensures that $\sum_{S \rightarrow \beta \in R} P(S \rightarrow \beta|S) = 1$, the usual constraint on rule probabilities in PCFGs.
The EM Algorithm for HMMs: Step 1

- Define $\text{Count}(x^i, y, p \rightarrow q)$ to be the number of times a transition from state p to state q is seen in y.

- **Step 1:** Calculate expected counts such as

$$\overline{\text{Count}}(1 \rightarrow 2) = \sum_{i=1}^{m} \sum_{y} P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, 1 \rightarrow 2)$$

- (Note: similar counts will be calculated for emission and initial-state parameters)

The EM Algorithm for HMMs: Step 2

- **Step 2:** Re-estimate transition parameter as

$$a_{1,2} = \frac{\overline{\text{Count}}(1 \rightarrow 2)}{\sum_{k=1}^{N} \overline{\text{Count}}(1 \rightarrow k)}$$

where in this case the denominator ensures that $\sum_{k=1}^{N} a_{1,k} = 1$.

- Similar calculations will be performed for other transition parameters, as well as the initial state parameters and emission parameters.

The Forward-Backward Algorithm for HMMs

- Define $\text{Count}(x^i, y, p \rightarrow q)$ to be the number of times a transition from state p to state q is seen in y.

- **Step 1:** Calculate expected counts such as

$$\overline{\text{Count}}(1 \rightarrow 2) = \sum_{i=1}^{m} \sum_{y} P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, 1 \rightarrow 2)$$

- A problem: the inner sum

$$\sum_{y} P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, 1 \rightarrow 2)$$
The Forward-Backward Algorithm for HMMs

- Fortunately, there is a way of avoiding this brute force strategy with HMMs, using a dynamic programming algorithm called the forward-backward algorithm.

- Say that we could efficiently calculate the following quantities for any \(x \) of length \(n \), for any \(j \in 1 \ldots n \), and for any \(p \in 1 \ldots (N - 1) \) and \(q \in 1 \ldots N \):
 \[
P(y_j = p, y_{j+1} = q | x, \Theta) = \sum_{y : y_j = p, y_{j+1} = q} P(y | x, \Theta)
 \]

- The inner sum can now be re-written using terms such as this:
 \[
 \sum_{y} P(y | x^i, \Theta^{t-1}) Count(x^i, y, p \rightarrow q) = \sum_{j=1}^{n_i} P(y_j = p, y_{j+1} = q | x^i, \Theta^{t-1})
 \]

The Forward Probabilities

Given an input sequence \(x_1 \ldots x_n \), we will define the backward probabilities as being

\[
\beta_p(j) = P(x_j \ldots x_n | y_j = p, \Theta)
\]

for all \(j \in 1 \ldots n \), for all \(p \in 1 \ldots N - 1 \).

The Forward Probabilities

Given the forward and backward probabilities, the first thing we can calculate is the following:

\[
Z = P(x_1, x_2, \ldots x_n | \Theta) = \sum_{p} \alpha_p(j) \beta_p(j)
\]

for any \(j \in 1 \ldots n \). Thus we can calculate the probability of the sequence \(x_1, x_2, \ldots x_n \) being emitted by the HMM.
We can calculate the probability of being in any state at any position:

\[
P(y_j = p | x, \Theta) = \frac{\alpha_p(j) \beta_p(j)}{Z}
\]

for any \(p, j \).

We can calculate the probability of each possible state transition, as follows:

\[
P(y_j = p, y_{j+1} = q | x, \Theta) = \frac{\alpha_p(j) a_{p,q} b_p(o_j) \beta_q(j+1)}{Z}
\]

for any \(p, q, j \).

- Given an input sequence \(x_1 \ldots x_n \), for any \(p \in 1 \ldots N, j \in 1 \ldots n \),
 \[\alpha_p(j) = P(x_1 \ldots x_{j-1}, y_j = p | \Theta) \quad \text{forward probabilities}\]
 - Base case:
 \[\alpha_p(1) = \pi_p \quad \text{for all } p\]
 - Recursive case:
 \[
 \alpha_p(j+1) = \sum_q \alpha_q(j) a_{q,p} b_q(x_j) \quad \text{for all } p \in 1 \ldots N - 1 \text{ and } j \in 1 \ldots n - 1
 \]

- Given an input sequence \(x_1 \ldots x_n \):
 \[\beta_p(j) = P(x_j \ldots x_n | y_j = p, \Theta) \quad \text{backward probabilities}\]
 - Base case:
 \[\beta_p(n) = a_{p,N} b_p(x_n) \quad \text{for all } p \in 1 \ldots N\]
 - Recursive case:
 \[
 \beta_p(j) = \sum_q a_{p,q} b_p(x_j) \beta_q(j+1) \quad \text{for all } p \in 1 \ldots N - 1 \text{ and } j \in 1 \ldots n - 1
 \]

Justification for the Algorithm

We will make use of a particular directed graph. The graph is associated with a particular input sequence \(x_1, x_2, \ldots x_n \), and parameter vector \(\Theta \), and has the following vertices:

