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Abstract 

Many parallel algorithms are naturally expressed at a fine 
level of granularity, often finer than a MIMD parallel system 
can exploit efficiently. Most builders of parallel systems have 
looked to either the programmer or a parallelizing compiler 
to increase the granularity of such algorithms. In this paper 
we explore a third approach to the granularity problem by 
analyzing two strategies for combining parallel tasks dynam- 
ically at run-time. We reject the simpler load-based inlining 
method, where tasks are combined based on dynamic load 
level, in favor of the safer and more robust lazy taslc cre- 
ation method, where tasks are created only retroactively as 
processing resources become available. 

These strategies grew out of work on Mul-T [14], an effi- 
cient parallel implementation of Scheme, but could be used 
with other applicative languages as well. We describe our 
Mul-T implementations of lazy task creation for two con- 
trasting machines, and present performance statistics which 
show the method’s effectiveness. Lazy task creation allows 
efficient execution of naturally expressed algorithms of a 
substantially finer grain than possible with previous parallel 
Lisp systems. 

1 Introduction 

There have been numerous proposals for implementations 
of applicative languages on parallel computers. All have in 
some way come up against a granularity problem-when a 
parallel algorithm is written naturally, the resulting program 
often produces tasks of a finer grain than an implementa- 
tion can exploit efficiently. Some researchers look to hard- 
ware specially designed to handle fine-grained tasks [2, 81, 
while others have looked for ways to increase task granular- 
ity by grouping a number of potentially parallel operations 
together into a single sequential thread. These latter efforts 
can be classified by the degree of programmer involvement 
required to specify parallelism, from parallelizing compilers 
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at one end of the spectrum to language constructs giving 
the programmer a fine degree of control at the other. 

In the most attractive world, the programmer leaves the 
job of identifying parallel tasks to a parallelizing compiler. 
To achieve good performance, the compiler must create tasks 
of sufficient size based on estimating the cost of various 
pieces of code [5, 121. But when execution paths are highly 
data-dependent as with recursive symbolic programs, the 
cost of a piece of code is often unknown at compile time. If 
only known costs are used, the tasks produced may still be 
too fine-grained. And for languages that allow side effects it 
can be quite complex to determine where parallel execution 
is safe, and opportunities for parallelism may be missed. 

At the other end of the spectrum a language can leave 
granularity decisions up to the programmer, providing tools 
for building tasks of acceptable granularity such as the propo- 
sitional parameters of Qlisp [4, 6, 71. Such fine control can 
be necessary in some cases to maximize performance, but 
there are costs in programmer effort and program clarity. 
Also, any parameters appearing in the program require ex- 
perimentation to calibrate; this work may have to be re- 
peated for a different target machine or data set. Or, when 
the code is run in parallel with other code or on a multi- 
user machine, a given parameterization may be ineffective 
because. the amount of resources available for that code is 
unpredictable. Similar problems arise when a parallelizing 
compiler is parameterized with details of a certain machine. 

We’ve taken an intermediate position in our research on 
Mul-T [14], a parallel version of Scheme based on the future 
construct of Multilisp [9, lo]. The programmer takes on the 
burden of identifying &at can be computed safely in paral- 
lel, leaving the decision of exactly how the division will take 
place to the run-time system. In Mul-T that means anno- 
tating programs with future to identify parallelism with- 
out worrying about granularity; the programmer’s task is to 
expose parallelism while the system’s task is to limit paral- 
lelism. 

In our experience with the mostly functional style com- 
mon to Scheme programs, a program’s parallelism can of- 
ten be expressed quite easily by adding a small number of 
future forms (which however may yield a large number of 
concurrent tasks at run time). The effort involved is lit- 



tle more than that required for systems with parallelizing 
compilers, where the programmer must be sure to code in 
such a way that parallelism is available. (We note that these 
dynamics of parallel programming are shared by functional 
languages; the philosophy and goals of the “para-functional” 
approach [ll, 131 are similar to ours.) 

