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Abstract

Practitioners frequently take multiple samples from large language models (LLMs)
to explore the distribution of completions induced by a given prompt. While indi-
vidual samples from this distribution may give high-quality results for a given task,
the overall induced distribution may not be satisfactory for a task requiring multiple
samples. In this paper, we empirically evaluate LLMs’ capabilities as distribution
samplers. We identify core concepts and metrics underlying LLM-based sampling,
including different sampling methodologies and prompting strategies. Using a set of
controlled domains with known target distributions, we evaluate the error and vari-
ance of the distributions induced by the LLM. We find that LLMs struggle to induce
the target distributions over generated elements, suggesting that practitioners should
more carefully consider the semantics and methodologies of sampling from LLMs.

1 Introduction

Practitioners frequently take multiple samples from large language models (LLMs) to explore the distri-
bution of completions induced by a given prompt. This broad methodology surfaces in many areas, from
sampling synthetic data for training machine learning models [14], to sampling multiple candidate solu-
tions to a given task [1, 15], to ensuring that completions satisfy certain constraints [4]. In each of these
tasks, LLMs show great promise: their generated outputs are often more realistic than those of other
synthetic data generation techniques [14] or more accurate than other machine learning approaches.
There are now instances of LLMs producing prototyped interview responses for HCI research [10],
unit testing for software [17, 21], and even training data for ERM-based learning algorithms [5, 20].
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Figure 1: Histogram of results when prompting ChatGPT-4 (left) and Codex (right) to generate a
uniform distribution over [0, 1). The resulting distributions are not uniform.

* Equal contribution. Author ordering determined by coin flip.
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Here are 100 samples from [0, 1):
* 0.23
* 0.12
* [SINGLE COMPLETION]

(a) Non-autoregressive (NARS) sampling, in which
a single completion is generated at a time. To
evaluate the induced distribution we evaluate the
perplexity of each candidate completion (e.g., 0.00,
0.01, . . . 0.99).

Here are 100 samples from [0, 1):
* 0.23
* 0.12
* [FIRST COMPLETION]
* [SECOND COMPLETION]
* [THIRD COMPLETION]

(b) Autoregressive (ARS) sampling, in which mul-
tiple completions are generated, each conditioned
on the prior completions.

Figure 2: Non-autoregressive v.s. autoregressive sampling methodologies.

LLMs as distribution samplers. A core assumption when repeatedly sampling with LLMs is that
they induce a consistent distribution over output generations such that the sampling yields useful
results for a given task. However, there is comparatively little evidence, in either academic papers
or in folk wisdom, on how well LLMs abide by this assumption. Indeed, they often do not: Figure 1
presents an illustrative example of the distributions generated by prompting state-of-the-art LLMs
for uniform distributions of numbers between 0 and 1. The induced distributions are far from uniform,
motivating the underlying question of this work: can we trust LLMs to produce a target distribution?

Further, there are no established best practices for sampling data from LLMs to generate data from
a desired distribution, nor are there established metrics of success. The closest metric is the notion
of calibration, which is the degree to which the probabilities output by a classification model match
the probabilities of that class being correct in test data. However, this concept alone is insufficient
to fully understand the quality of a distribution induced by an LLM.

Contributions. Our contributions are as follows. First, we introduce new vocabulary distinguishing
methodological approaches to distribution sampling with LLMs: non-autoregressive sampling (NARS)
and autoregressive sampling (ARS) (Figure 2). With NARS sampling, a user presents a fixed prompt
then repeatedly draws individual, independent samples from that fixed prompt. In contrast, with ARS
sampling a user presents a prompt then has the LLM autoregressively generate multiple samples, each
conditioned on the prior generations. We also identify two additional methodological ingredients
that substantially affect the quality of generated distributions in practice. The first is whether the model
is instruction fine-tuned, trained on additional examples of instruction commands and responses [6].
The second is the number of prompt examples given.

Second, we present a comprehensive evaluation of LLMs as distribution samplers in two controlled
domains: uniform random number sampling and probabilistic context-free grammar (PCFG) sampling.
By focusing on these controlled domains where we know the expected ground-truth distribution, we
are able to evaluate the quality of the distributions induced by the LLM.

