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Abstract

This paper explores the relationship between
discourse structure and coverbal gesture. Us-
ing the idea of gestural cohesion, we show
that coherent topic segments are character-
ized by homogeneous gestural forms, and
that changes in the distribution of gestural
features predict segment boundaries. Gestu-
ral features are extracted automatically from
video, and are combined with lexical fea-
tures in a hierarchical Bayesian model. Un-
supervised inference is performed through
Metropolis-Hastings sampling. The resulting
multimodal system outperforms a verbal-only
model, both with manual and automatically-
recognized speech transcripts.

1 Introduction

When humans communicate face-to-face, discourse
cues are expressed simultaneously through multiple
channels. Previous research has extensively studied
how discourse cues correlate with lexico-syntactic
and prosodic features (Hearst, 1994; Hirschberg and
Nakatani, 1998); this work informs multiple text and
speech processing applications, such as automatic
summarization and segmentation. Gesture is another
communicative modality that frequently accompa-
nies speech, yet its connection to discourse remains
poorly understood.

This paper empirically demonstrates that gesture
correlates with discourse structure. In particular,
we show that automatically-extracted gesture fea-
tures can be combined with lexical cues in a statis-
tical model to predict discourse segmentation. Our

method builds on the idea that coherent discourse
segments are characterized by gestural cohesion; in
other words, that such segments exhibit homoge-
neous gestural patterns. Lexical cohesion (Halliday
and Hasan, 1976) forms the backbone of many ver-
bal segmentation algorithms, on the theory that seg-
mentation boundaries should be placed where the
distribution of words changes (Hearst, 1994). With
gestural cohesion, we explore whether the same idea
holds for gesture features.

The motivation for this approach comes from a
series of psycholinguistic studies suggesting that
gesture supplements speech with meaningful and
unique semantic content (Kendon, 1994; McNeill,
1992). We assume that repeated patterns in gesture
are indicative of the semantic coherence that charac-
terizes well-defined discourse segments. An advan-
tage of this view is that gestures can be brought to
bear on discourse analysis without undertaking the
daunting task of recognizing and interpreting indi-
vidual gestures. This is crucial because coverbal
gesture – unlike formal sign language – rarely fol-
lows any predefined form or grammar, and may vary
dramatically by speaker.

A key implementational challenge is automati-
cally extracting gestural information from raw video
and representing it in a way that can applied to dis-
course analysis. We employ a representation of vi-
sual codewords, which capture clusters of low-level
motion patterns. For example, one codeword may
correspond to strong left-right motion in the up-
per part of the frame. These codewords are then
treated similarly to lexical items; our model iden-
tifies changes in their distribution, and predicts topic



boundaries appropriately. The overall framework is
implemented in the form of a hierarchical Bayesian
model, supporting flexible integration of multiple
knowledge sources.

Experimental results support the hypothesis that
gestural cohesion is indicative of discourse struc-
ture. Applying our algorithm to a dataset of face-
to-face dialogues, we find that gesture features cor-
relate with segment boundaries. Moreover, gesture
appears to communicate unique information, im-
proving segmentation performance over lexical fea-
tures alone. The positive impact of gesture is most
pronounced when automatically-recognized speech
transcripts are used, but gestures improve perfor-
mance even in combination with manual transcripts.

2 Related Work

Gesture and Discourse Much of the work on
gesture in natural language processing has focused
on multimodal dialogue systems in which the ges-
tures and speech may be constrained, e.g. (Johnston,
1998). In contrast, we focus on improving discourse
processing on unconstrained natural language be-
tween humans. This effort follows basic psycho-
logical and linguistic research on the communica-
tive role of gesture (McNeill, 1992), including some
research that made use of automatically acquired vi-
sual features (Quek et al., 2000). We extend these
empirical studies with a statistical model of the re-
lationship between gesture and discourse segmenta-
tion.

