
Carnegie Mellon University

Robotics Capstone Project

Test Plan

Friction Force Explorers:

Don Zheng
Neil Jassal
Yichu Jin

Rachel Holladay

supervised by
Dr. David Wettergreen

Version 2.0
December 14, 2016

Contents

1 Introduction 3

2 Design Verification 3
2.1 Writing Implement . 3

2.1.1 Performance Test: Loading . 3
2.1.2 Performance Test: Writing Quality . 3
2.1.3 Functional Test: Replace Writing Tool . 3
2.1.4 Functional Test: Writing Pressure Control . 3
2.1.5 Functional Test: Simultaneous Driving and Writing 3
2.1.6 Functional Test: Marking . 4
2.1.7 Functional Test: Force Sensor . 4

2.2 Locomotion . 4
2.2.1 Performance Test: Accuracy . 4
2.2.2 Functional Test: Speed . 4
2.2.3 Functional Test: Omnidirectional . 4

2.3 Localization . 5
2.3.1 Performance Test: Robot Position Accuracy . 5
2.3.2 Performance Test: Bounds Accuracy . 5
2.3.3 Functional Test: Robot Position . 5
2.3.4 Functional Test: Bounds . 5

2.4 Image Processing . 5
2.4.1 Performance Test: Accuracy . 5
2.4.2 Functional Test: Return Data . 5
2.4.3 Functional Test: Reject Improper Input . 6
2.4.4 Functional Test: Keep Lines Within Bounds . 6

2.5 Work Scheduling, Distribution and Planning . 6
2.5.1 Performance Test: Executable Plans . 6
2.5.2 Performance Test: Execution Distribution . 6
2.5.3 Performance Test: Drawing Distribution . 6
2.5.4 Performance Test: Speedup . 6
2.5.5 Functional Test: Collision Free . 7
2.5.6 Functional Test: Autonomy . 7

2.6 Communication . 7
2.6.1 Performance Test: Uptime . 7
2.6.2 Functional Test: Sending and Receiving Data . 7
2.6.3 Functional Test: Data Parsing . 7

2.7 User Interface . 7
2.7.1 Performance Test: Emergency Stop Speed . 7
2.7.2 Performance Test: Error Reporting Delay . 8
2.7.3 Performance Test: Error Understandability . 8
2.7.4 Functional Test: Emergency Stop . 8
2.7.5 Functional Test: Error Reporting . 8

2.8 Power System . 8
2.8.1 Performance Test: Battery Duration . 8
2.8.2 Functional Test: Battery Life . 9

3 Full System Validation 9
3.1 Performance Test: Painting Accuracy . 9
3.2 Performance Test: Reliability . 9
3.3 Functional Test: Size . 9
3.4 Functional Test: Weight . 9
3.5 Functional Test: Budget . 10
3.6 Functional Test: Safety . 10
3.7 Functional Test: Documentation . 10

1

4 Failure Modes 10
4.1 Writing Implement . 10

4.1.1 Out of Writing Material . 10
4.1.2 Writing Mechanism Failure . 10

4.2 Locomotion . 11
4.2.1 Inaccurate Motion . 11
4.2.2 Failure to Move Omnidirectionally . 11

4.3 Localization . 11
4.3.1 Camera Failure . 11
4.3.2 Unusable Localization Data . 12
4.3.3 Vision Tag Occlusion . 12

4.4 Image Processing . 12
4.4.1 Unable to Process Input Image . 12

4.5 Work Scheduling, Distribution and Planning . 12
4.5.1 Fail to Plan . 12

4.6 Communication . 13
4.6.1 Loss of Connection . 13
4.6.2 Incorrect Data . 13

4.7 User Interface . 13
4.7.1 UI Navigation . 13

4.8 Power System . 14
4.8.1 Insufficient Battery . 14
4.8.2 Battery Explosion . 14

4.9 Full System . 14
4.9.1 Out of Bounds . 14
4.9.2 Incorrect Markings . 16
4.9.3 Robot Collision . 16
4.9.4 Intruder Collision . 16
4.9.5 Finger Jam . 16

5 Risk Management 17

6 Requirements Traceability Matrix 18

Appendices 19

A Planner Inputs 19

List of Figures

1 Fault Tree of the Failure Mode of the Robot going out of bounds. 15
2 Planner Test Cases. 19

2

1 Introduction

This document provides a test plan for our robotics capstone project. The purpose is to provide a series of
tests to verify and validate system design and implementation. Tests involve one or more subsystems, and
can either validate design decisions or verify successful system operation. The test plan also documents
cases in which the parts of system may fail, as well as describing the risk involved and methods to avoid
these incidents. The tests described are designed to fully test requirements of this system.

