Tool Use as a *constraint satisfaction* problem, with high-dimensional continuous variables

Choose a grasp G such that:
1. Kinematically Suitable
2. Reachable
3. Force Suitable

Kinematic Suitability
Goal: Enables Tool Path while respecting torque limits

$$\tau_{\text{lim}} > J^T(q) \tau_{\text{ext}}$$

Reachability
Goal: Exists collision-free path to grasp

Force Suitability
Goal: Frictional Joint "maintained" under external forces

Model grasp with planar patch contacts

$$f_x^c (N\mu)^2 + f_z^c (N\mu)^2 + (N\mu)^2(r_{\text{FL}})^2 < 1$$

How Difficult are the Tasks?

<table>
<thead>
<tr>
<th>Task</th>
<th>C_0</th>
<th>C_1</th>
<th>C_2</th>
<th>$C_0 \cap C_2$</th>
<th>$C_0 \cap C_1 \cap C_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>screw_driving</td>
<td>500</td>
<td>398</td>
<td>162</td>
<td>162</td>
<td>162</td>
</tr>
<tr>
<td>wrench_turning</td>
<td>52</td>
<td>369</td>
<td>220</td>
<td>219</td>
<td>27</td>
</tr>
<tr>
<td>knife_cutting</td>
<td>56</td>
<td>382</td>
<td>329</td>
<td>333</td>
<td>26</td>
</tr>
<tr>
<td>hammer_pulling</td>
<td>36</td>
<td>359</td>
<td>116</td>
<td>116</td>
<td>1</td>
</tr>
</tbody>
</table>

Easy, *Medium*, *Hard*

Experimental Force/Torque Profiles

- *knife_cutting*
 - f_x vs. Time Steps
 - f_z vs. Time Steps

- *wrench_turning*
 - f_x vs. Time Steps
 - f_z vs. Time Steps

Rachel Holladay1,2, Tomás Lozano-Pérez2 and Alberto Rodriguez1

1Manipulation & Mechanisms @ MIT, 2Learning & Intelligent Systems

Massachusetts Institute of Technology