In order to support this programming style we must deal 
with questions of efficiency. The Encore Multimax’ imple- 
mentation of Mul-T [14], based on the T system’s ORBIT 
compiler [15, 161, is proof that the underlying parallel Lisp 
system can be made efficient enough; we must now figure out 
how to achieve sufficient task granularity. For this we look 
to dynamic mechanisms in the run-time system, which have 
the advantage of avoiding the parameterization problems 
mentioned earlier. The key to our dynamic strategies for 
controlling granularity is the fact that that the future con- 
struct, has several correct operational interpretations. The 
canonical future expression 

(C (future X)) 

declares that a child computation X may proceed in parallel 
with its parent continuation C. In the most straightforward 
interpretation, a child task is created to compute X while 
the parent task computes C.’ Reversing the task roles is also 
possible; the parent task can compute X while the child task 
computes C. Finally, and most importantly for fine-grained 
programs, it is also usually correct for the parent task to 
compute first X and then C, ignoring the future.3 This 
inlining of X by the parent task eliminates the overhead 
of creating and scheduling a separate task and creating a 
placeholder to hold its value. 

Inlining can mean that a program’s run-time granularity 
(the size of tasks actually executed at run time) is signifi- 
cantly greater than its source granularity (the size of code 
within the future constructs of the source program). A 
program will execute efficiently if its average run-time gran- 
ularity is large compared to the overhead of task creation, 
providing of course that enough parallelism has been pre- 
served to achieve good load balancing. 

The first dynamic strategy we consider is load-based in- 
lining. In this strategy, (future X) means, “If the system 
is not loaded, make a separate task to evaluate X; otherwise 
inline X, evaluating it in the current task.” A load threshold 
T indicates how many tasks must be queued before the sys- 
tem is considered to be loaded. Whenever a call to future is 
encountered, a simple check of task queue length determines 
whether or not a separate task will be created. 

The simple load-based inlining strategy works well on 
some programs, but its several drawbacks (see Section 3) 
led us to consider another strategy as well: why not in- 
line every task provisionally, but save enough information 

‘Multimax is a trademark of Encore Computer Corporation. 
‘(future X) returns an object called a future, a placeholder for 

the eventual value of X. Any task attempting to use the value of 
this future before X has completed is suspended until the value is 
available. 

‘Such inlining is not always correct; sometimes it can lead to dead- 
lock as described in Section 3.3. 

so that tasks can be selectively “un-inlined” as processing 
resources become available? In other words, create tasks 
lazily. With this lazy task creation strategy, (C (future 
X)1 means “Start evaluating X in the current task, but 
save enough information so that its continuation C can be 
moved to a separate task if another processor becomes idle.” 
We say that idle processors steal tasks from busy processors; 
task stealing becomes the primary means of spreading work 
in the system. 

The execution tree of a fine-grained program has an over- 
abundance of potential fork points. Our goal with lazy task 
creation is to convert a small subset of these to actual forks, 
maximizing run-time task granularity while preserving par- 
allelism and achieving good load balancing. In the subse- 
quent discussion, this is contrasted with eager task creation, 
where all fork points result in a separate task. When refer- 
ring to the implementation of these strategies in Mul-T we 
will sometimes use the terms lazy futures and eager futures. 

An example will help make these ideas more concrete. 

2 An Example 

As a simple example of the spectrum of possible solutions 
to the granularity problem, consider the following algorithm 
(written as a Scheme program) to sum the leaves of a binary 
tree: 

(define (sum-tree tree) 
(if (leaf? tree) 

(leaf-value tree) 
(+ (sum-tree (left tree)) 

(sum-tree (right tree))))) 

(where leaf?, leaf-value, left, and right define the 
tree datatype). The natural way to express parallelism in 
this algorithm is to indicate that the two recursive calls to 
sum-tree can proceed in parallel. In Mul-T we might indi- 
cate this by adding one future:’ 

(define (psum-tree tree) 
(if (leaf? tree) 

(leaf-value tree) 
(+ (future (psum-tree (left tree))) 

(psum-tree (right tree))))) 

The natural expression of parallelism in this algorithm is 
rather fine-grained. With eager task creation this program 
would create 2d tasks to sum a tree of depth d; the average 
number of tree nodes handled by a task would be 2. Figure 1 
shows this execution pictorially; each circled subset of tree 
nodes is handled by a single task. Unless task creation is 
very cheap, this task breakdown is likely to lead to poor 
performance. 

