Ling Ren

Contact	MIT Stata Center 32-G890E-mail: renling@mit.edu32 Vassar Street,Website: http://people.csail.mit.edu/renling/Cambridge, MA, 02139Phone: (857) 998-8088	
Interests	computer security, applied cryptography, computer architecture, distributed computing	
Education	Massachusetts Institute of Technology Ph.D., Electrical Engineering and Computer Science, 2018 (expected). M.S., Electrical Engineering and Computer Science, 2014. Advisor: Srinivas Devadas	
	Tsinghua University B.S., Electronic Engineering, 2012.	
Research	MIT CSAIL Research Assistant, 2012 – present	
	VMware Research Group Research Intern, summer 2016	
	Tsinghua University Undergraduate Research Assistant, 2010 – 2012	
Teaching	MIT Instructor, 6.046 – Design and Analysis of Algorithms, Fall 2017 Teaching Assistant, 6.046 – Design and Analysis of Algorithms, Spring 2015 Grader, 6.875 – Cryptography, Spring 2013	
Publications	24. Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren , and Alexander Spiegelman. Solida: A blockchain protocol based on reconfigurable Byzantine consensus. In <i>International Conference on Principles of Distributed Systems (OPODIS)</i> , 2017. (alphabetical order)	
	23. Ling Ren and Srinivas Devadas. Bandwidth hard functions for ASIC resistance. In 15th International Conference on Theory of Cryptography (TCC), 2017.	
	22. Srinivas Devadas, Ling Ren , and Hanshen Xiao. On iterative collision search for LPN and subset sum. In 15th International Conference on Theory of Cryptography (TCC), 2017. (alphabetical order)	
	21. Leo Alcock and Ling Ren. A note on the security of Equihash. In ACM Workshop on Cloud Computing Security (CCSW), 2017.	
	20. Ling Ren, Christopher Fletcher, Albert Kwon, Marten van Dijk, and Srinivas Devadas. Design and implementation of the Ascend secure processor. <i>IEEE Transactions on Dependable and Secure Computing (TDSC)</i> , 2017.	
	19. Ittai Abraham, Christopher Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren. Asymptot- ically tight bounds for composing ORAM with PIR. In 20th International Workshop on Public Key Cryptography (PKC), 2017. (alphabetical order)	
	 Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam, Elaine Shi, and Vipul Goyal. HOP: Hardware makes obfuscation practical. In 24th Annual Network and Distributed System Security Symposium (NDSS), 2017. 	

- 17. Charles Herder, Ling Ren, Marten van Dijk, Meng-Day Yu, and Srinivas Devadas. Trapdoor computational fuzzy extractors and stateless cryptographically-secure physical unclonable functions. *IEEE Transactions on Dependable and Secure Computing (TDSC)*, 2017.
- 16. Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In 14th International Conference on Theory of Cryptography (TCC), 2016.
- Srinivas Devadas, Marten van Dijk, Christopher Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. Onion ORAM: A constant bandwidth blowup oblivious RAM. In 13th International Conference on Theory of Cryptography (TCC), 2016. (alphabetical order)
- Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas. Constants count: practical improvements to oblivious RAM. In 24th USENIX Conference on Security Symposium (Usenix Security), 2015.
- Xiangyao Yu, Syed Kamran Haider, Ling Ren, Christopher Fletcher, Albert Kwon, Marten van Dijk, and Srinivas Devadas. PrORAM: dynamic prefetcher for oblivious RAM. In 42nd International Symposium on Computer Architecture (ISCA), 2015.
- Christopher Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, Dimitrios Serpanos, and Srinivas Devadas. A low-latency, low-area hardware oblivious RAM controller. In *IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing* Machines (FCCM), 2015.
- Christopher Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas. Freecursive ORAM: [nearly] free recursion and integrity verification for position-based oblivious RAM. In 20th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2015.
- Xiaoming Chen, Ling Ren, Yu Wang, and Huazhong Yang. GPU-accelerated sparse LU factorization for circuit simulation with performance modeling. *IEEE Transactions on Parallel* and Distributed Systems (TPDS), 2015.
- Christopher Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan, and Srinivas Devadas. Suppressing the oblivious RAM timing channel while making information leakage and program efficiency trade-offs. In 20th International Symposium on High Performance Computer Architecture (HPCA), 2014.
- Xiangyao Yu, Christopher W Fletcher, Ling Ren, Marten van Dijk, and Srinivas Devadas. Generalized external interaction with tamper-resistant hardware with bounded information leakage. In ACM Workshop on Cloud Computing Security (CCSW), 2013.
- 7. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In ACM Conference on Computer & Communications Security (CCS), 2013. Best Student Paper
- Ling Ren, Christopher W Fletcher, Xiangyao Yu, Marten van Dijk, and Srinivas Devadas. Integrity verification for path oblivious RAM. In *IEEE High Performance Extreme Computing Conference (HPEC)*, 2013.
- Ling Ren, Xiangyao Yu, Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. Design space exploration and optimization of path oblivious RAM in secure processors. In 40th International Symposium on Computer Architecture (ISCA), 2013.
- 4. Yu Wang, Haixiao Du, Mingrui Xia, Ling Ren, Mo Xu, Teng Xie, Gaolang Gong, Ningyi Xu, Huazhong Yang, and Yong He. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome. *PloS one*, 2013.