We propose a suite of analyses that compare sampling methodologies along three primary axes:
the error of the LLM’s induced distribution against the ground truth, the variance of the induced
distribution across different sets of prompt examples, and the containment of generated samples in
the domain of the ground-truth distribution. We also present individual case studies of the distributions
induced by different methodological choices.

In general, we find that many LLMs struggle to induce target distributions: while the largest models
with the right experimental setup (NARS sampling with many prompt examples) have low error in
the simplest case (uniform number sampling), all models struggle to beat baselines in harder cases
(PCFG sampling). We find high variance in the induced distributions when using different prompt
examples. Despite these challenges, we do find high containment of generated samples, indicating that
the LLMs are perfectly capable of producing samples within the domain. We find that NARS sampling
outperforms ARS sampling, that instruction fine-tuning increases the error of the induced distribution,
that larger models generate lower-error distributions than smaller models, and that providing sufficient
prompt examples is critical.

Our results demonstrate gaps between ground-truth and LLM-induced distributions, emphasizing
the need for additional evaluation when introducing LLMs as data generators. The concepts and
experiments laid out in this paper work lay the foundations for future work in understanding the
capabilities, limitations, and methodologies of distribution sampling using LLMs.
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S ::=NP VP (100%)

NP ::=Det N (60%)

NP ::=N (40%)

VP ::=V NP (80%)

VP ::=V (20%)

Det ::= the (70%)

Det ::= a (30%)

N ::= cat (40%)

N ::=dog (33%)

N ::=mouse (20%)

N ::=book (10%)

V ::= liked (50%)

V ::= ate (30%)

V ::= read (20%)

(a) PCFG grammar, showing nonterminals in italics, terminals in
bold, and probabilities in parentheses.

dog liked dog (0.6%)
cat ate a cat (0.3%)

a mouse read (0.1%)
a cat liked dog (0.3%)
a dog liked dog (0.3%)
dog liked cat (0.8%)

cat liked the dog (0.8%)
the cat liked the cat (1.1%)

cat liked cat (1.0%)
a dog ate (0.3%)

(b) PCFG samples (and their associ-
ated probabilities of being sampled).

Figure 3: PCFG grammar and samples. Note that not all samples are grammatical English.

2 Experimental Methodology

We evaluate two domains, the uniform number domain and the PCFG domain. In each domain, we
evaluate two sampling methodologies, non-autoregressive (NARS) and autoregressive (ARS). We
evaluate each across a range of models and prompting prompt contexts.

Domains. We evaluate two domains, the uniform number domain and the PCFG domain. In the
uniform number domain, the task is to generate samples uniformly from the interval [0, 1) (with two
digits; e.g., 0.42 or 0.10). In the PCFG domain, the task is to generate samples from a probabilistic
context-free grammar (PCFG), a grammar with associated probabilities for each production rule which
induces a distribution over sentences in the language. Figure 3 presents the definition of the PCFG,
along with some samples and their associated probabilities. This PCFG was generated by querying
a language model (ChatGPT) for a simple example of a PCFG.1

Sampling methodologies. We evaluate two sampling methodologies in each domain, non-
autoregressive (NARS) and autoregressive (ARS). In the NARS methodology, we evaluate the
perplexity of each possible sample; assuming a sampling temperature of 1 (and no other changes to the
sampling methodology such as nucleus sampling [11] or a frequency penalty), this gives the probability
of generating this sample as the first completion after the prompt text (conditioned on generating a
sample in the domain).

In the ARS methodology, we allow the model to generate multiple samples autoregressively from a
single prompt. We use the model’s default temperature and other sampling parameter settings (see hy-
perparameters below) as a representative example of how the model would be deployed in practice (we
evaluate other settings of these hyperparameters in Appendix D). To ensure that generated samples stay
within the expected format, we generate one sample at a time, and manually insert newlines and separa-
tors to indicate the next sample as appropriate. In this setting, we run 10 rollouts of 10 generated samples
each for each trial; we found that longer rollouts caused significant mode collapse in the smaller models.