2 Design Verification

2.1 Writing Implement

2.1.1 Performance Test: Loading

Test Question: Is a human operator able to reload the writing tool within the required time limit of
10s, and by how much?
Operational Procedure: With a writing tool already installed in the writing assembly, a human test
subject will perform 3 reload tests which are separately timed.
Metric: Duration of the shortest reload time.
Acceptance Criteria: The shortest reload time is under 10s.
Requirement(s) Verified: NFR 14

2.1.2 Performance Test: Writing Quality

Test Question: Is the drawing produced by the robot of acceptable quality?
Operational Procedure: Using a fully loaded writing tool, the robot attempts to draw along a route
with at least 4 ft. of travel distance and 3 turns exceeding 50 degrees. Verify that the resulting drawing
is of acceptable quality.
Metric: Percent thickness of the route at its narrowest point compared to the maximum thickness of a
line created with the writing tool. Boolean on whether or not there are complete breaks in the line.
Acceptance Criteria: The percent thickness is at least 70%, and there are no complete breaks in the
line.
Requirement(s) Verified: NFR 6

2.1.3 Functional Test: Replace Writing Tool

Test Question: Is a human user able to replace the writing tool?
Operational Procedure: A human test subject attempts to replace a writing tool already inside the
robot. Metric: Whether or not the human succeeds in the task before giving up.
Acceptance Criteria: The human must successfully replace the writing tool without giving up within
time limits specified by requirements (2 minutes).
Requirement(s) Verified: FR 7 FR 5 FR 6

2.1.4 Functional Test: Writing Pressure Control

Test Question: Can the writing tool be actuated to move up an down?
Operational Procedure: With a writing tool in the writing assembly, the motors for moving up and
down attempt to move throughout their range.
Metric: Whether or not the writing tool moves. This test measures the writing tool’s ability to precisely
control the writing implement within its vertical range of motion.
Acceptance Criteria: The writing tool must move through the writing assembly’s full vertical range.
Requirement(s) Verified: FR 10

2.1.5 Functional Test: Simultaneous Driving and Writing

Test Question: Can the writing tool make a mark while driving?
Operational Procedure: With a fully loaded writing implement, the robot will mark a 1 ft. line on
the writing surface.
Metric: Whether or not any discernible mark is made and the full distance is covered.

3

Acceptance Criteria: A discernible mark must be made and the full distance must be travelled without
the robot becoming stuck or breaking.
Requirement(s) Verified: NFR 6

2.1.6 Functional Test: Marking

Test Question: Does the writing tool make a mark when pushed down?
Operational Procedure: The robot will press down on a writing surface with a fully loaded writing
implement. Robot must mark with pressure necessary to mark the surface without damaging the surface
or writing tool.
Metric: Whether or not a any discerible mark is made.
Acceptance Criteria: A discernible mark must be made.
Requirement(s) Verified: NFR 6

2.1.7 Functional Test: Force Sensor

Test Question: Can the force sensor measure applied force?
Operational Procedure: The robot will press a writing implement down onto a writing surface with
three different pressure settings: optimal, underactuated, and overactuated. Writing pressure settings
will determine how strong the mark on the surface is. This allows the robot to maintain a consistently
strong mark on the writing surface throughout operation.
Metric: Whether or not the sensor can distinguish between the three different pressure settings.
Acceptance Criteria: The sensor must be able to distinguish between all three settings.
Requirement(s) Verified: NFR 6

2.2 Locomotion

2.2.1 Performance Test: Accuracy

Test Question: Is the robot able to drive with positional and rotational accuracy?
Operational Procedure: The robot drives along a predetermined testing route consisting of at least
3 feet of linear distance and 90 degrees of turn.
Metric: The difference of the robot’s final position and orientation from the intended position and
orientation.
Acceptance Criteria: The robot’s position must be less than 1 inch away from the intended position
and its orientation must be within 10 degrees of the intended orientation. This result must be achieved
90 percent of the time.
Requirement(s) Verified: NFR 12

2.2.2 Functional Test: Speed

Test Question: Can the robot reach a desired speed?
Operational Procedure: The robot will drive along a straight line for 5 ft. during a timed trial.
Metric: The time required for the robot to reach the end of the line.
Acceptance Criteria: The robot must reach the end of the 5 ft. testing course in 20 seconds. This
test must be repeatable 90 percent of the time.
Requirement(s) Verified: NFR 5

2.2.3 Functional Test: Omnidirectional

Test Question: Can the robot drive omnidirectionally?
Operational Procedure: The robot will drive along a path that has a turn of more than 120 degrees.
Metric: Whether or not the robot can make the turn.
Acceptance Criteria: The robot must be able to make an in-place turn more than 120 degrees. Re-
quirement(s) Verified: FR 1, FR 9

4

2.3 Localization

2.3.1 Performance Test: Robot Position Accuracy

Test Question: Is the localization system able to accurately determine the position of each robot?
Operational Procedure: Both robots sit stationary within the working bounds. The localization
system then attempts to determine their locations.
Metric: The difference of the robot’s actual position from the position reported by the localization
system.
Acceptance Criteria: The reported position must be within 1/10 in. of the actual position.
Requirement(s) Verified: NFR 6, FR 4

2.3.2 Performance Test: Bounds Accuracy

Test Question: Is the localization system able to accurately determine the boundaries of the workspace?
Operational Procedure: The localization system attempts to determine the bounds of the workspace.
Metric: The total difference in distance between the reported corners of the workspace and the distance
between the actual corners.
Acceptance Criteria: The total difference must not exceed 1 in.
Requirement(s) Verified: FR 4

2.3.3 Functional Test: Robot Position

Test Question: Can the localization system find the robot?
Operational Procedure: With a single robot within the working bounds, the localization system
attempts to determine the robot’s location. Robot operation out of bounds is also considered out of
scope, and is undefined behavior.
Metric: Whether or not a location is returned by the localization system.
Acceptance Criteria: The system must return a location for the robot.
Requirement(s) Verified: FR 4, NFR 6, FR 3, NFR 13