	3. Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, and Huazhong Yang. Sparse LU factor- ization for parallel circuit simulation on GPU. In 49th Annual Design Automation Conference (DAC), 2012.
	 Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, Gaolang Gong, Ningyi Xu, and Huazhong Yang. Probabilistic brain fiber tractography on GPUs. In 26th International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2012.
	 Yu Wang, Mo Xu, Ling Ren, Xiaorui Zhang, Di Wu, Yong He, Ningyi Xu, and Huazhong Yang. A heterogeneous accelerator platform for multi-subject voxel-based brain network analysis. In International Conference on Computer-Aided Design (ICCAD), 2011.
Talks	7. Bandwidth-hard Functions for ASIC Resistance Conference talk at TCC, Nov. 2017
	 Solidus: An Incentive-compatible Cryptocurrency Based on Byzantine Consensus MIT Bitcoin Expo, Mar. 2017 Tsinghua/Cornell Workshop on Security and Cryptography, Dec. 2016 Cornell Crypto Seminar, Dec. 2016 Berkeley Security Seminar, Nov. 2016 VMWare Research Group, Aug. 2016
	 Proof of Space from Stacked Expanders Conference talk at TCC, Nov. 2016 Tsinghua University EE Department, Nov. 2016 MIT Cryptography and Information Security (CIS) Seminar, Oct. 2016
	4. Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM Stanford Security Seminar, July 2016
	 Practical ORAM in Hardware Conference talk at ASPLOS, Mar. 2015 NSF MACS ORAM Day, Jan. 2015 Qatar Computing Research Institute (QCRI), June 2014
	 Integrity Verification for Path Oblivious RAM Conference talk at HPEC, Sept. 2013 IBM Research China, Aug. 2013
	 Sparse LU Factorization for Parallel Circuit Simulation on GPU Conference talk at DAC, June. 2012 Chinese National Symposium on High Performance Algorithm and Software, Dec. 2011 Chinese Academy of Sciences, Nov. 2011
Service	Reviewer CCS'14, CHES'15, NDSS'15, CCS'16, ICCD'16, Eurocrypt'17, NSDI'17, ASPLOS'17, ICALP'17, Crypto'17, Asiacrypt'17, TCC'17, Eurocrypt'18, FC'18, STACS'18 IEEE Trans. on Dependable and Secure Computing (TDSC), Journal of Cryptology (JCrypto), IEEE Trans. on Industrial Informatics (TII), IEEE Trans. on Information Forensics & Security (TIFS), IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

Information Processing Letters (IPL)

References Ittai Abraham

Senior researcher at VMware Research iabraham@vmware.com

Srinivas Devadas (advisor) Edwin Sibley Webster Professor of EECS at MIT devadas@csail.mit.edu

Marten van Dijk

Charles H. Knapp Associate Professor of ECE at University of Connecticut marten.van_dijk@uconn.edu

Dahlia Malkhi

Principal researcher at VMware Research dmalkhi@vmware.com

Elaine Shi Associate Professor of CS at Cornell University elaine@cs.cornell.edu

Vinod Vaikuntanathan

Associate Professor of EECS at MIT vinodv@csail.mit.edu