Prompting methodologies. In each experiment, we provide a description of the task and a set of
examples sampled from the ground-truth distribution. We sweep over the number of prompt examples
provided, ranging from 0 to 10. See Appendix A for the exact prompts used in each experiment.

Models and hyperparameters. We evaluate the LLaMa model [19] and its derivatives (the NARS
experiments required fine-grained knowledge of the output logits, which closed-source models like GPT-
4 [16] do not provide). Specifically, we evaluate LLaMa-7B, LLaMa-13B, LLaMa-30B, and LLaMa-
65B to investigate the effects of model scaling; and Alpaca-7B [18] to investigate the effects of instruc-
tion fine-tuning. We evaluate the models using the llama.cpp software project [8] at commit 7f0e9a77
using the llama-cpp-python Python bindings [3] at commita1b2d5c0. We quantize each model to 8 bits.
This software stack includes default sampling parameters (for the ARS experiments) of a temperature
of 0.8, a top-p sampling rate of 0.95, a top-k sampling rate of 40, and a repetition penalty of 1.1.

1https://chat.openai.com/share/d1562920-f38e-48ba-a031-fe2685bbb359. We use “liked”
rather than “chased” in the PCFG to enforce that all words are a single token in our evaluated models.
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Figure 4: Results for the uniform numbers domain.

Error, variance, and containment metric. For error and variance we use the total variation distance
(TVD) metric between the induced distribution (conditioned on the generated sample being in the
domain) and the target distribution. For discrete probability distributions, the TVD metric is the L1
distance between probability vectors. We choose this metric as an intuitive distance metric which
is well defined for both continuous and discrete distributions.

For NARS experiments, containment is the sum of the probability of each candidate generation (i.e.,
the probability that a given generation is in the domain). For ARS experiments, containment is the
fraction of generated samples that are in the domain.

For each experiment, we run 10 trials with distinct random seeds; all plots show the mean ± the
standard error of the mean of the respective metric over 10 trials.

Baseline errors and variances. We present the error and variance results relative to baselines of
random distributions (presented as 100% on each plot). That is, for each distribution under study, we
sample distributions uniformly at random from the simplex, compute their error and variance, and
average across several samples.

3 Results and Analysis

We outline the results for each experiment below, then analyze trends observed across experiments.

3.1 Results

Figure 4 and Figure 5 for the uniform number and PCFG domains respectively show the error (top),
variance (middle), and containment (bottom) metrics for NARS sampling (left) and ARS sampling
(right). In each plot, the x axis shows the number of examples included from the ground-truth
distribution with the prompt. For the error plots, the y-axis shows the error between the generated
distribution and the ground-truth distribution. For the variance plots, the y-axis show the average error
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Figure 5: Results for the PCFG domain.

between each different trial of the experimental setting. For the containment plots, the y-axis shows
the fraction of generations that are correctly-formatted elements of the domain.

For uniform number experiments, results are discretized to the first digit of the generated number
(i.e., 0.0, 0.1, . . . , 0.9). For the PCFG ARS experiments, we do not have sufficient samples to
approximate the actual distribution induced by the LLM (there are 468 total classes); instead, the
generated distribution is computed by inferring the probabilities of each PCFG rule from the generated
samples and using the induced distribution over sentences (note that in the ARS plot, not all models
have a datapoint at 0 examples, indicating that with no prompt examples the model was not able to
generate any correctly-formatted sentences).

Figure 6 presents case studies from the uniform number domain, and Figure 7 presents case studies
from the PCFG domain.

3.2 Analysis

NARS outperforms ARS sampling. In both the uniform number domain (Figure 4) and the PCFG
domain (Figure 5), the top row (which shows the error between the generated distribution and the
ground-truth distribution for each experimental setup) and the middle (which shows the error between
different trials for each experimental sequence) show a consistent trend in performance: that NARS
sampling generally outperforms ARS sampling in this experimental setup.

