
Ling Ren

Joint work with: Chris Fletcher, Srini Devadas, 

Marten van Dijk, Elaine Shi, Daniel Wichs

Onion ORAM: 
Constant Bandwidth ORAM Using 

Additively Homomorphic Encryption



• Read(a): returns D[a]; Write(a, d’): set D[a] = d’

• For client request sequences A and A’ where |A| = |A’|, 

ORAM(A) and ORAM(A’) are indistinguishable 

Oblivious RAM (ORAM)

limited storage, trusted

Client Server

A = {Read(a1), Write(a2, d’), …} ORAM(A) = {obfuscated A}

ample storage, untrusted



• Software protection [G’87]

• Secure processors

• Outsourced storage

• Secure computation [GKKMRV’12, LWNHS’15]

• Garbled RAM [LO’12, GHRW’14]

• Proofs of retrievability [CKW’13]

ORAM Applications



• State of the art schemes

– Bandwidth blowup:

– Client storage: 

– Server storage: 

• Can we do better in bandwidth blowup?

– Goldreich-Ostrovsky Ω(log N) lower bound [GO96]

– Bound doesn’t hold if server can do computation!

• Lots of ORAMs have already used server computation

– [SSS’12, WS’12, DSS’14, MBC’14, AKST’14]

Still Ω(log N) bandwidth (except using FHE [AKST’14])

Current Art and Where to Go Next

O(log N) N = # blocks

O(1) 

O(N)



FHE

SWHE

poly-log server computation, of additive-HE 

ORAM with O(1) bandwidth blowup, 

O(1) client storage, 

O(N) server storage

Our Result: Onion ORAM

Optimal

This talk: Semi-honest

can be extended by malicious

ORAM with “shallow circuit depth”



Mini Roadmap

1. Start with a basic ORAM

2. Add server computation to improve BW

3. Run into problems

4. Solve the problems



• N blocks, logN levels, each node has Z slots

• Invariant: 

if a block is mapped to a path, it must be on that path

Tree-based ORAM

root

path 0 1 2 3

𝑍 = 2

Table: map each 
block to a path

……
red block  path 1

……

Client Server

Will come for free data

Metadata



1. Lookup map, red block  path 1

2. Read all blocks on path 1 (in blue)

3. Remap red block to a new path (remove from path 1)

4. Add red block back to root

Tree-based ORAM: Access

root

Path 0 1 2 3

Map: 
blocks  paths

Client Server

red block  path 1

red block  path 3

Access red block



• Read a random path (say path 2)

• Push each block as far down as possible on that path

• Can prove negligible overflow if Z > 4

Tree-based ORAM: Eviction

root

Path 0 1 2 3

Map: 
blocks  paths

Client Server

red block  path 3

purple block  path 2

Recurse



• Access: want one block from a path

• Private Information Retrieval

– Select 𝑦𝑖 from 𝐘 ∈ 𝑦1, 𝑦2, … 𝑦𝑚 without revealing 𝑖

– Client sends: 𝐸 𝑥1 , 𝐸 𝑥2 , … , 𝐸 𝑥𝑚 under additive-HE

𝑥𝑗 = 1 if 𝑗 = 𝑖,  𝑥𝑗 = 0 otherwise

– Server computes: 𝑦1𝐸 𝑥1 + 𝑦2𝐸 𝑥2 + ⋯ + 𝑦𝑚𝐸 𝑥𝑚

= 𝐸 𝑦1𝑥1 + 𝑦2𝑥2 + ⋯ + 𝑦𝑚𝑥𝑚 = 𝐸(𝑦𝑖)

Towards O(1) Bandwidth - Access

10

𝑍 = 2

𝐸 𝑥𝑗 ⨂𝑦𝑗 = 𝐸(𝑦𝑖)⨁
𝑗 ∈ [𝑌]

𝐸′ 𝑥𝑗 ⨂𝐸(𝑦𝑗) = 𝐸′(𝐸(𝑦𝑖))⨁
𝑗 ∈ [𝑌]



• Select between Y and Y’: E(0)⊗Y ⊕  E(1)⊗Y’

• Problem: ~ E(0), E(1) are as big as Y, Y’

• Break Y, Y’ into chunks

• Apply same select bit to each chunk

• Bandwidth: B + o(B)

Block Size Independence

⊗ ⊗ ⊗ ⊗ ⊗

Y[1] Y[2]    Y[3]     Y[4]    Y[5]

⊕

⊗ ⊗ ⊗ ⊗ ⊗

Y’[1] Y’[2]    Y’[3]   Y’[4]   Y’[5]