Hand-coded descriptions of body posture shifts
and eye gaze behavior have been shown to correlate
with topic and turn boundaries in task-oriented dia-
logue (Cassell et al., 2001). These findings are ex-
ploited to generate realistic conversational “ground-
ing” behavior in an animated agent. The seman-
tic content of gesture was leveraged – again, for
gesture generation – in (Kopp et al., 2007), which
presents an animated agent that is capable of aug-
menting navigation directions with gestures that de-
scribe the physical properties of landmarks along
the route. Both systems generate plausible and
human-like gestural behavior; we address the con-
verse problem of interpreting such gestures.

In this vein, hand-coded gesture features have
been used to improve sentence segmentation, show-

ing that sentence boundaries are unlikely to over-
lap gestures that are in progress (Chen et al., 2006).
Features that capture the start and end of gestures
are shown to improve sentence segmentation beyond
lexical and prosodic features alone. This idea of ges-
tural features as a sort of visual punctuation has par-
allels in the literature on prosody, which we discuss
in the next subsection.

Finally, ambiguous noun phrases can be resolved
by examining the similarity of co-articulated ges-
tures (Eisenstein and Davis, 2007). While noun
phrase coreference can be viewed as a discourse pro-
cessing task, we address the higher-level discourse
phenomenon of topic segmentation. In addition,
Eisenstein and Davis focus primarily on pointing
gestures directed at pre-printed visual aids. In our
domain, speakers do not have access to visual aids,
and thus pointing gestures are less frequent than
“iconic” gestures, in which the form of motion is the
principle communicative feature (McNeill, 1992).

Nonverbal Features for Topic Segmentation Re-
search on nonverbal features for topic segmentation
has primarily focused on prosody, under the assump-
tion that a key prosodic function is to mark structure
at the discourse level (Steedman, 1990; Grosz and
Hirshberg, 1992; Swerts, 1997). The ultimate goal
of this research is to find correlates of hierarchical
discourse structure in phonetic features.

Today, research on prosody has converged on
prosodic cues which correlate with discourse struc-
ture. Such markers include pause duration, fun-
damental frequency, and pitch range manipula-
tions (Grosz and Hirshberg, 1992; Hirschberg and
Nakatani, 1998). These studies informed the devel-
opment of applications such as segmentation tools
for meeting analysis, e.g. (Tur et al., 2001; Galley et
al., 2003).

In comparison, the connection between gesture
and discourse structure is a relatively unexplored
area, at least with respect to computational ap-
proaches. One conclusion that emerges from our
analysis is that gesture may signal discourse struc-
ture in a different way than prosody does: while spe-
cific prosodic markers characterize segment bound-
aries, gesture predicts segmentation through intra-
segmental cohesion. The combination of these two



modalities is an exciting direction for future re-
search.

3 Gesture Representation for Discourse
Analysis

The units of our analysis are codewords, a compact
representation of salient visual features in video.
Codewords characterize frequently-occurring pat-
terns of motion and appearance at a local scale: for
example, one codeword might represent left-to-right
motion in the upper part of the frame. We detect in-
stances of codewords at specific locations and times
throughout each video; the total set of codeword
types forms a sort of visual vocabulary.

By listing the codewords that occur during a given
period of time – such as a sentence – we obtain a
succinct representation of the ongoing gestural ac-
tivity. Distributions of codewords over time can
be analyzed in similar terms to the distribution of
lexical features. The codeword representation pro-
vides a straightforward way to assess gestural co-
herence: a change in the distribution of codewords
indicates new visual kinematic elements entering the
discourse.

The left panel of figure 1 shows the distribution
of codewords in a single video; vertical lines in-
dicate topic boundaries. Each column represents a
sentence, and the blocks in a column indicate the
codewords occurring during the sentence duration.
While noisy, it is possible even from visual inspec-
tion to identify some connections between the seg-
mentation and the distribution of codewords – for
example, the second-to-last segment has a set of
codewords starkly different from its neighbors. The
right panel shows the lexical features in the same di-
alogue.