2.3.4 Functional Test: Bounds

Test Question: Can the localization system find the working bounds?
Operational Procedure: The localization system attempts to find all four corners of the working
bounds while they are all in its field of view.
Metric: Whether or not locations are returned for all four corners.
Acceptance Criteria: The system must return locations for all four corners of the working bounds.
Requirement(s) Verified: FR 4, NFR 6, FR 3

2.4 Image Processing

2.4.1 Performance Test: Accuracy

Test Question: How closely does the image processor output resemble the original image?
Operational Procedure: The image processor takes in a valid input image from the example input
set (Appendix A) and produces a result.
Metric: The percentage of lines that were accurately captured by the image processing system.
Acceptance Criteria: The system must succeed in capturing 95% of the lines in the input image.
Requirement(s) Verified: NFR 6

2.4.2 Functional Test: Return Data

Test Question: Does the image processor return data usable to the planner?
Operational Procedure: The image processor takes in a valid input image from the example input
set (Appendix A) and attempts to produce a series of lines from it.
Metric: Whether or not usable output is produced.
Acceptance Criteria: The image processor must be able to produce a series of lines for the planner.
Requirement(s) Verified: FR 11

5

2.4.3 Functional Test: Reject Improper Input

Test Question: Is the image processor able to detect and reject improper input?
Operational Procedure: The image processor takes in an invalid input image (not an image file or
contains components other than lines).
Metric: Whether or not input is rejected.
Acceptance Criteria: The invalid input must be rejected.
Requirement(s) Verified: FR 11

2.4.4 Functional Test: Keep Lines Within Bounds

Test Question: Does the image processor generate drawing lines within the working bounds?
Operational Procedure: The image processor takes in a valid input from the example input set
(Appendix A) and produces an output in the context of the bounds.
Metric: Whether or not all lines lie within the working bounds.
Acceptance Criteria: All lines must lie within the working bounds.
Requirement(s) Verified: FR 4, FR 11

2.5 Work Scheduling, Distribution and Planning

2.5.1 Performance Test: Executable Plans

Test Question: How consistent is the planner at generating executable plans, ie those that avoid
collision and stay within bounds?
Operational Procedure: Using the example input set (Appendix A), run each input and check the
plan for potential robot-robot collisions and out of bounds driving.
Metric: Ratio of number of unacceptable plans, those that would involve collision or driving out of
bounds, over the total number of plans.
Acceptance Criteria: Almost all, 99% of plans would not involve collision or out-of-bounds if executed.
Requirement(s) Verified: FR 4, NFR 11

2.5.2 Performance Test: Execution Distribution

Test Question: How efficiently is execution time, i.e. the total time robots spend moving, distributed?
Operational Procedure: Using the example input set (Appendix A), run each input and record the
total time each robot spends moving.

Metric: We define execution efficiency as min(execution(R0),execution(R1))
max(execution(R0),execution(R1))

where execution(R0) refers to

the execution time of robot 0 and execution(R0) refers to the execution time of robot 1
Acceptance Criteria: Execution efficiency of 0.75.
Requirement(s) Verified: NFR 5, NFR 9

2.5.3 Performance Test: Drawing Distribution

Test Question: How efficiently is drawing time, i.e. the total time robots spend drawing, distributed?
Operational Procedure: Using the example input set (Appendix A), run each input and record the
total time each robot spends drawing.

Metric: We define drawing efficiency as min(draw(R0),draw(R1))
max(draw(R0),draw(R1))

where draw(R0) refers to the drawing

time of robot 0 and draw(R0) refers to the drawing time of robot 1
Acceptance Criteria: Drawing efficiency of 0.75.
Requirement(s) Verified: NFR 5, NFR 9

2.5.4 Performance Test: Speedup

Test Question: What speedup is achieved by using two robots instead of one?
Operational Procedure: Using the example input set (Appendix A), run each input first with one
robot and then with two. Time the execution time of each variant.
Metric: The comparison of duration, i.e. executiontimewith2robots

executiontimewith1robot .
Acceptance Criteria: According to our requirements we expect a speedup of 2x.
Requirement(s) Verified: NFR 5

6

2.5.5 Functional Test: Collision Free

Test Question: Does the planner and executor generate collision free plans?
Operational Procedure: Using the example input set (Appendix A), run each input and check for
any robot-robot collisions during execution.
Metric: Boolean across each plans on whether a collision occurred.
Acceptance Criteria: We only accept if collisions were avoided on 95% of our test cases.
Requirement(s) Verified: NFR 11

2.5.6 Functional Test: Autonomy

Test Question: Does the system require no user input beyond adding the image to be drawn (except
for error handling)?
Operational Procedure: After having input a plan, press ”Run” on the system and observe if the
system requires user input to finish the drawing.
Metric: Boolean on whether user input was required, excluding input relating to errors.
Acceptance Criteria: Accept only if no input was required.
Requirement(s) Verified: FR 2

2.6 Communication

2.6.1 Performance Test: Uptime

Test Question: What is the uptime on our ability to communicate data to between the robots and the
offboard system?
Operational Procedure: Run the system for a significant period of time (several hours) and record
any communication downtime or data loss during communication.
Metric: Time duration of down communication and packet loss.
Acceptance Criteria: Operational 95% of the time.
Requirement(s) Verified: FR 8, FR 12, NFR 8

