Robot Gesture Engine

Rachel Holladay
Siddhartha Srinivasa

The Robotics Institute
Carnegie Mellon University
Personal Robotics Laboratory
Hardware and Software Platform to Enable Computing Research in HRI
Hardware and *Software* Platform to Enable Computing Research in HRI
Hardware and *Software* Platform to Enable Computing Research in HRI

Through a Gesture Library
Key Contribution: Robot Gesture Engine (RoGuE)
<table>
<thead>
<tr>
<th>Literature Review</th>
<th>Mathematical Formulation</th>
<th>Robotic Systems</th>
</tr>
</thead>
</table>

\[
\begin{bmatrix}
x_{\text{min}} & x_{\text{max}} \\ y_{\text{min}} & y_{\text{max}} \\ z_{\text{min}} & z_{\text{max}} \\ \psi_{\text{min}} & \psi_{\text{max}} \\ \theta_{\text{min}} & \theta_{\text{max}} \\ \phi_{\text{min}} & \phi_{\text{max}}
\end{bmatrix}
\]
<table>
<thead>
<tr>
<th>Kendon</th>
<th>McNeill & Levy</th>
<th>Rimé & Schiaratura</th>
<th>Efron</th>
<th>Identifying Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>physiographic</td>
<td>iconic</td>
<td>physiographic</td>
<td>kinetographic</td>
<td>picture the content of speech</td>
</tr>
<tr>
<td>ideographic</td>
<td>metaphoric</td>
<td>iconic</td>
<td>ideographic</td>
<td>portray the speaker's ideas, but not directly the speech content</td>
</tr>
<tr>
<td>gesticulation</td>
<td>beats/Butterworths</td>
<td>speech-marking</td>
<td>baton</td>
<td>marking the rhythm of speech</td>
</tr>
<tr>
<td>autonomous</td>
<td>symbolic</td>
<td>symbolic</td>
<td>symbolic/</td>
<td>standardized gestures, complete within themselves, without speech</td>
</tr>
<tr>
<td>gestures</td>
<td></td>
<td></td>
<td>emblematic</td>
<td></td>
</tr>
<tr>
<td>— none —</td>
<td>deictic</td>
<td>deictic</td>
<td>— none —</td>
<td>pointing at thing/area; space around body used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kendon</th>
<th>McNeill & Levy</th>
<th>Rimé & Schiaratura</th>
<th>Efron</th>
<th>Identifying Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>physiographic</td>
<td>iconic</td>
<td>physiographic</td>
<td>kinetographic</td>
<td>picture the content of speech</td>
</tr>
<tr>
<td>ideographic</td>
<td>metaphoric</td>
<td>iconic</td>
<td>ideographic</td>
<td>portray the speaker's ideas, but not directly the speech content</td>
</tr>
<tr>
<td>gesticulation</td>
<td>beats/Butterworths</td>
<td>speech-marking</td>
<td>baton</td>
<td>marking the rhythm of speech</td>
</tr>
<tr>
<td>autonomous gestures</td>
<td>symbolic</td>
<td>symbolic</td>
<td>symbolic/emblematic</td>
<td>standardized gestures, complete within themselves, without speech</td>
</tr>
<tr>
<td>— none —</td>
<td>deictic</td>
<td>deictic</td>
<td>— none —</td>
<td>pointing at thing/area; space around body used</td>
</tr>
</tbody>
</table>

Presenting Pointing Exhibiting Sweeping
\[
\begin{bmatrix}
 x_{\text{min}} & x_{\text{max}} \\
 y_{\text{min}} & y_{\text{max}} \\
 z_{\text{min}} & z_{\text{max}} \\
 \psi_{\text{min}} & \psi_{\text{max}} \\
 \theta_{\text{min}} & \theta_{\text{max}} \\
 \phi_{\text{min}} & \phi_{\text{max}}
\end{bmatrix}
\]
$T_w^0 \quad T_e^w \quad B_w$
T_w^0
T^0_w

TSR Frame (W)

Origin (0)
\(T_0^w \)

TSR Frame \((W)\)

Origin \((0)\)
T^w_e
T_e^W
T^w_e
B_w
B_w
B_w
B_w
B_w
B_w

\begin{align*}
\begin{bmatrix}
 x_{\text{min}} & x_{\text{max}} \\
 y_{\text{min}} & y_{\text{max}} \\
 z_{\text{min}} & z_{\text{max}} \\
 \psi_{\text{min}} & \psi_{\text{max}} \\
 \theta_{\text{min}} & \theta_{\text{max}} \\
 \phi_{\text{min}} & \phi_{\text{max}}
\end{bmatrix}
\end{align*}
End Effector
Assumptions
End Effector Assumptions

Reference Assumptions
Presenting
\(T_w^0 \)
T_w^e
B_w
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
-\pi & 0 & \pi \\
0 & 0 & 0
\end{bmatrix}
\]

Pitch
Pointing
Exhibiting

Created by Takao Umehara from Noun Project
Planning Call #1: Grasping
Planning Call #1: Grasping
Planning Call #2: Exhibiting
Planning Call #2: Exhibiting
Planning Call #3: Exhibiting
Sweeping
Planning Call #1: Place Hand
Planning Call #1: Place Hand
Planning Call #2: Sweeping
Planning Call #2: Sweeping
Literature Review

Mathematical Formulation

\[
\begin{bmatrix}
 x_{\text{min}} & x_{\text{max}} \\
 y_{\text{min}} & y_{\text{max}} \\
 z_{\text{min}} & z_{\text{max}} \\
 \psi_{\text{min}} & \psi_{\text{max}} \\
 \theta_{\text{min}} & \theta_{\text{max}} \\
 \phi_{\text{min}} & \phi_{\text{max}}
\end{bmatrix}
\]

Robotic Systems
def Present_HERB(robot, focus, arm):
 present_tsr = robot.tsrlibrary('present', focus, arm)
 robot.PlanToTSR(present_tsr)
 preshape = {finger1=1, finger2=1,
 finger3=1, spread=3.14}
 robot.arm.hand.MoveHand(preshape)

def Present_ADA(robot, focus, arm):
 present_tsr = robot.tsrlibrary('present', focus, arm)
 robot.PlanToTSR(present_tsr)
 preshape = {finger1=0.9, finger2=0.9}
 robot.arm.hand.MoveHand(preshape)
```python
def Present_HERB(robot, focus, arm):
    present_tsr = robot.tsrlibrary('present', focus, arm)
    robot.PlanToTSR(present_tsr)
    preshape = {finger1=1, finger2=1,
                 finger3=1, spread=3.14}
    robot.arm.hand.MoveHand(preshape)

def Present_ADA(robot, focus, arm):
    present_tsr = robot.tsrlibrary('present', focus, arm)
    robot.PlanToTSR(present_tsr)
    preshape = {finger1=0.9, finger2=0.9}
    robot.arm.hand.MoveHand(preshape)
```
Key Contribution:
Robot Gesture Engine (RoGuE)
Robot Gesture Engine

Rachel Holladay
Siddhartha Srinivasa

www.personalrobotics.ri.cmu.edu