Computing Codewords from Video Codewords
are extracted using techniques from the computer
vision domain of activity recognition (Dollár et al.,
2005; Efros et al., 2003). The goal of activity recog-
nition is to classify video sequences into semantic
categories: e.g., walking, running, jumping. Many
recent approaches have focused on sparse low-level
features called spatio-temporal interest points: high-
contrast image regions – especially corners and
edges – that undergo complex motion. The visual,
spatial, and kinematic properties of these interest

points are concatenated into feature vectors, which,
while noisy, permit robust classification of the de-
sired activities and behaviors.

As a simple example, a classifier may learn that a
key difference between videos of walking and jump-
ing is that walking is characterized by horizontal
motion and jumping is characterized by vertical mo-
tion. Spurious vertical motion in a walking video is
unlikely to confuse the classifier as long as the large
majority of interest points move horizontally. Our
hypothesis is that just as such low-level movement
features can be applied in a supervised fashion to
distinguish activities, they can be applied in an un-
supervised fashion to group co-speech gestures into
perceptually meaningful clusters.

We apply the Activity Recognition Tool-
box (Dollár et al., 2005)1 to detect spatio-temporal
interest points in our dataset. At each interest
point, we extract the brightness gradient of a small
space-time volume of nearby pixels. PCA is applied
to reduce this high dimensional vector to three
principle components (Hastie et al., 2001). The
spatial location of the interest point is added to the
feature vector, resulting in a total of five dimensions.
Finally, we apply clustering to the interest points in
each video, arriving at a set of twenty codewords.
These codewords are the final representation of
visual features in our model.

Previous applications of gesture to NLP have of-
ten focused on tracking the speaker’s hands, head, or
torso (e.g., (Eisenstein and Davis, 2007)). Such ap-
proaches are powerful but are difficult to implement;
worse, once tracking is lost, it is difficult to recover.
For these reasons, low-level approaches based on
interest points are increasingly popular for related
computer vision problems.

4 Bayesian topic segmentation

Topic segmentation is performed in a Bayesian
framework, using a model that is similar to previ-
ous hidden Markov model (HMM) techniques (e.g.,
(Tur et al., 2001)). Each sentence’s segment assign-
ment is encoded with a hidden variable, which is as-
sumed to be generated by a Markov process. Ob-
servations – the words and gesture codewords – are
generated by language models that are indexed ac-

1http://vision.ucsd.edu/∼pdollar/research/cuboids doc/index.html
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Figure 1: Distribution of gestural and lexical features by sentence. Segment breaks are indicated by red lines.
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Figure 2: Plate diagram for Bayesian topic segmentation.
Shaded nodes indicate observed variables. Thick shaded
arrows indicate that the parameter to the left of the arrow
impacts every element to the right, e.g., ψ is connected to
every zt.

cording to the segment. In such a framework, a
high-likelihood segmentation will produce language
models that are pure and distinct, thus maximizing
the lexical coherence of each segment.

Figure 2 shows the plate diagram for this gener-
ative model, a Bayesian HMM. Each xt represents
the bag of words for the sentence t; yt is the bag of
gestures, and zt is a positive integer indicating the
segment assignment. The segment assignments are
produced by a first-order Markov process, such that
zt+1 is dependent on zt and the parameter ψ. Words
and gestures are generated by multinomial language
models θzt and φzt respectively; zt influences these
observed variables by indexing a specific language
model. Finally, each of the K language models are
given symmetric Dirichlet priors with parameters θ0
and φ0 (Gelman et al., 2004).

As is common in speech recognition and other ap-
plications (Rabiner, 1989), we add a left-right con-
straint, such that zt+1 ∈ {zt, zt + 1}. This con-

straint limits the number of inter-state transitions to
the desired number of segments, which we assume
is specified in advance.2 The parameter ψ specifies a
distribution over segment durations. This is modeled
using the negative-binomial distribution, an alterna-
tive to the Poisson distribution that permits greater
variance. Given T sentences and K segments, the
expected duration is T/K.