2.6.2 Functional Test: Sending and Receiving Data

Test Question: Can the robot send and receive data from the off-board device and can the off-board
device send and receive data to the robot?
Operational Procedure: Send data from the off-board device to the robot and verify the robot received
it. Send data from the robot to the off-board device and verify the off-board device received it.
Metric: Four booleans on whether the data is successfully sent and recieved on both ends.
Acceptance Criteria: We must succeed on all four accounts.
Requirement(s) Verified: FR 8

2.6.3 Functional Test: Data Parsing

Test Question: Can the data on each side (robot, off-board device) be parsed by each other?
Operational Procedure: Send data from the off-board device to the robot and verify the robot re-
ceived it and can execute it. Send data from the robot to the off-board device and verify the off-board
device received it and can respond to it.
Metric: Check whether the data was successfully parsed on all sides.
Acceptance Criteria: We require all data be parsable.
Requirement(s) Verified: FR 8

2.7 User Interface

2.7.1 Performance Test: Emergency Stop Speed

Test Question: How fast does the emergency stop shut down the system?
Operational Procedure: While the system is in use, press the emergency stop button and time how
long it takes for everything to completely shut down.
Metric: Elapsed time.
Acceptance Criteria: It is vital to safety that our emergency stop shuts everything down within a

7

second.
Requirement(s) Verified: NFR 11, FR 13

2.7.2 Performance Test: Error Reporting Delay

Test Question: What is the delay between an error occurring and that error being reported to the
user?
Operational Procedure: Given a list of known operational errors, intentionally trigger each error
within the system and report the time between causing the error and it being reported to the user.
Metric: Averaged elapsed time across error reporting.
Acceptance Criteria: The average time to detect and report an error should be within 3 seconds.
Requirement(s) Verified: NFR 11, NFR 2

2.7.3 Performance Test: Error Understandability

Test Question: How understandable and informative are error messages?
Operational Procedure: Given a list of known operational errors, intentionally trigger each error
while a non-developer user is using the system (while masking the error cause) and evaluate how well the
user can determine the error. For example, while the system is drawing the user could be in a different
room with only the error reporting device, making the user unable to see what errors the robots are
facing.
Metric: Determine if the user can determine the error and knows how to react to or correct the error.
Acceptance Criteria: The user should be able to determine and react effectively for 90% of the errors.
Requirement(s) Verified: NFR 2, NFR 1, FR 14, NFR 7

2.7.4 Functional Test: Emergency Stop

Test Question: Does the emergency stop fully stop the system?
Operational Procedure: While the system is in use, press the emergency stop button and check if all
systems halt their operation.
Metric: Boolean on whether every subsystem stops or not.
Acceptance Criteria: It is only successful if the boolean metric is true.
Requirement(s) Verified: FR 13

2.7.5 Functional Test: Error Reporting

Test Question: Is each operational error reported to the user?
Operational Procedure: Given a list of known operational errors, intentionally trigger each error
within the system and report whether the error caused it reported to the user.
Metric: Each error must be reported correctly. Hence we can divide the number of correctly reported
errors by the number of total errors caused to determine an error-reporting score.
Acceptance Criteria: Considering error handling is critical to performance, our system should have
an error-reporting score of 90%.
Requirement(s) Verified: NFR 2, NFR 1, FR 14, NFR 7

2.8 Power System

2.8.1 Performance Test: Battery Duration

Test Question: How long can an individual robot run for on a single battery charge?
Operational Procedure: Charge a robot fully. Using the example input set (Appendix A), continue
to input drawings until the robot is fully drained of power. Time how long this takes.
Metric: The duration of operational time given one charge
Acceptance Criteria: We accept this if the operational time exceeds the necessary duration time of
90% of our test drawing inputs.
Requirement(s) Verified: FR 15

8

2.8.2 Functional Test: Battery Life

Test Question: Can the robots complete a drawing from a single charge?
Operational Procedure: Using the example input set (Appendix A), we want to test the robots abil-
ity. For each input, fully charge each robot, send the input and keep track of whether the drawing is
fully complete before the battery on either robot is fully drained.
Metric: The ratio of the number of completed drawings to the total number of drawings.
Acceptance Criteria: We want to be able to successfully draw 90% of the drawings in our example
drawing input set.
Requirement(s) Verified: FR 15

3 Full System Validation

3.1 Performance Test: Painting Accuracy

Test Question: How closely does the drawn image resemble the original image?
Operational Procedure: Using the example input set (Appendix A), input each for the system to
complete. After completion, overlap the original image with the image of final drawing captured from
overhead camera. Rescale the two images so that they are in the same size. Evaluate the coherence of
the two images.
Metric: The percentage of drawn lines that were within 3 pixels of difference compared to those of the
original image.
Acceptance Criteria: The system must successfully and accurately draw 95% of the lines in the
original image.
Requirement(s) Verified: NFR 6

3.2 Performance Test: Reliability

Test Question: How reliable is the system in terms of successfully complete a series of drawing tasks?
Operational Procedure: Command the system to finish the example input set (Appendix A). Mea-
sure the number of consecutive successful completion. Successful completion is defined as the system
autonomously finishes painting and the painting process is free of errors including but not limited to lo-
calization breakdown, motor breakdown, or painting mechanism breakdown. Calling human interference
with switching battery and drawing utility does not count as unsuccessful run.
Metric: Number of consecutive painting completion.
Acceptance Criteria: The minimum acceptable number of consecutive completion is 5.
Requirement(s) Verified: NFR 8

