Wr*n%’
Bl csAIL

Onion ORAM:

Constant Bandwidth ORAM Using
Additively Homomorphic Encryption

Ling Ren

Joint work with: Chris Fletcher, Srini Devadas,
Marten van Dijk, Elaine Shi, Daniel Wichs

Oblivious RAM (ORAM)

Al esai

Client Server
limited storage, trusted ample storage, untrusted

A = {Read(al), Write(a2, d’), ...} ORAM(A) = {obfuscated A}
 Read(a): returns D[a]; Write(a, d’): set D[a] = d’

* For client request sequences A and A’ where |A| = |A],
ORAM(A) and ORAM(A’) are indistinguishable

ORAM Applications

Software protection [G’87]

Secure processors

Outsourced storage

Secure computation [GKKMRV’12, LWNHS’15]
Garbled RAM [LO’12, GHRW’14]

Proofs of retrievability [CKW’13]

Current Art and Where to Go Next [@E@BCSA.L

« State of the art schemes

— Bandwidth blowup: O(|Og N) N = # blocks
— Client storage: 0(1)
— Server storage: O(N)

« Can we do better in bandwidth blowup?
— Goldreich-Ostrovsky Q(log N) lower bound [GO96]
— Bound doesn’t hold if server can do computation!

* Lots of ORAMSs have already used server computation
— [SSS’12, WS'12, DSS’14, MBC’14, AKST'14]

Still Q(log N) bandwidth (except using FHE [AKST 14])

Our Result: Onion ORAM A2a] csan

ORAM with O(1) bandwidth blowup,

é Ontimal O(1) client storage,
ptima O(N) server storage

poly-log server computation, of additive-HE

ORAM with “shallow circuit depth” EHE
SWHE

This talk: Semi-honest

can be extended by malicious

A connn

Mini Roadmap

1. Start with a basic ORAM

2. Add server computation to improve BW

3. Run into problems

4. Solve the problems

Tree-based ORAM

* N blocks, logN levels, each node has Z slots

Client Server
Metadata
Will come for free data 0 o Y-
Table: map each E

block to a path

NN

H= B=d B=4H

path O 1 2

 Invariant:
If a block iIs mapped to a path, it must be on that path

Tree-based ORAM: Access

> W e

Path O 1 2 3

Client | Server
|
Access red block | [0~ root
| H
|
Map: | _/\
blocks = paths i g H
e | N\ /\
red block = path 3 : H H H H
|
|

Lookup map, red block = path 1

Read all blocks on path 1 (in blue)

Remap red block to a new path (remove from path 1)
Add red block back to root

Tree-based ORAM: Eviction

Client Server

root
Recurse

\ Map:

blocks = paths
red block - path 3

o | — = —

purple block = path 2

]

Path O 1 2

 Read a random path (say path 2)
* Push each block as far down as possible on that path
« Can prove negligible overflow if Z> 4

Towards O(1) Bandwidth - Access ﬁﬂ%cm

« Access: want one block from a path H }z->

H
EIZY £\

* Private Information Retrieval H E" EI EI

— Selecty; fromY € {y;, y,, ... iy} Without revealing i
— Client sends: {E(xy), E(x3), ..., E(x,,)} under additive-HE
x; = 1if j =i, x; = 0 otherwise

— Server computes: y;E(x;) + yoE(xy) + - + y E (X))
= E(Y1x1 + y2x + -+ YimXm) = E(¥i)

EBE(x,)@y, = E(y;)
EB E (x,)@E(y,) = E(E(n))

10

Block Size Independence

Select between Y and Y’: E(0)QY @ E(1)KY’

Problem: ~ E(0), E(1) are as bigas Y, Y’

Break Y, Y’ into chunks
Apply same select bit to each chunk

Y] Y[2] Y[3] Y[4] YI[5]

K B &

E(0) E(0) E(0) E(0)

Bandwidth: B + o(B)

X

E(0)

D

Y[IY[2] YI3] Y[4] Y3]

R @ & &

E(1) E()

E(1) EX)

E(1)

ORAM Access + Additive-HE 5 coan

Assume each block encrypted with 1 layer

Client Server
path

E(metadata on path)

>

-
Decrypt metadata

Generate r = E(0), E(0), ... E(2), ... E(O)
17, E(updated metadata on path)

Block i updated metadata

% % %} %S: % Compute E(E(d)) = Select(r, blocks_on_path))

E(E(d))

Decrypt d = D(D(E(E(d))))
Updated - d’ E(d)

>

Append(root, E(d’))

ORAM Access + Additive-HE 5 coan

Assume each block encrypted with 1 layer

Client Server
path

E(metadata on path)

>

-

N vt vt adatio

O(1) bandwidth on accesses

when block size 2 select vector size
2 L *Z chunks

Decrypt d = D(D(E(E(d))))
Updated - d’ E(d)

>

Append(root, E(d’))

Towards O(1) Bandwidth - Eviction @Eﬁ}lcuu

Server
root

H
- AEI 2 layer

ZANZAN

H=H H=—H

1 layer
2 layer

Blocks may get stuck where the are and keep
acquiring layers in evictions!

Towards O(1) Bandwidth - Eviction ..

Server

kS may get stuck where the are and keep
acquiring layers in evictions!