Our goal is to perform unsupervised inference
on each document. Previous approaches to unsu-
pervised inference in similar models include Gibbs
sampling (Purver et al., 2006) and variational
expectation-maximization (EM) (Beal, 2003). How-
ever, we find that the left-right constraint poses diffi-
culties for both of these techniques. Gibbs sampling
is known to converge slowly when the hidden vari-
ables are highly constrained (Gelman et al., 2004),
as is the case here. Our experiments with variational
EM showed that the left-right constraint makes it
very sensitive to initialization.

One explanation for these difficulties is that both
Gibbs sampling and variational EM attempt to
search in the space of labellings. Given T sentences
and K segments, there are KT possible labellings,
but only a small fraction are permissible segmenta-
tions, due to the left-right constraint. Rather than
searching in this highly-constrained space, we pre-
fer to search for segmentation points – given the left-
right constraint, these search spaces are equivalent.
Search is performed using the Metropolis-Hastings

2Evaluation is difficult when the target number of segments
is unspecified, as there may be many equally appropriate seg-
mentations at different levels of granularity. Prespecifying the
desired segmentation granularity is common practice in topic
segmentation, e.g. (Malioutov and Barzilay, 2006).



algorithm, a Markov Chain Monte Carlo (MCMC)
technique.

4.1 Metropolis-Hastings for Segmentation

The Metropolis-Hastings algorithm samples from
the configuration space of the model, and is guaran-
teed in the limit to draw samples from the posterior
distribution of the hidden variables (Gelman et al.,
2004). Metropolis-Hastings is a natural choice for
inference in hierarchical Bayesian models because
it permits search through arbitrary transformations
of the model configuration.

Samples are generated from a proposal distribu-
tion q, and are stochastically accepted or rejected.
The acceptance rate for a sample depends on two
factors: the conditional probability of the sampled
configuration given observations x and y, and a cor-
rection if the proposal distribution is asymmetric.
The probability of accepting a transformation from
configuration S to S̃ is,

a(S, S̃) = min

[
1,
q(S|S̃)p(S̃|x,y)
q(S̃|S)p(S|x,y)

]
(1)

.
Here, the configuration S is the triple 〈z, θ, φ〉.3

Our proposal distribution is as follows: select any
segmentation point with equal probability, and move
the segmentation point left or right, with equal prob-
ability. The move distance is generated from an
exponentially-decaying distribution, so that a move
of one step is twice as likely as a move of two steps,
and so on. Moves that eliminate segments or cross
other segmentation points are rejected, and the con-
figuration is left unchanged. This proposal distribu-
tion is symmetric, meaning that q(S|S̃) = q(S̃|S),
so those factors drop out of equation 1.

In the new configuration S̃, the segment indexes
are updated appropriately, and the language mod-
els θ, φ are set to their expected posteriors, e.g.,
E[θk|xzt=k, θ0]. Due to multinomial-Dirichlet con-
jugacy, this expectation can be computed directly
from the counts and the prior (Gelman et al., 2004).
The conditional probability of a configuration is
given by:

3A fully Bayesian approach would integrate out the param-
eters θ and φ, such that the configuration S would only include
the segmentation points. We leave this for future work.

p(S|x,y) ∝ p(S)p(x,y|S)
= p(z|ψ)p(θ|θ0)p(φ|φ0)p(x,y|z, θ, φ)

(2)

For clarity, we consider only the verbal features,
expanding p(S|x) with only the parameter θ; the vi-
sual features y and φ are handled identically. We
write ni for the occupancy count of segment i, i.e.,
ni =

∑
t 1zt=i, and ni,j as the count of times word

j appears in segment i, i.e., ni,j =
∑

t 1xt=j1zt=i.
NegBin(ni;ψ) indicates the probability of ni under
a negative binomial distribution with parameters ψ;
similarly, Dir() represents a Dirichlet distribution,
and Mult() represents a multinomial.

p(S|x) ∝
K∏
i

p(ni|ψ)p(θi|θ0)p(xt:zt=i|θi)

=
K∏
i

NegBin(ni;ψ)Dir(θi; θ0)
∏

{t:zt=i}

Mult(xt; θi)

We arrive at the following acceptance ratio:4

p(S̃|x)/p(S|x) =
K∏
i

NegBin(ñi;ψ)
NegBin(ni;ψ)

W∏
j

θ̃ñi,j+θ0−1

θni,j+θ0−1
,

where W is the total number of words in the vo-
cabulary, and θi,j is the parameter for word j in the
multinomial θi.