E(0) E(0) E(0) E(0) E(0) E(1)  E(1)    E(1)   E(1)    E(1) 



Assume each block encrypted with 1 layer

Client Server

Decrypt metadata

Generate 𝜋 = E(0), E(0), … E(1), … E(0)

updated metadata

Compute E(E(d)) = Select(𝜋, blocks_on_path))

Decrypt d = D(D(E(E(d))))

Update d  d’

Append(root, E(d’))

ORAM Access + Additive-HE

path

E(metadata on path)

𝜋, E(updated metadata on path)

E(E(d))

E(d’)

Block i
⊗ ⊗ ⊗ ⊗ ⊗
𝜋𝑖 𝜋𝑖 𝜋𝑖 𝜋𝑖 𝜋𝑖



Assume each block encrypted with 1 layer

Client Server

Decrypt metadata

Generate 𝜋 = E(0), E(0), … E(1), … E(0)

updated metadata

Compute E(E(d)) = Select(𝜋, blocks_on_path))

Decrypt d = D(D(E(E(d))))

Update d  d’

Append(root, E(d’))

ORAM Access + Additive-HE

path

E(metadata on path)

𝜋, E(updated metadata on path)

E(E(d))

E(d’)

Block i
⊗ ⊗ ⊗ ⊗ ⊗
𝜋𝑖 𝜋𝑖 𝜋𝑖 𝜋𝑖 𝜋𝑖

O(1) bandwidth on accesses

when block size  ≥ select vector size

≥ L * Z chunks



Towards O(1) Bandwidth - Eviction

root

Server

1 layer

1 layer

2 layer

2 layer

Blocks may get stuck where the are and keep 

acquiring layers in evictions!



Towards O(1) Bandwidth - Eviction

root

Server

1 layer

1 layer

2 layer

2 layer

Blocks may get stuck where the are and keep 

acquiring layers in evictions!



Design our ORAM eviction algorithm such that 

all blocks involved are guaranteed to move down

Goal for Eviction

A

C  Select(𝜋C, B, A, C)

B



Design our ORAM eviction algorithm such that 

all blocks involved are guaranteed to move down

1. Evict down path, one bucket triplet at a time

2. push all blocks from the parent to its 2 children

3. Set params s.t. Pr[child overflows] = negl

Steady Progress

7654321

0

Example: 

evict to path 6

Empty!



• For any non-leaf bucket: eviction paths alternates 

between its two children

Reverse lexicographic order

00 01 10 11

00 10 01 11



• Reverse lexicographic order 

Theorem: buckets at level 𝑘 < 𝐿 have ≤ 2𝑘 + 1 layers

• With optimizations: 𝑘 + 1

Layer Bound

# Layers?

Key property: 

Green bucket is written to 

twice before being emptied



New parameter A： 1 eviction per A accesses

Theorem: 𝑍 ≥ 𝐴, 𝑁 ≤ 𝐴 ∗ 2𝐿−1

 Pr[bucket overflow] = 𝑒−
(2𝑍−𝐴)2

6𝐴

• 𝑍 = 𝐴 = 𝛩(𝜆)  Pr[bucket overflow] = 2−𝛩(𝜆)

• negl(𝑁) overflow: 𝑍 = 𝐴 = log 𝑁 𝜔 1

 Pr[bucket overflow] = 𝑁−𝜔 1

Avoid Overflow



Client Server

Compute Π = {𝜋0 … 𝜋𝑍∗𝐿}

(|𝜋𝑖| = 𝑂 𝑍 encrypted coefficients)

O(1) Bandwidth on Eviction

eviction path known by server

E(metadata on path)

Π, E(updated metadata on path)

⊕

⊕



Client Server

Compute Π = {𝜋0 … 𝜋𝑍∗𝐿}

(|𝜋𝑖| = 𝑂 𝑍 encrypted coefficients)

O(1) Bandwidth on Eviction

eviction path known by server

E(metadata on path)

Π, E(updated metadata on path)

⊕

⊕

O(1) bandwidth evictions

when block size ≥ total select coeff size

≥ Z2 * L / A chunks

≥ Z * L chunks



Problem: layers in leaves are not bounded

• At end of each eviction, client “manually” 

“refreshes” a leaf bucket

Client Server

• Layer theorem now applies to leaves as well

Eviction post-processing

E(E…(E(blocks in leaf)))

E(..E(blocks in leaf))



Problem: layers in leaves are not bounded

• At end of each eviction, client “manually” 

“refreshes” a leaf bucket

Client Server

• Layer theorem now applies to leaves as well

Eviction post-processing

E(E…(E(blocks in leaf)))

E(..E(blocks in leaf))