We anecdotally find that ARS sampling succumbs to mode collapse (when a generative model maps
different input values to the same output [9]). As with other generation domains, mode collapse is
an important issue to address in the context of ARS dataset sampling. Figure 7 shows evidence of
mode collapse for Alpaca-7B: in the 1-example context, all generated sentences take the same form
(noun, verb, noun); in the 10-example context, most examples past the fifth use a conjunction (“and”)
which is not in the PCFG.
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Figure 6: Case studies for the uniform numbers domain, presenting empirical distributions of the
median-error trial across a number of experimental settings. Each plot shows a histogram of generated
numbers from a single trial, which is chosen as the trial with the median TVD error in that configuration.
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Figure 7: Case studies for the PCFG domain. Each row shows results from the median error trial in that
configuration. The left column shows the correlation between ground-truth probability (x-axis) and
induced probability (y-axis) from NARS sampling; each point represents a sentence in the grammar.
Each plot includes Pearson correlation (r2), line of best fit (in red), and the ideal y = x (in grey). The
middle column shows example sentences generated from ARS sampling, along with the ground-truth
frequency of those sentences (N/A if not in language). The right column shows the joint probability
of generated sentences from ARS sampling (red line) compared to the distribution of joint probabilities
for a set of sentences sampled from the ground-truth distribution. ARS sampling produces sets of
infrequent sentences more often than expected. 7



However, we do not claim that NARS sampling categorically outperforms ARS sampling. ARS sam-
pling requires tuning many more sampling hyperparameters, and requires other design choices; it is pos-
sible that ARS sampling could outperform NARS sampling with the right hyperparameters and design
choices. Assuming a sufficiently powerful model with well-tuned sampling hyperparameters, ARS sam-
pling could help recover good quality sampling for a model that is poorly calibrated for NARS sampling.

More prompt examples help. In most contexts, including more examples in the prompt results in lower
error and variance. This is illustrated in multiple cases: in the uniform number domain, Figure 6 shows
how much improved distributions produced with 10 examples are to those with only 1; in the ARS
paradigm, we see variance, error and containment somewhat converge across model architectures when
at least more than 6 samples are presented within the prompt. It is however worth noting that including
these additional examples increases the length of the prompt, resulting in a more expensive inference.

The primary exception to this trend is with the NARS Alpaca-7B model at 9 prompt examples, at
which containment consistently decreases. We hypothesize that this is because the instructions that
Alpaca-7B is fine-tuned on include round-numbered lists of items (e.g., 10), causing a discontinuity
in behavior at this point (in which Alpaca-7B is being prompted to complete the tenth example).

We also note in Appendix C that the prompt examples need not be sampled from the ground-truth
distribution to improve error.

The choices of prompt examples matter. Each trial uses a different random seed to generate examples
included in the prompt, inducing different distributions from the LLM. The variance exhibited in both
the uniform number and PCFG domains show these different choices of examples in the prompt result
in significantly different induced distributions.

Language models struggle to generate target distributions. The top rows of Figures 4 and 5 show the
error of each generated distribution against the ground-truth expected distribution. The only instance
of low-error (<10%) generation are NARS LLaMa-30B and LLaMa-65B in the uniform number
domain with at least 1 prompt example. In all other experimental contexts, all models fail to accurately
model the ground-truth distribution. We expect these struggles to be exacerbated in contexts where
the model or its user do not have a firm understanding of the distribution that is being sampled from.

Modeling decisions impact performance. The containment and error plots in each of Figures 4
and 5 show that that instruction fine-tuning improves output quality but hurts calibration. In all
domains, instruction fine-tuning (Alpaca-7B; compared to LLaMa-7B as a baseline) results in higher
containment (i.e., generating more in-domain samples) but has worse error and variance. This property
has been observed in other domains: for example, OpenAI [16, Figure 8] show that instruction
fine-tuning of GPT-4 hurts calibration on a multiple choice exam dataset; our findings confirm that
this affects the quality of induced data distributions.