By repeatedly drawing samples with this accep-
tance rate, we are guaranteed to converge to the pos-
terior distribution over configuations. Annealing is
applied to find the maximum a posteriori segmenta-
tion. The effect of annealing is to gradually decrease
the probability of accepting moves that reduce the
conditional likelihood. At a temperature of zero,
only moves that increase the conditional likelihood
are accepted, so the sampling converges to a final
estimate. Annealing is frequently used to find MAP
estimates in other applications of MCMC, particu-
larly in natural language processing, e.g. (Goldwater
and Griffiths, 2007).

4See http://XXXX for a full derivation.



5 Experimental Setup

Dataset Our dataset is composed of fifteen audio-
video recordings of dialogues limited to three min-
utes in duration. The dataset includes nine different
pairs of participants, and in each video one of five
subjects is discussed: a “Tom and Jerry” cartoon, a
“Star Wars” toy, and three mechanical devices, in-
cluding a latchbox, a piston, a pez dispenser. One
participant – “participant A” – was familiarized with
the topic, and is tasked with explaining it to par-
ticipant B, who is permitted to ask questions. Au-
dio from both participants is used, but only video of
participant A is used; we do not examine whether
B’s gestures are relevant to discourse segmentation.
Neither participant has access to any supporting di-
agrams, and neither is permitted to draw.

Video is recorded using standard camcorders,
with a resolution of 720 by 480 at 30 frames per sec-
ond. The video is reduced to 360 by 240 grayscale
images before visual analysis is applied. Audio is
recorded using headset microphones. No manual
postprocessing is applied to the video.

Annotations and Data Processing All speech
was transcribed by hand, and time stamps were ob-
tained using the SPHINX-II speech recognition sys-
tem for forced alignment (Huang et al., 1993). Sen-
tence boundaries are annotated according to (NIST,
2003), and additional sentence boundaries are auto-
matically inserted at all turn boundaries. Using a
stoplist, commonly-occuring terms unlikely to im-
pact segmentation are automatically removed.

For automatic speech recognition, the default Mi-
crosoft speech recognizer was applied to each sen-
tence, and the top-ranked recognition result was re-
ported. As is sometimes the case in real-world ap-
plications, no speaker-specific training data is avail-
able, so the recognition quality is very poor – the
word error rate is 77%.

Segment boundaries are specified as points that
divide the dialogue into coherent topics. Segmenta-
tion points are required to coincide with sentence or
turn boundaries. A second annotator, who is not an
author on this paper, provided an additional set of
segment annotations on six documents; on this sub-
set of documents, the Pk between annotators was
.306, and the WindowDiff was .325 (these metrics
are explained in the next subsection). This is similar

to the interrater agreement reported in (Malioutov
and Barzilay, 2006).

Over the fifteen dialogues, a total of 7864 words
were transcribed (524 per dialogue), spread over
1440 sentences or interrupted turns (96 per dia-
logue). There were a total of 102 segments (6.8
per dialogue), from a minimum of four to a maxi-
mum of ten. This rate of 15 sentences or turns per
segment indicates relatively fine-grained segmenta-
tion; for examples, in the physics lecture corpus
of (Malioutov and Barzilay, 2006), there are roughly
100 sentences per segment.

Metrics and Baselines All experiments are evalu-
ated in terms of the commonly-used Pk (Beeferman
et al., 1999) and WindowDiff (WD) (Pevzner and
Hearst, 2002) scores. These metrics are penalties,
so lower values indicate better segmentations.