Goal for Eviction A2a] csan

Design our ORAM eviction algorithm such that
all blocks involved are guaranteed to move down

A
B\ \\AL

C < Select(r, B, A, C)

Steady Progress

Design our ORAM eviction algorithm such that

all blocks involved are guaranteed to move down

1. Evict down path, one bucket triplet at a time

2. push all blocks from the parent to its 2 children

3. Set params s.t. Pr[child overflows] = negl

Example:
evict to path 6

STE TR
N N Lﬁ--i—--y/_!i
0 1 2 3 4 5-&o7

Reverse lexicographic order @Eﬁc

<4r”’—”;==—-;---‘ﬁ-

00 01 10 11
00 10 01 11

* For any non-leaf bucket: eviction paths alternates
between its two children

Layer Bound

* Reverse lexicographic order

Key property:
Green bucket is written to
twice before being emptied

Layers? —+i

Theorem: buckets at level k < L have < 2k + 1 layers

« With optimizations: k + 1

b

New parameter A 1 eviction per A accesses

Theorem: Z > A, N < A 2.1

_(22-A)?
> Pr[bucket overflow] =e ¢4

e 7 =A = 0(1) > Pr[bucket overflow] = 279W

e negl(N) overflow: Z = A =logN w(1)
- Pr[bucket overflow] = N~

O(1) Bandwidth on Eviction E@Eﬁc

Client Server
eviction path known by server

E(metadata on path)

-

Compute Il = {mry ...z, }
(|m;| = 0(Z) encrypted coefficients)
[1, E(updated metadata on path)

1~

-D

N

O(1) Bandwidth on Eviction @E&ﬁc

Client Server
eviction path known by server

E(metadata on path)

O(1) bandwidth evictions

when block size 2 total select coeff size
>2Z2*L /A chunks
2 Z * L chunks

AT

Eviction post-processing Al csan

Problem: layers in leaves are not bounded

» At end of each eviction, client “manually”
“refreshes” a leaf bucket

Client E(E...(E(blocks in leaf))) Server

-

E(..E(blocks in leaf))

>

« Layer theorem now applies to leaves as well

Eviction post-processing

Problem: layers in leaves are not bounded

» At end of each eviction, client “manually”
“refreshes” a leaf bucket

Adds O(1) bandwidth

When A=Z

>

« Layer theorem now applies to leaves as well

The Encryption Scheme {E@ﬂ&c

Layer bound = O(log N)
Damgard-Jurik (2001) cryptosystem:
- mod n° - mod n’*! (n = RSA modulus)

- s|n| 2 (s + 1)|n|

Strategy: sets, = O(logN)
- |n|O0(ogN) = |n| O(log N) (chunk size)

Block size > ZL chunks

- Q(Inl lOgZN logz /1) w/ some optimizations

Subsequent work [MMB’15]: block size = Q(|n]log? 1)
— Works with any AHE (no onions)

A connn

The Malicious Case

1. Start with the semi-honest Construction

2. Cut-and-choose verification chunks

3. ECC to amplify detection probability

Idea 1: Verification chunks ﬁ—&%c

Server

H
Client /\

H H==H

Leaf O 1 2 3

0 (4A) random verification chunks for each block

Normal memory checking to verification chunks
Server. Select(mn, ... all chunks ...)

Client: Select(mn, ... verification chunks ...)

Adds O(1) bandwidth when block size 2 sum(v. chunks)

ldea 2: Error correcting code @E&c

Problem: adversary tampers with one chunk
Pr[chooses non-v. chunk] > negligible

Solution:

— Encode block using ECC e.g., Reed-Soloman
— Decode failure: adversary tampers with 2 O(1) fraction (e.g., A = i)

— Block blowup is constant (e.g., 2x)

Client gets wrong data or fails ECC
-> adversary tampers with 2 A fraction of chunks

Pr[none are v. chunks | tamper 2 A fraction] = (1 — A)*

Conclusion @%CSA.L

* Onion ORAM

— A fine-tuned ORAM eviction algorithm to ensure progress

— O(1) bandwidth

— O(1) client storage, O(N) server storage

— polylog server computation

— Damgard-Jurik additive-HE (extended to any additive-HE)
— No FHE (can be instantiated with SWHE)

— Secure in the malicious setting without resorting to SNARKS

Thank you!

A connn

Backup

[y — N N
ol o ol o ol

Multiplier for O(Block size) bandwidth

o

Bandwidth vs. block size

@E&]cuu

Damgard-Jurik cryptosystem
Modulus = 2048 bits

Pr[bucket overflow] = 2-80

23

24

25

26 27 28 29 30 31
log Block size (in bits)

32

Citations

[GO’96] Software Protection and Simulation on Oblivious RAMs

[SSS’12] Towards Practical Oblivious RAM

[LO’12] How to Garble RAM Programs

[WS’12] Single round access privacy on outsourced storage

[CKW’13] Dynamic Proofs of Retrievability via Oblivious RAM

[DSS’14] Burst ORAM: Minimizing oram response times for bursty access patterns
[MBC’14] Efficient private le retrieval by combining oram and pir

[AKST’14] Verifiable oblivious storage

[LWNHS*15] Oblivm: A Programming Framework for Secure Computation

ORAM + FHE

11—
E]L/l Ll cSAIL

* Folklore in the community: O(1) bandwidth ORAM is
trivially achievable with FHE

* Need FHE with

— O(1) ciphertext expansion
— Efficient bootstrapping

« Can we do it without FHE?

Additively HomomorphicEncryption (AHE) basics
- E(x)®E(x") = E(x + x")
- YQE(x) = E(x)®E(x)® - ®E(x) = E(Yx)

Private Information Retrieval (PIR) using AHE
— Goal: server stores {Y;,Y,, ... Y, }, user selects Y;+ without revealing i*
— User sends {E(x1), E(x5), ..., E(x,,)} where x;+=1 and other x;=0

— Server evaluates

ViQE(x1) @ Y2,QE(xy) @ .0 YV ®FE(xyy)
= E(lel + szz + -+ mem) — E(Yl*)