Adds O(1) bandwidth

When A = Z



• Layer bound = 𝑂 log 𝑁

• Damgård-Jurik (2001) cryptosystem:

– mod 𝑛𝑠 → mod 𝑛𝑠+1 (n = RSA modulus)

– s 𝑛  (s + 1) 𝑛

• Strategy: set 𝑠0 = 𝑂(log 𝑁)

– |𝑛| 𝑂(log 𝑁)  |𝑛| 𝑂(log 𝑁) (chunk size)

• Block size > ZL chunks

– Ω( 𝑛 log2𝑁 log2 𝜆) w/ some optimizations

• Subsequent work [MMB’15]: block size = Ω( 𝑛 log2 𝜆)

– Works with any AHE (no onions)

The Encryption Scheme



The Malicious Case

1. Start with the semi-honest Construction

2. Cut-and-choose verification chunks

3. ECC to amplify detection probability



• 𝚯(𝝀) random verification chunks for each block

• Normal memory checking to verification chunks

• Server: Select(𝜋, … all chunks …)

• Client: Select(𝜋, … verification chunks …)

• Adds O(1) bandwidth when block size ≥ sum(v. chunks)

Idea 1: Verification chunks

Leaf 0 1 2 3

Client

Server



• Problem: adversary tampers with one chunk

• Pr[chooses non-v. chunk] > negligible

• Solution:

– Encode block using ECC e.g., Reed-Soloman

– Decode failure: adversary tampers with ≥ O(1) fraction (e.g., Δ =
1

4
)

– Block blowup is constant (e.g., 2x)

• Client gets wrong data or fails ECC 

 adversary tampers with ≥ Δ fraction of chunks

• Pr[none are v. chunks | tamper ≥ Δ fraction] = (𝟏 − Δ)𝝀

Idea 2: Error correcting code



• Onion ORAM

– A fine-tuned ORAM eviction algorithm to ensure progress

– O(1) bandwidth

– O(1) client storage, O(N) server storage

– polylog server computation

– Damgård-Jurik additive-HE (extended to any additive-HE)

– No FHE (can be instantiated with SWHE)

– Secure in the malicious setting without resorting to SNARKs

Thank you!

Conclusion



Backup



Bandwidth vs. block size 

0

5

10

15

20

25

23 24 25 26 27 28 29 30 31 32

M
u

lt
ip

li
e
r 

fo
r 

O
(B

lo
c
k
 s

iz
e
) 

b
a
n

d
w

id
th

log Block size (in bits)

Limit = 2

Damgård-Jurik cryptosystem
Modulus = 2048 bits
Pr[bucket overflow] = 2-80



• [GO’96] Software Protection and Simulation on Oblivious RAMs

• [SSS’12] Towards Practical Oblivious RAM

• [LO’12] How to Garble RAM Programs

• [WS’12] Single round access privacy on outsourced storage

• [CKW’13] Dynamic Proofs of Retrievability via Oblivious RAM

• [DSS’14] Burst ORAM: Minimizing oram response times for bursty access patterns

• [MBC’14] Efficient private le retrieval by combining oram and pir

• [AKST’14] Verifiable oblivious storage

• [LWNHS‘15] Oblivm: A Programming Framework for Secure Computation

Citations



• Folklore in the community: O(1) bandwidth ORAM is 

trivially achievable with FHE

• Need FHE with

– O(1) ciphertext expansion

– Efficient bootstrapping

• Can we do it without FHE?

ORAM + FHE



Additively HomomorphicEncryption (AHE) basics

– 𝐸 𝑥 ⨁𝐸 𝑥′ = 𝐸 𝑥 + 𝑥′

– 𝑌⨂𝐸 𝑥 = 𝐸 𝑥 ⨁𝐸 𝑥 ⨁ ⋯ ⨁𝐸 𝑥 = 𝐸 𝑌𝑥

Private Information Retrieval (PIR) using AHE

– Goal: server stores 𝑌1, 𝑌2, … 𝑌𝑚 , user selects 𝑌𝑖∗ without revealing 𝑖∗

– User sends 𝐸 𝑥1 , 𝐸 𝑥2 , … , 𝐸 𝑥𝑚 where 𝑥𝑖∗=1 and other 𝑥𝑖=0

– Server evaluates

𝑌1⨂𝐸 𝑥1 ⨁ 𝑌2⨂𝐸 𝑥2 ⨁ … ⨁ 𝑌𝑚⨂𝐸 𝑥𝑚

= 𝐸 𝑌1𝑥1 + 𝑌2𝑥2 + ⋯ + 𝑌𝑚𝑥𝑚 = 𝐸(𝑌𝑖∗)