Two naı̈ve baselines are evaluated. The random
baseline arbitrarily selects k sentence breaks as seg-
mentation points; results are averaged over 1000 it-
erations. The equal-width baseline places bound-
aries such that all segments contain an equal num-
ber of sentences. Thus, all systems – including these
naı̈ve baselines – were given the sentence bound-
aries and the correct number of segments; the task
is to select the k sentence boundaries that most ac-
curately segment the text.

Implementation All experiments use 105 sam-
pling iterations. Implemented in Java, the total run-
ning time was less than two minutes. Longer sam-
pling periods did not appreciably affect results. To
obtain a final segmentation estimate, we used an an-
nealing schedule that linearly reduced the tempera-
ture over the final 8 * 104 iterations. We report the
average results across ten different runs; the variance
between runs was usually less than .01 on both eval-
uation metrics.

6 Results

Gesture Alone The first experiment examines the
correlation of gesture features with segmentation
boundaries, irrespective of verbal information. Each
yt is composed of the gesture codewords that oc-
cur during the sentence boundaries from the tran-
script, but lexical features are otherwise ignored. As
shown on line 1 of Table 3, the gesture-only method
achieve a Pk of .455, with a WindowDiff (WD) of
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Method Pk WD
1. gesture only .455 .476
2. ASR only .449 .466
3. ASR + gesture .399 .415
4. transcript only .348 .386
5. transcript + gesture .338 .361
6. random .473 .526
7. equal-width .508 .515

Figure 3: For each method, the score of the best perform-
ing configuration is shown. Pk and WD are penalties, so
lower values indicate better performance.

.476. This outperforms both naı̈ve baselines (lines
6 and 7), supporting the hypothesis that gesture fea-
tures predict discourse structure.

Gesture and Text Next, we examine whether the
combination of gesture and verbal features outper-
forms verbal-only segmentation. First we consider
ASR text, as returned by the Microsoft Speech Rec-
ognizer. Using ASR alone, the results are poor:
line 2 of Table 3 shows a Pk of .449 and a WD
of .466, only slightly better than the automatically
recognized gesture features. However, when ges-
ture features and ASR are combined, performance
is substantially better than either modality in isola-
tion, improving to .399 Pk and .415 WD (line 3 of
the table). This represents an absolute gain of more
than 4.5 percent on both metrics.

As expected, manual transcripts substantially in-
crease performance: line 4 of the the table shows
a Pk = .348 and WD = .386. Adding gesture,
performance again improves: Pk drops to .338,
and WD to .361. Even with perfect lexical fea-

tures, automatically-recognized gestures add non-
redundant information that improves discourse pro-
cessing.

Interactions of Verbal and Gesture Features We
now consider the relative contribution of the verbal
and gesture features. In a discriminative setting, the
contribution of each modality would be explicitly
weighted. In a Bayesian generative model, the same
effect is achieved through the use of the smoothing
priors θ0 (verbal) and φ0 (gesture) – see equation 2
and Figure 2. For example, when the gesture prior is
high and verbal prior is low, the gesture counts are
smoothed, and the verbal counts play a greater role
in segmentation. When both priors are very high, the
model will simply try to find equally-sized segments
(satisfying the distribution over durations).

The effects of these parameters can be seen in Fig-
ure 4. The verbal prior is held constant at its ideal
value, and the WD score is plotted against the log-
arithm of the gesture prior. The right panel shows
the results on the reference transcripts, where lexi-
cal features are especially accurate. In this setting,
low values of the gesture prior impair performance
(yielding high WD scores), as the gesture features
overwhelm the effect of the more accurate verbal
features. This effect is not observed on the ASR
transcripts, as the gesture and verbal features are
equally predictive.

