

Force-and-Motion Constrained Planning for Tool Use

Rachel Holladay

Research Qualifying Exam December 2019

Forceful Manipulation

Forceful Manipulation with Hand Tools

374

1. Extending reach

1. Extending reach

Sinapov et al. `08, Tikhanoff et al. `13, Jain et al. `14, Elliott et al. `16, Xie et al. `19

[Xie et al. 2019]

1. Extending reach

Sinapov et al. `08, Tikhanoff et al. `13, Jain et al. `14, Elliott et al. `16, Xie et al. `19

2. Amplifying mechanical force

1. Extending reach

Sinapov et al. `08, Tikhanoff et al. `13, Jain et al. `14, Elliott et al. `16, Xie et al. `19

2. Amplifying mechanical force

Our Work

1. Extending reach

Sinapov et al. `08, Tikhanoff et al. `13, Jain et al. `14, Elliott et al. `16, Xie et al. `19

2. Amplifying mechanical force

Our Work

3. Control liquid flow

1. Extending reach

Sinapov et al. `08, Tikhanoff et al. `13, Jain et al. `14, Elliott et al. `16, Xie et al. `19

2. Amplifying mechanical force

Our Work

- 3. Control liquid flow
- 4. Enhance effectiveness of antagonistic displays

1. Extending reach

Sinapov et al. `08, Tikhanoff et al. `13, Jain et al. `14, Elliott et al. `16, Xie et al. `19

2. Amplifying mechanical force

Our Work

- 3. Control liquid flow
- 4. Enhance effectiveness of antagonistic displays

Actuate

Existing Methods?

Grasp Engage Actuate

Place

Existing Methods

Task-Oriented Grasping

Li and Sastry 1988. Borst et al 2004. Haschke et al 2005. Song et al 2015. Nikandrova and Kyrki 2015. Lin and Sun 2015. Kokic et al 2017. Fang et al 2018.

Existing Methods

Place

Existing Methods

Actuate

Place

Collision-Free Planning

Lavalle 1996. Kingston 2018. Siciliano and Khatib 2016. Schulman et al 2013. etc., etc.

Existing Methods

Place

Existing Methods

Place

Hybrid Position-Force Control

Move compliantly with task frame defined fixed to the end-effector, at the tip of the screwdriver with task-frame directions: x_i : force: 0 N y_i : velocity: 0 mm/s z,: force: -FN α_{x} : force: 0 N mm α_{w} : force: 0 N mm α_{zt} : velocity: $-\omega$ rad/s with feedforward velocity frame equal to endeffector frame and feedforward velocity (0,0,-pitch*\u03c6/ $2\pi, 0, 0, 0)$ until z_{ee} exceeds s mm and α_n force equals T N mm.

Mason, 1981. De Schetter and Van Brussel 1988. Hou and Mason 2019.

Sweeping Hammer

30

Unifying Planning Framework

via Constraint Satisfaction

Only if the tip of the screwdriver Only if K are directions: j_i : velocity: 0 mm/s z_i : force: -F N α_n : force: 0 N mm α_{pe} : force: 0 N mm α_{re} : velocity: $-\omega$ rad/s with feedforward velocity frame equal to endeffector frame and feedforward velocity (0,0,-pitch* $\omega/2\pi,0.0,0$) **D** that z_{ee} exceeds s mm and α_n force equals T N mm.

high-dimensional continuous decision variables

high-dimensional continuous decision variables

with constraints and dependencies

 ξ_m

37

Frictional Joint

Planar Patch Contacts

Planar Patch Contacts

Planar Patch Contacts

Contact Frame

What friction does the grasp offer?

Limit Surface

Limit Surface

$$w = (f_x, f_z, t_y)$$

Limit Surface

$$w = (f_x, f_z, t_y)$$

 $w^T A w = 1$

$$\frac{f_x^c}{(N\mu)^2} + \frac{f_z^c}{(N\mu)^2} + \frac{t_y^c}{(N\mu)^2(rc)^2} > 1$$

Bad Grasp!

Organize the space of IK Solution as a graph that can be efficiently searched through according to a distance metric.

Minimizing Task Space Fréchet Error via Efficient Incremental Graph Search. Rachel Holladay, Oren Salzman, and Siddhartha Srinivasa. RA-L, 2019.

Organize the space of IK Solution as a graph that can be efficiently searched through according to a distance metric.

G

Path with some error

$\tau_{ext} = J^T(q) f_{ext}$

$\tau_{lim} > \tau_{ext} = J^T(q) f_{ext}$

Dmitry Berenson. "Constrained Manipulation Planning," Carnegie Mellon University, 2011. Chen, Lipeng, Luis FC Figueredo, and Mehmet Dogar. "Manipulation planning under changing external forces." *IROS*. IEEE, 2018.

Applied to four tasks

Assumptions

Assumptions

On-Going Work

On-Going Work

On-Going Work

Force-and-Motion Constraints

Force-and-Motion Constrained Planning for Tool Use

Rachel Holladay

Research Qualifying Exam December 2019

Back-Up Slides: Fréchet Distance

Back-Up Slides: Layered Graph

 $\xi^* = \arg\min_{p \in L} Frechet(FK(p), \bar{\xi})$

 $\xi^* = \arg\min_{p \in L} Frechet(FK(p), \bar{\xi})$

 $|p \in L|$

 $\xi^* = \arg\min_{p \in L} Frechet(FK(p), \bar{\xi})$

 $|p \in L| \in \mathcal{O}(n^k)$

Can we be more intelligent in our search?

 $Frechet(FK(p), \overline{\xi})$

Search the Cross Product Space of the two paths to find the Minimum Leash.

Search the Cross Product Space of *the reference path and the graph* to find the Minimum Leash.

Search the Cross Product Space of *the reference path and the graph* to find the *Bottleneck Shortest Path*.

Back-Up Slides: Impact of Torque Constraint

What if we violate these constraints?

Torque Fault!

Success!