3.3 Functional Test: Size

Test Question: Is the robot agent too big to be portable, i.e. carry the robot through a standard door?
Operational Procedure: Measure the physical dimensions of the robot in terms of width, length, and
height or in terms of diameter and height.
Metric: Numeric value of each length measurement; robot footprint; robot volume.
Acceptance Criteria: Must be less than 80 in. x 36 in. x 36 in.
Requirement(s) Verified: NFR 4

3.4 Functional Test: Weight

Test Question: Is the robot agent too heavy to be portable, i.e. able to be lifted by a normal person?
Operational Procedure: Measure the mass of the robot.
Metric: Numeric value of robot mass.
Acceptance Criteria: Must be less than 50 pounds.
Requirement(s) Verified: NFR 3

9

3.5 Functional Test: Budget

Test Question: Does the cost for developing this robotic system exceed our budget?
Operational Procedure: Document total amount of money spent for designing and constructing this
robot system. This includes machining expense, part cost, and etc.
Metric: Total amount of money spent.
Acceptance Criteria: Total developing expense has to be less than $2500.
Requirement(s) Verified: NFR 10

3.6 Functional Test: Safety

Test Question: Is the robot safe during operation? Specifically, when collision happens, will the robot
harm other robots, external environment, or human?
Operational Procedure: Count the number of sharp edges on the exterior of the robot. Also, mea-
sure the time it takes from the overhead camera detects collision to robot agent stops moving motors.
Intermediate steps involved are: camera sends collision signal to system controller and system controller
commands involved robot agent to stop its current action.
Metric: Number of sharp edges (angles less than 90 degrees); amount of time takes from detection to
action.
Acceptance Criteria: Values for these two metrics need to be as small as possible. Zero sharp edges
can be on the exterior - any edges from, for example, a rectangular chassis, should be rounded. The
maximum amount of time is 1.5 seconds.
Requirement(s) Verified: NFR 11

3.7 Functional Test: Documentation

Test Question: Is the documentation for the developing process comprehensive and replicable?
Operational Procedure: Give the full documentation to another design group or stakeholder and
inquiry if they can duplicate the project with those documents.
Metric: Boolean on whether or not reviewers can replicate the system development process.
Acceptance Criteria: Reviewers are confident to replicate system development process based on the
documentation.
Requirement(s) Verified: NFR 1

4 Failure Modes

4.1 Writing Implement

4.1.1 Out of Writing Material

Description: This failure mode describes the situation when a writing implement is loaded inside a
robot agent, and runs out of writing material, i.e. ink or chalk.
Cause: Overuse of the writing implement.
Effects: The robot agent moves around and attempts to continue drawing, without making physical
marks.
Criticality: This is a critical failure, as it requires the user to replace the implement before drawing
can continue. If the user fails to replace the implement, lines will be missing from the drawing.
Safety Hazards: There is no safety hazard associated with this failure mode.
Mitigation: Routine inspections of the writing material level can help mitigate this failure mode.

4.1.2 Writing Mechanism Failure

Description: This failure occurs when the mechanism that raises and lowers the writing implement
does not work. This causes the robot to be incapable of either drawing a line or even moving on the
writing surface.
Cause: This is caused by a communication failure, as described by Sec. 4.6.1, or more likely, by the
raise/lowering mechanism breakdown.
Effects: The robot agent will be unable to alter whether or not it is writing as it moves. This can cause
either missing lines or incorrect ones, depending on the state of the writing mechanism.

10

Criticality: This is a critical failure as it directly affects the quality of the lines being drawn. To
continue opertion, users can resolve this issue after receiving an error message. However, it is possible
that the drawing has already been compromised.
Safety Hazards: There is no safety hazard associated with this failure mode.
Mitigation: Routine inspections and careful handling of the writing mechanism can help mitigate this
failure mode.

4.2 Locomotion

4.2.1 Inaccurate Motion

Description: This failure mode describes the situation in which a robot agent is unable to accurately
follow motion commands. An example of this is if the robot is commanded to move 10 inches, but
localization detects it only moving 4 inches.
Cause: Inaccurate motion could be a result of slippage of wheels, failed motor encoders, or failed driving
motors. Encoders and the localization system can be used to determin which of these causes occured.
Effects: Inability to move accurately can cause a user-reported error, which the user can resolve to
continue operation.
Criticality: This is a minor failure, as it does not end system operation and can be resolved by the
user.
Safety Hazards: The only safety hazard is with regard to the drawing surface; slippage could cause
minor destruction of the surface.
Mitigation: Proper maintenance on the driving mechanism and using high-quality, reliable components
can help mitigate this failure mode.

4.2.2 Failure to Move Omnidirectionally

Description: Failure to make omnidirectional movements means a robot agent cannot move in an
arbitrary direction on the flat plane represented by the drawing surface.
Cause: Similar to Sec. 4.2.1, this could be caused by wheels slippage. Alternatively, a broken wheel or
motor could have this effect as well.
Effects: Failing to move omnidirectionally could result in incorrect drawings - the robot agent can no
longer move along sharp curves to faithfully recreate the input image. When detected, robot operation
should halt and robot should report to the user of this failure.
Criticality: This is a critical error, as it has a direct influence on the quality of the drawing.
Safety Hazards: As with Sec. 4.2.1, the only safety hazard is that a broken wheel could damage the
drawing surface.
Mitigation: Proper maintenance on the driving mechanism and using high-quality, reliable components
can help mitigate this failure mode.