Figure 5 shows a contour plot of the multimodal
system’s WD score (indicated by color) against
the two priors. These graphs show that perfor-
mance is relatively robust to prior settings, although
it decreases sharply if the verbal prior is set too
high (thereby diminishing the impact of the ver-



log of gesture prior

lo
g 

of
 v

er
ba

l p
rio

r

WD on ASR text

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

log of gesture prior

WD on reference text

 

 

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0.35

0.4

0.45

0.5

0.55

Figure 5: A contour plot of the WD penalty against both priors. Segmentation performance is represented by the color
in the contour plot, with the gesture prior on the x-axis and the verbal prior on the y-axis.

bal features). Finally, we note that while the mul-
timodal results are influenced by these priors, the
same is true for the verbal-only systems. In future
work we will consider automatic methods for setting
these priors, such as additional Metropolis-Hastings
moves (Goldwater and Griffiths, 2007).
Comparison to other models
While much of the research on topic segmentation
focuses on written text, there are some compara-
ble systems that also aim at unsupervised segmenta-
tion of spontaneous spoken language. For example,
Malioutov and Barzilay (2006) segment a corpus of
classroom lectures, using similar lexical cohesion-
based features. With manual transcriptions, they re-
port a .383 Pk and .417 WD on artificial intelligence
(AI) lectures, and .298 Pk and .311 WD on physics
lectures. This discrepancy suggests that segmenta-
tion scores are difficult to compare across domains;
our results are in the range bracketed by these two
extremes. The segmentation of physics lectures was
at a very course level of granularity, while the seg-
mentation of AI lectures was more similar to our an-
notations.

We applied the publicly-available executable for
this algorithm to our data, but performance was
poor, yielding a .434 Pk and .482 WD even when
both verbal and gestural features were available.
This may be because the technique is not de-
signed for the relatively fine-grained segmentation
demanded by our dataset (Malioutov, 2006).

7 Conclusions

This research shows a novel relationship between
gestural cohesion and discourse structure. Automat-

ically extracted gesture features are predictive of dis-
course segmentation when used in isolation; when
lexical information is present, segmentation perfor-
mance is further improved. This suggests that ges-
tures provide unique information not present in the
lexical features alone, even when perfect transcripts
are available.

There are at least two possibilities for how ges-
ture might impact topic segmentation: “visual punc-
tuation,” and cohesion. The visual punctuation view
would attempt to identify specific gestural patterns
that are characteristic of segment boundaries. This
is analogous to research that identifies prosodic sig-
natures of topic boundaries, such as (Hirschberg and
Nakatani, 1998). By design, our model is incapable
of exploiting such phenomena, as our goal is to in-
vestigate the notion of gestural cohesion. Thus, the
performance gains demonstrated in this paper can-
not be explained by such punctuation-like phenom-
ena; we believe that they are due to the consistent
gestural themes that characterize coherent topics.
However, we are interested in pursuing the idea of
visual punctuation in the future, so as to compare
the power of visual punctuation and gestural cohe-
sion to predict segment boundaries. The interaction
of gesture and prosody suggests even further fruitful
avenues of research.

Finally, topic segmentation is only one form of
discourse structure. We would like to explore the
relationship between gesture and richer discourse
structures, such as hierarchical segmentation (Grosz
and Sidner, 1986) or Rhetorical Structure The-
ory (Mann and Thompson, 1988).



References
Matthew J. Beal. 2003. Variational Algorithms for Ap-

proximate Bayesian Inference. Ph.D. thesis, Univer-
sity of London.

Doug Beeferman, Adam Berger, and John D. Lafferty.
1999. Statistical models for text segmentation. Ma-
chine Learning, 34(1-3):177–210.

Justine Cassell, Yukiko I. Nakano, Timothy W. Bick-
more, Candace L. Sidner, and Charles Rich. 2001.
Non-verbal cues for discourse structure. In Proceed-
ings of the ACL, pages 106–115.

Lei Chen, Mary Harper, and Zhongqiang Huang. 2006.
Using maximum entropy (ME) model to incorporate
gesture cues for sentence segmentation. In Proceed-
ings of ICMI, pages 185–192. ACM Press.

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. 2005.
Behavior recognition via sparse spatio-temporal fea-
tures. In ICCV VS-PETS, October.

Alexei A. Efros, Alexander C. Berg, Greg Mori, and Ji-
tendra Malik. 2003. Recognizing action at a distance.
International Conference on Computer Vision, pages
726–733.