- A “source” vertex, which we will label \(s \).
- A “final” vertex, which we will label \(f \).
- For all \(j \in 1 \ldots n \), for all \(p \in 1 \ldots N - 1 \), there is an associated vertex which we will label \(\langle j, p \rangle \).
Justification for the Algorithm

Given this set of vertices, we define the following directed edges:

- There is an edge from \(s \) to each vertex \(\langle 1, p \rangle \) for \(p = 1 \ldots N - 1 \). Each such edge has a weight equal to \(\pi_p \).
- For any \(j \in 1 \ldots n - 1 \), and \(p, q \in 1 \ldots N - 1 \), there is an edge from vertex \(\langle j, p \rangle \) to vertex \(\langle (j + 1), q \rangle \). This edge has weight equal to \(a_{p,q} b_p(x_j) \).
- There is an edge from each vertex \(\langle n, p \rangle \) for \(p = 1 \ldots N - 1 \) to the final vertex \(f \). Each such edge has a weight equal to \(a_{p,N} b_p(x_n) \).

We can now interpret the forward and backward probabilities as following:

- \(\alpha_p(j) \) is the sum of weights of all paths from \(s \) to the state \(\langle j, p \rangle \)
- \(\beta_p(j) \) is the sum of weights of all paths from state \(\langle j, p \rangle \) to the final state \(f \)

Another Application of EM in NLP: Topic Modeling

- Say we have a collection of \(m \) documents
- Each document \(x^i \) for \(i = 1 \ldots m \) is a sequence of words \(x_1, x_2, \ldots x_n \)
- E.g., we might have a few thousand articles from the New York Times
Another Application of EM in NLP: Topic Modeling

- We’ll assume that y^i for $i = 1 \ldots m$ is a hidden “topic variable”. y^i can take on any of the values $1, 2, \ldots K$

- For any document x^i, and topic variable y, we write

$$P(x^i, y|\Theta) = P(y) \prod_{j=1}^{n} P(x^i_j|y)$$

- Θ contains two types of parameters:
 - $P(y)$ for $y \in 1 \ldots K$ is the probability of selecting topic y
 - $P(w|y)$ for $y \in 1 \ldots K$, w in some vocabulary of possible words, is the probability of generating the word w given topic y

- As before, we can use EM to find

$$\Theta_{ML} = \arg\max_{\Theta} L(\Theta) = \arg\max_{\Theta} \sum_i \log \sum_y P(x^i, y|\Theta)$$

- Result: for each of the K topics, we have a different distribution over words, $P(w|y)$

Results from Hofmann, SIGIR 1999

- Applied the method to 15,000 documents, using $k = 128$ topics

- Examples of 6 topics (in each case, table shows the 10 words for which $P(w|y)$ is maximized):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>plane, airport, crash, flight, safety, aircraft, air, passenger, board, airline</td>
</tr>
<tr>
<td>2</td>
<td>space, shuttle, mission, astronauts, launch, station, crew, nasa, satellite, earth</td>
</tr>
<tr>
<td>3</td>
<td>home, family, like, love, kids, mother, life, happy, friends, cnn</td>
</tr>
<tr>
<td>4</td>
<td>film, movie, music, new, best, hollywood, love, actor, entertainment, star</td>
</tr>
<tr>
<td>5</td>
<td>un, bosnian, serbs, bosnia, serb, sarajevo, nato, peacekeepers, nations, peace</td>
</tr>
<tr>
<td>6</td>
<td>refugees, aid, rwanda, relief, people, camps, zaire, camp, food, rwandan</td>
</tr>
</tbody>
</table>

Another Application of EM in NLP: Word Clustering

- Say we have a collection of m bigrams

- Each bigram consists of a word pair w^i_1, w^i_2 where w^i_2 follows w^i_1

- We’d like to build a model of $P(w_2|w_1)$
Another Application of EM in NLP: Word Clustering

- We’ll assume that y^i for $i = 1 \ldots m$ is a hidden “cluster variable”. y^i can take on any of the values $1, 2, \ldots K$

- For any bigram w^i_1, w^i_2, we write

$$P(w^i_2|w^i_1, \Theta) = \sum_y P(w^i_2|y)P(y|w^i_1)$$

- Θ contains two types of parameters:
 - $P(y|w_1)$ for $y \in 1 \ldots K$ is the probability of selecting cluster y given that the first word in the bigram is w_1
 - $P(w_2|y)$ for $y \in 1 \ldots K$, w_2 in some vocabulary of possible words, is the probability of selecting w_2, given cluster y

As before, we can use EM to find

$$\Theta_{ML} = \arg \max_{\Theta} L(\Theta) = \arg \max_{\Theta} \sum_i \log \sum_y P(w^i_2|y)P(y|w^i_1)$$

Result: for each of the K clusters, we have the distributions $P(w_2|y)$ and $P(y|w_1)$

See Saul and Pereira, 1997, for more details