4.3 Localization

4.3.1 Camera Failure

Description: A camera failure occurs when the localization camera, mounted above the drawing surface,
is incapable of gathering and/or sending data to the off-board processor.
Cause: Two potential causes for a camera failure are insufficient power supplied to the camera, or
improper mounting. Improper mounting can cause the camera to fall or hang, which results in skewed
and mis-calibrated camera data.
Effects: The effect of camera failure results in localization being poor or impossible, which can halt
operation. This can be temporary, as a user-reported error would be generated to resolve this issue.
Criticality: This failure is of medium importance, as, while it halts operation, it can be resolved by the
user to continue the drawing process.
Safety Hazards: The only safety hazard exists if the camera falls entirely from its mount, in which
case it may fall on a person below.
Mitigation: A stable and sturdy camera mount design and using a reliable camera can help mitigate
this failure mode.

11

4.3.2 Unusable Localization Data

Description: This failure mode exists when the off-board processing system is unable to localize.
Cause: Causes include mis-calibrated camera data or incorrectly placed bounds tags. For example, the
bounds tags could be placed in a shape that does not reflect the drawing surface accurately, resulting in
incorrect localization. Blurry data could also result in misreading localization tags.
Effects: If localization cannot be completed, robot operation will halt to avoid performing undefined
actions. This error can be resolved by the user recalibrating or fixing the source that causes bad data.
Criticality: Similar to Sec. 4.3.1, this failure is of medium criticality and can be resolved by the user.
Safety Hazards: There are no safety hazards that result from this failure mode.
Mitigation: Concrete setup procedures and multiple checks before operation can help mitigate this
failure mode.

4.3.3 Vision Tag Occlusion

Description: Occlusion of the vision tags is when the camera does not have direct line-of-sight of any
vision tag used for localizing robots and bounds.
Cause: Tag occlusion is likely the result of an obstacle unexpectedly entering the scene. This could be
a person walking over the drawing surface or over the edges of the camera view, where the vision tags
representing the surface bounds are located.
Effects: Inability to find a tag results in incomplete localization, and will pause operation until the user
can resolve the issue. This guarantees all robots are tracked continually during operation, as well as
staying within bounds of the drawing surface.
Criticality: This is a minor failure, as robot operation can easily be corrected and operation can
continue.
Safety Hazards: There are no safety hazards that result from this failure mode.
Mitigation: Proper security of the area around the work surface can help mitigate this failure mode.

4.4 Image Processing

4.4.1 Unable to Process Input Image

Description: Inability to process user input refers to the image processing subsystem failing to deter-
mine a set of lines usable for work distribution, planning, and scheduling.
Cause: This could be caused by an unreadable input or input drawings that do not conform to require-
ments. An example of this would be an input that contains background noise, making it unsuitable for
processing and drawing.
Effects: The effect is that another input, a corrected version of the initial input, will have to be supplied
for the system to continue operation.
Criticality: This failure is critical to system operation, as no drawing can be made until the input can
be properly processed.
Safety Hazards: There are no safety hazards involved in this failure mode.
Mitigation: A clear set of guidelines and directions for the human providing the input image can help
mitigate this failure mode.

4.5 Work Scheduling, Distribution and Planning

4.5.1 Fail to Plan

Description: This failure mode occurs when the offboard system is unable to generate a valid plan
for the robot agents. This means the main controller is unable to command the robots to successfully
complete the input drawing.
Cause: Failure to create a valid plan could arise from an out of bounds drawing. Other reasons include
the image processing result being incorrect, which forces the work planner to incorrectly assign and
generate plans.
Effect: The system is unable to complete an invalid drawing, and cannot begin autonomous operation.
Criticality: This is a system-critical failure due to the fact that the system cannot recreate the drawing
if it cannot generate a robot motion plan to do so.
Safety Hazards: There are no safety hazards associated with this failure mode, given that it is entirely
software-based.

12

Mitigation: Clear guideines and instructions for the human providing the image can help mitigate this
failure mode.

4.6 Communication

4.6.1 Loss of Connection

Description: A loss of connection occurs when a robot agent and the off-board processing unit are
unable to send data between each other. As per Sec. 8, the robot system expects consistent communica-
tion. This means that a failure resulting in intermittent or sparse connection will be treated equivalently
to no connection.
Cause: This failure mode is the result of a robot agent and the off-board unit being unable to connect.
This could be the result of a hardware failure, in which the either of the robot or off-board device’s trans-
mitter fail. Other causes could be loss of signal due to distance between the two devices, or obstacles
that attenuate or disturb communication.
Effects: In the case that the off-board device cannot communicate with the robot, robots should be
aware of a dropped connection and cease all locomotion. This will prevent robots from moving out of
bounds or into collision, as without connection they can no longer localize. If the robot cannot commu-
nicate with the off-board device, locomotion should also end. The robot cannot report errors or sensor
information to the off-board device for planning and scheduling, which then risks incorrect drawing and
motion.
Criticality: Loss of connection is high-risk with regard to completing the drawing task. Requirements
do not specify the ability to recover a connection, so processing and drawing will end on signal loss.
Safety Hazards: The only risk is the robots going out of bounds, or colliding with each other. Both of
these pose little hazard to bystanders, as the robots are designed to be safe in the event of human-robot
collision (Sec. 11).
Mitigation: Redundant communication systems and robust communication protocols can mitigate this
failure mode.