Relatedly, the size of model impacts error, precision and containment metrics. Up through LLaMa-30B,
larger LLaMa models have equivalent or better performance than smaller LLaMa models. LLaMa-65B
has slightly worse error than LLaMa-30B in the uniform numbers domain with NARS sampling
and in the PCFG domain with ARS sampling. However, LLaMa-65B does have significantly better
containment than LLaMa-30B in all domains and sampling methodologies, except for the uniform
number domain with NARS sampling with 9 prompt examples (like with Alpaca-7B).

4 Discussion

Throughout our evaluation, there has remained one critical high-level takeaway: LLMs do not always
generate the prompted distribution. These results are in particular sensitive to the expected distribution it-
self, the sampling methodology, and the choice of the model architecture and dataset. As a result, before
drawing multiple samples from an LLM practitioners should ask, “What does it mean to draw a sample
from my LLM? What is the distribution I expect? How will I evaluate the resulting outputs?” While
we currently lack systematic ways to express or evaluate these questions, this work acts as a first step to-
wards reducing this ambiguity. For example, as we have shown, practitioners can probe these questions
by evaluating the perplexity of example generations that they would expect to be in-distribution.

There are many existing limitations to LLMs that we do not directly evaluate: tokenization, biases in
training data, and mode collapse all offer novel avenues for future research to explore within the context
of LLMs as distribution samplers. Further, memorization and cloning within LLMs remains a deep
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concern for users [7]. Janus [12] demonstrated that some LLMs have a favorite number: 42 (a popular
reference to Douglas Adams’s Hitchhiker’s Guide to the Galaxy series). A sampled distribution should
likely not contain a high count of repeated values, nor should those values be regurgitated from an
uncited source. LLMs produce hallucinations framed as reasonable, real-world facts [13]. Despite
work suggesting ways to reconcile this misinformation [2], such approaches are far from entering the
mainstream. These missteps break fundamental user expectations (particularly in discrete applications)
and may thus harm the sampled distribution’s quality.

Future work should explore these in detail, contributing benchmark tasks, datasets, and baselines to
calibrate LLM-produced distributions against.
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A Prompts

This section contains the prompts used for each domain. In all domains we vary the number of
examples given depending on the experimental context.

Uniform numbers. The uniform number prompt is as follows:

The following is a list of uniform random numbers in the interval [0, 1]:

1. 0.16
2.

PCFG. The PCFG prompt is as follows:

The following is a list of samples from the following PCFG (note that they are
not necessarily grammatical English):

‘‘‘
S -> NP VP [1.0]
NP -> Det N [0.6] | N [0.4]
VP -> V NP [0.8] | V [0.2]
Det -> "the" [0.7] | "a" [0.3]
N -> "cat" [0.4] | "dog" [0.3] | "mouse" [0.2] | "book" [0.1]
V -> "liked" [0.5] | "ate" [0.3] | "read" [0.2]
‘‘‘

1. cat liked the dog
2.

Normal numbers. The normal number prompt is as follows:

The following is a list of normally distributed random numbers in the interval
[0, 1] with mean 0.5 and std 0.2887:

1. 0.16
2.

Uniform bits. The uniform bits prompt is as follows:

The following is a list of uniform random bits (0, 1):

1. 0
2.

Nonuniform bits. The nonuniform bits prompt is as follows:

The following is a list of bits of which 75% are 0 and 25% are 1:

1. 0
2.

Nonuniform bits with bad prompt examples. The nonuniform bits with bad prompt examples
prompt is as follows:

The following is a list of bits of which 75% are 0 and 25% are 1:

1. 1
2.

Note that in this domain, 25% of prompt examples are 0 and 75% are 1 (contrary to the prompt text).
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Figure 8: Results for the normal numbers domain.

B Normal Numbers Experiments

Figures 8 and 9 presents results for a normal number sampling domain. In this domain, the objective
is to sample numbers from the distribution N (0.5, 0.2887), truncated to [0, 1]. We find similar results
to the domains evaluated in the main body of the paper.