Jacob Eisenstein and Randall Davis. 2007. Conditional
modality fusion for coreference resolution. In Pro-
ceedings of the ACL, pages 352–359.

M. Galley, K. McKeown, E. Fosler-Lussier, and H. Jing.
2003. Discourse segmentation of multi-party conver-
sation. Proceedings of the ACL, pages 562–569.

Andrew Gelman, John B. Carlin, Hal .S. Stern, and Don-
ald .B. Rubin. 2004. Bayesian data analysis. Chap-
man and Hall/CRC.

Sharon Goldwater and Tom Griffiths. 2007. A fully
bayesian approach to unsupervised part-of-speech tag-
ging. In Proceedings of the ACL, pages 744–751,
June.

Barbara Grosz and Julia Hirshberg. 1992. Some intona-
tional characteristics of discourse structure. In ICSLP,
pages 429–432.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-
putational Linguistics, 12(3):175–204.

M. A. K. Halliday and Ruqaiya Hasan. 1976. Cohesion
in English. Longman, London.

T. Hastie, R. Tibshirani, and J. Friedman. 2001. The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer.

Marti A. Hearst. 1994. Multi-paragraph segmentation of
expository text. In Proceedings of the ACL, June.

J. Hirschberg and C.H. Nakatani. 1998. Acoustic Indica-
tors Of Topic Segmentation. ICSLP.

Xuedong Huang, Fileno Alleva, Mei-Yuh Hwang, and
Ronald Rosenfeld. 1993. An overview of the Sphinx-
II speech recognition system. In Proceedings of ARPA
Human Language Technology Workshop, pages 81–
86.

Michael Johnston. 1998. Unification-based multimodal
parsing. In Proceedings of COLING-1998, pages 624–
630.

Adam Kendon. 1994. Do gestures communicate? a re-
view. Research on language and social interaction,
27:175–200.

Stefan Kopp, Paul Tepper, Kim Ferriman, and Justine
Cassell. 2007. Trading spaces: How humans and hu-
manoids use speech and gesture to give directions. In
Toyoaki Nishida, editor, Conversational Informatics:
An Engineering Approach. Wiley.

Igor Malioutov and Regina Barzilay. 2006. Minimum
cut model for spoken lecture segmentation. In Pro-
ceedings of the ACL, pages 25–32. Association for
Computational Linguistics, July.

Igor Malioutov. 2006. Minimum cut model for spoken
lecture segmentation. Master’s thesis, Massachusetts
Institute of Technology.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text, 8:243–281.

David McNeill. 1992. Hand and Mind. The University
of Chicago Press.

NIST. 2003. The Rich Transcription Fall 2003 (RT-03F)
Evaluation plan.

L. Pevzner and M.A. Hearst. 2002. A critique and im-
provement of an evaluation metric for text segmenta-
tion. Computational Linguistics, 28(1):19–36.

M. Purver, T.L. Griffiths, K.P. Körding, and J.B. Tenen-
baum. 2006. Unsupervised topic modelling for multi-
party spoken discourse. In Proceedings of the ACL,
pages 17–24.

Francis Quek, David McNeill, Robert Bryll, Cemil Kir-
bas, Hasan Arslan, Karl E. McCullough, Nobuhiro Fu-
ruyama, and Rashid Ansari. 2000. Gesture, speech,
and gaze cues for discourse segmentation. In Proceed-
ings of CVPR, volume 2, pages 247–254.

Lawrence R. Rabiner. 1989. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286, Febru-
ary.

Mark Steedman. 1990. Structure and intonation in spo-
ken language understanding. In Proceedings of the
ACL, pages 9–16.

M. Swerts. 1997. Prosodic features at discourse bound-
aries of different strength. The Journal of the Acousti-
cal Society of America, 101:514.

Gokhan Tur, Dilek Hakkani-Tur, Andreas Stolcke, and
Elizabeth Shriberg. 2001. Integrating prosodic and
lexical cues for automatic topic segmentation. Com-
putational Linguistics, 27(1):31–57.