4.6.2 Incorrect Data

Description: This failure mode occurs when the robot receives bad data from the off-board device,
or when the off-board device receives bad data from a robot agent. Bad data here refers to data that
cannot be parsed by either end.
Cause: Garbage data could be the result of a low-quality connection with high noise, or if data being
sent becomes corrupted. It could also occur due to controller inability to parse the data being sent.
Effects: Invalid and incorrect commands and information should be ignored by the robot agent or the
off-board processor.
Criticality: Incorrect data is noncritical to task completion as incorrect commands will be reacted to
accordingly and resent. For example, if the off-board device sends a locomotion command to a robot,
but the command becomes corrupt. The localization system will see the robot not move, and attempt
to send a similar motion command again.
Safety Hazards: There is no risk to unparseable data being sent between robot and off-board device.
Mitigation: Redundant communication systems and robust communication protocols can mitigate this
failure mode.

4.7 User Interface

4.7.1 UI Navigation

Description: This failure occurs when a user is unable to navigate the UI to setup and begin the
autonomous drawing process.
Cause: Causes of this effect could be an unintuitive user interface, a UI that lacks features necessary to
run the system, or lack of user training to use the interface properly.
Effects: The only effect is that the system is unable to begin the drawing process.
Criticality: UI failure is noncritical to system operation, as the system can run without a graphical
interface. However, it is critical for demo purposes as a demo user must be able to begin system operation.
Safety Hazards: No safety hazards are posed by this failure mode.
Mitigation: A clear and intuitive UI design as well as a short training phase for human operators can
help mitigate this failure mode.

13

4.8 Power System

4.8.1 Insufficient Battery

Description: This failure mode arises when the battery for an individual robot agent is low or out of
power.
Cause: Insufficient battery power is a result of overuse of the battery from autonomously drawing for
too long.
Effect: The result is a robot agent being unable to move, draw, or communicate with the offboard
system, as it has no subsystems being powered.
Criticality: This failure is critical, as it can pause and/or end robot operation. Robot agent battery
must be replaced before operation can continue.
Safety Hazards: There are no safety hazards that result from the battery being low or out of power.
Mitigation: Regular battery level inspections and using reliable batteries can help mitigate this failure
mode.

4.8.2 Battery Explosion

Description: This failure mode arises when the battery experiences catastrophic failure and EX-
PLODES.
Cause: Improper charging procedures or unsafe battery handling can cause this failure mode to occur.
Effect: Battery explosion can cause irreparable damage to the entire system, as well as to the humans
in the area.
Criticality: This failure is of high importance. Battery explosion will cause the entire system to become
unusable, and will undoubtedly require an extensive amount of work to repair.
Safety Hazards: There is a significant safety hazard for this failure mode, as with all situations involv-
ing fire and explosions.
Mitigation: Strict procedures for battery charging and handling can help mitigate this failure mode.

4.9 Full System

4.9.1 Out of Bounds

Description: This failure describes the situation when any robot agents move beyond the bounds of
the drawing surface, as described by the boundary vision markers.
Cause: This error can be caused by either poor localization, or poor locomotion. If localization software
believes the robot to be somewhere it is not, it may command the robot out of bounds. If the robot
motors or wheels are not working properly, it may move out of bounds, despite being given correct
motion commands.
Effect: The robot moving out of bounds introduces undefined behavior that could result in collision,
incorrect drawings, or making marks with the writing tool that are not on the appropriate writing surface.
Criticality: This is a critical error, as it results in incorrect localization, drawing marks, and system
operation. Entering this failure mode results in system operation ending.
Safety Hazards: This failure poses a safety hazard of collision, as robots that exist the bounds may
collide with objects or people that it is not expecting.
Mitigation: Robust localization system and driving mechanism designs can help mitigate this failure
mode.
Failure Tree: See Fig.1

14

Figure 1: Fault Tree of the Failure Mode of the Robot going out of bounds.

15

4.9.2 Incorrect Markings

Description: Incorrect markings are made when a robot agent lowers the writing implement, and makes
a mark in a location that does not match with the input drawing.
Cause: The cause of incorrect markings could be a result of the writing implement, locomotion, or
localization subsystems. The writing implement subsystem may malfunction and lower the tool at an
incorrect time. The locomotion subsystem may move the robot incorrectly while the writing implement
is lowered, making markings where they are not expected. Localization error can cause markings to be
in places that the system thinks are correct, but do not line up with the input drawing.
Effect: The effect of this failure is that the output drawing by the system is incorrect.
Criticality: Given that the goal of this robot subsystem is to accurately recreate an input drawing,
failure to do so is a critical error.
Safety Hazards: There are no safety hazards associated with incorrectly marking the drawing surface.
Mitigation: A fail-safe writing implement design and robust localization/driving mechanism designs
can help mitigate this failure mode.

4.9.3 Robot Collision

Description: This failure exists when robot agents collide with any obstacle, including each other or
external obstacles.
Cause: Robot collision is a result of the locomotion, localization, or work scheduling subsystems failing.
Locomotion failure could cause undefined motions by a robot agent, causing it to hit another robot,
or move out of bounds (Sec. 4.9.1) and collide with an obstacle. Localization failure could result
in incorrect motion commands, resulting in collision with unintended objects. Finally, poor motion
planning has potential to require the robots to move into collision with each other.
Effect: Robot collision could damage the robot agents, or hurt human observers who are hit.
Criticality: This failure is of medium importance. The robots are designed to be safe (NFR 11), and
therefore are unlikely to hurt or be significantly damaged by a collision.
Safety Hazards: There is a hazard of minor human injury, but as stated above the robots are designed
to minimize human injury in the case of collision.
Mitigation: Robust localization and driving mechanism designs, as well as short-rage collision sensors
can help mitigate this failure mode.