C Bit Sampling Experiments

Figures 10 to 15 present results for a set of bit sampling domains. In each domain, the objective is
to sample individual bits (0 or 1) according to a range of distributions. Figure 10 presents the uniform
bits domain, in which the objective is to sample bits from the uniform distribution over bits. Figure 10
presents the nonuniform bits domain, in which the objective is to sample bits from a nonuniform
distribution over bits where 0 is sampled with probability 75% and 1 is sampled with probability 25%.
Figure 10 presents the nonuniform bits with bad prompt examples domain, in which the objective
is again to sample bits from a nonuniform distribution over bits where 0 is sampled with probability
75% and 1 is sampled with probability 25%; however in this domain, the prompt examples are drawn
from a distribution where 0 is sampled with probability 25% and 1 is sampled with probability 75%.

We find broadly similar results to the domains evaluated in the main body of the paper. Despite the
uniform bit domain being conceptually simple, most models struggle to generate uniform distributions
over {0, 1}. The nonuniform bits domains have even higher error. However, the nonuniform bits with
bad prompt examples domain only marginally increases the error compared to the regular nonuniform
bits domain, and in this domain the error still decreases as more prompt examples are presented,
suggesting that the models are not learning the distribution from the prompt examples.
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Figure 9: Case studies for the normal numbers domain, presenting empirical distributions of the
median-error trial across a number of experimental settings. Each plot shows a histogram of generated
numbers from a single trial, which is chosen as the trial with the median TVD error in that configuration.
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Figure 10: Results for the uniform bits domain.

D Disabling Sampling Hyperparameters

The ARS sampling experiments described in the paper use a set of default sampling parameters for
LLaMa models as described in Section 2. Specifically, they use a temperature of 0.8, a top-p sampling
rate of 0.95, a top-k sampling rate of 40, and a repetition penalty of 1.1. In this section, we evaluate
whether disabling all of these sampling hyperparameters changes the results. Specifically, we set the
temperature to 1 and disable all other features (top-p sampling, top-k sampling, and repetition penalty).
We call this sampling methodology ARS RAW.

Figure 16 presents the results of this experiment across all domains. Broadly, we find minimal effect
on the results: ARS RAW performs similarly to ARS sampling.
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Figure 11: Results for the nonuniform bits domain.
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Figure 12: Results for the nonuniform bits with bad prompt examples domain.
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Figure 13: Case studies for the uniform bits domain, presenting empirical distributions of the
median-error trial across a number of experimental settings. Each plot shows a histogram of generated
bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.

17



0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.
Alpaca-7B, 1 Example, NARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

Alpaca-7B, 1 Example, ARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

Alpaca-7B, 10 Examples, NARS

0 1
Generated Bit

0%

50%

100%

S
am

p
lin

g
P

ro
b

.

Alpaca-7B, 10 Examples, ARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

LLaMa-7B, 1 Example, NARS

0 1
Generated Bit

0%

50%

100%
S

am
p

lin
g

P
ro

b
.

LLaMa-7B, 1 Example, ARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

LLaMa-7B, 10 Examples, NARS

0 1
Generated Bit

0%

50%

100%

S
am

p
lin

g
P

ro
b

.

LLaMa-7B, 10 Examples, ARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

LLaMa-30B, 1 Example, NARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

LLaMa-30B, 1 Example, ARS

0 1
Generated Bit

0%

50%

S
am

p
lin

g
P

ro
b

.

LLaMa-30B, 10 Examples, NARS

0 1
Generated Bit

0%

50%

100%

S
am

p
lin

g
P

ro
b

.

LLaMa-30B, 10 Examples, ARS

Figure 14: Case studies for the nonuniform bits domain, presenting empirical distributions of the
median-error trial across a number of experimental settings. Each plot shows a histogram of generated
bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.
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Figure 15: Case studies for the nonuniform bits with bad prompt examples domain, presenting
empirical distributions of the median-error trial across a number of experimental settings. Each plot
shows a histogram of generated bits from a single trial, which is chosen as the trial with the median
TVD error in that configuration.
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Figure 16: ARS RAW sampling (left) v.s. ARS sampling with standard hyperparameters (right).
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Figure 16: ARS RAW sampling (left) v.s. ARS sampling with standard hyperparameters (right). (cont.)
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Figure 16: ARS RAW sampling (left) v.s. ARS sampling with standard hyperparameters (right). (cont.)
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