4.9.4 Intruder Collision

Description: Robot agents run the risk of colliding with intruders when humans or other objects un-
expectedly move into the robot’s workspace during operation.
Cause: Intruder collision can occur when humans and other objects are allowed to enter the workspace.
Effect: Intruding objects prevent robots from moving in their intended directions, severely affecting
effectiveness of operation.
Criticality: This failure is of high importance. If an intruder occupies the same area as a part of the
drawing, it will be impossible for the system to complete the task.
Safety Hazards: There is a hazard for minor human injury if very young humans are caught in the
wheels or motors.
Mitigation: Tight security around the workspace, whether through physical barriers or signs, can help
mitigate this failure mode.

4.9.5 Finger Jam

Description: This failure occurs when a human user’s fingers are jammed in the motors for chalk lifting
or locomotion.
Cause: Finger jamming can occur as result of improper operation of the robot, or if untrained users are
allowed into the workspace during operation.
Effect: The motors could damage jammed fingers, causing injury to humans. The motors themselves
would likely also be damaged.
Criticality: This failure is of high importance. It directly affects human safety and the operation of the
entire system.
Safety Hazards: There is a hazard for severe human injury in the worst case.

16

Mitigation: Strict procedures and instructions for handling the robot can help mitigate this failure
mode. Additionally, safety housings over moving parts will also decrease the likelihood of the failure
mode occuring.

5 Risk Management

We assess risk through the following questions.

• Likelihood: how likely is this failure mode?

• Detectability: how likely can this failure mode be noticed?

• Criticality: how serious are the potential results caused by this failure mode?

• Priority: how much attention should be put in to address this failure mode?

The scales for priority is assigned based on likelihood, detectability, and criticality. We define the
following scales and rank our failure modes accordingly.

Scale Likelihood

1 Impossible (close to 0% chance)
2 Unlikely (25% chance)
3 Possible (50% chance)
4 Certain (75% chance)
5 Inevitable (100% chance)

Scale Detectability

1 Impossible to detect (close 0% chance)
2 Unlikely to detect (25% chance)
3 Might be detected (50% chance)
4 Easy to detect (75% chance)
5 Obvious (100% chance)

Scale Criticality

1 Harmless
2 May result in minor pain
3 May result in minor injury
4 May result in moderate injury and result in system immobility
5 May result in serious injury and death

Scale Priority

1 Negligible
2 Could be addressed
3 Necessary to be addressed
4 Important to be addressed
5 Has to be addressed and avoided

17

Failure Mode Likelihood Detectability Criticality Priority

FM 4.1.1 2 4 2 4
FM 4.1.2 1 3 4 5
FM 4.2.1 1 2 4 3
FM 4.2.2 1 3 4 2
FM 4.3.1 1 5 5 4
FM 4.3.2 2 2 3 3
FM 4.3.3 3 5 3 4
FM 4.4.1 3 5 1 1
FM 4.5.1 2 5 4 5
FM 4.6.1 3 3 5 5
FM 4.6.2 1 3 5 4
FM 4.7.1 1 5 3 1
FM 4.8.1 3 4 5 4
FM 4.8.2 1 5 5 5
FM 4.9.1 2 4 4 3
FM 4.9.2 3 1 3 1
FM 4.9.3 1 5 3 3
FM 4.9.4 1 2 5 2
FM 4.9.5 2 1 5 5

6 Requirements Traceability Matrix

Requirement Test

FR 1 T2.2.3
FR 2 T2.5.6
FR 3 T2.3.3, T2.3.4
FR 4 T2.3.1, T2.3.2, T2.3.3, T2.3.4, T2.4.4, T2.5.1
FR 5 T2.1.3
FR 6 T2.1.3
FR 7 T2.1.3
FR 8 T2.6.1, T2.6.2, T2.6.3
FR 9 T2.2.3
FR 10 T2.1.4
FR 11 T2.4.2, T2.4.3, T2.4.4
FR 12 T2.6.1
FR 13 T2.7.1, T2.7.4
FR 14 T2.7.3, T2.7.5
FR 15 T2.8.1, T2.8.2
NFR 1 T2.7.3, T2.7.5, T3.7
NFR 2 T2.7.2, T2.7.3, T2.7.5
NFR 3 T3.4
NFR 4 T3.3
NFR 5 T2.2.2, T2.5.2, T2.5.3, T2.5.4
NFR 6 T2.1.2, T2.1.5, T2.1.6, T2.1.7, T2.3.1, T2.3.3, T2.3.4, T2.4.1, T3.1
NFR 7 T2.7.3, T2.7.5
NFR 8 T2.6.1, T3.2
NFR 9 T2.5.2, T2.5.3
NFR 10 T3.5
NFR 11 T2.5.1, T2.5.5, T2.7.1, T2.7.2, T3.6
NFR 12 T2.2.1
NFR 13 T2.3.3
NFR 14 T2.1.1

18

Appendices

A Planner Inputs

The following are a set of sample drawing inputs that will be used to test the system. Some test inputs
have been randomly generated while others were designed to stress test a particular feature.

Figure 2: Planner Test Cases.

19