4This strategy for adding future relies on + evaluating its 
operands from left to right; if argument evaluation went from right to 
left, then (psum-tree (right tree)) would evaluate to completion 
before (future (psum-tree (left tree))) began, and no parallelism 
would be realized. 
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Figure 1: Direct execution of psum-tree. 
a 

Figure 2: BUSD execution of psum-tree on 4 processors. 

The ideal task breakdown is one which maximizes the 
run-time task granularity while maintaining a balanced load. 
For a divide-and-conquer program like this one, that means 
expanding the tree breadth-first by spawning tasks until all 
processors are busy, and then expanding the tree depth-first 
within the task on each processor. We will refer to this ideal 
task breakdown as BUSD (Breadth-first Until Saturation, 
then Depth-first). Figure 2 shows this execution pictorially 
for a system with 4 processors. 

How can we achieve this ideal task breakdown? A par- 
allelizing compiler might be able to increase granularity by 
unrolling the recursion and eliminating some futures, but 
in this example we want fine-grained tasks at the begin- 
ning so as to spread work as quickly as possible (breadth- 
first). The compiler might possibly produce code to do this 
as well if supplied with information about available process- 
ing resources, but making such a transformation general is 
a difficult task and would still have the parameterization 
drawbacks noted earlier. 

What if we control task creation explicitly as in Qlisp? 
In many of Q&p’s parallel constructs the programmer may 
supply a predicate which, when evaluated at run time, will 
determine whether or not a separate task is created (one 
such predicate, (qemptyp) [7], tests the length of the work- 
queue, achieving the same effect as our load-based inlining). 

If such a Qlispstyle mechanism were used to create a hy- 
pothetical qfuture construct, we might write psum-tree in 
this way (very similar to an example in [4]): 

(define (psum-tree-2 tree cutoff-depth) 
(if (leaf? tree) 

(leaf-value tree) 
(+ (qfuture 0 cutoff-depth 0) 

(psum-tree-2 (left tree) 
(- cutoff-depth 1))) 

(psum-tree-2 (right tree) 
(- cutoff-depth 1))))) 

Here cutoff -depth specifies a depth beyond which no 
tasks should be created. The predicate (> cutoff-depth 0) 
tells qfuture whether or not to inline the recursive call. A 
cutoff -depth value of 2 would achieve the BUSD execution 
shown in Figure 2; below level 2 all futures are inlined. 

This solution has two problems. First, the code has be- 
come more complex by the addition of cutoff -depth-it is 
no longer completely straightforward to tell what this pro- 
gram is doing. Second, the program is now parameterized by 
the cutoff-depthargument, with the associated calibration 
issues noted previously. 

Both load-based inlining and lazy task creation can ap- 
proximate the BUSD performance of psun-tree-2 without 
sacrificing the clarity of psum-tree. When psum-tree is 
run with load-based inlining, the first three occurrences of 
future (probably at nodes a, b, and c of Figure 2) find that 
processors are free, and separate tasks are created (breadth- 
first). Depending on the value of the threshold parameter 
T, a few more tasks may be created before the backlog is 
high enough to cause inlining. But since there is a large sur- 
plus of work, most tasks are able to defray the cost of their 
creation by inlining a substantial subtree (depth-first). This 
general behavior has been modeled analytically by Weening 
[23, 241. 

When psum-tree is run with lazy task creation on a four 
processor system, the future at a (representing the subtree 
rooted at b) is provisionally inlined, but its continuation 
(representing the subtree rooted at c) is immediately stolen 
by an idle processor. Likewise, the futures at b and c are 
inlined, but their continuations are stolen by the two remain- 
ing idle processors. Now alI processors are busy; subsequent 
futures are all provisionally inlined but no further stealing 
takes place and each processor winds up executing one of 
the circled subtrees of Figure 2. 

This execution pattern depends on an oldest-first steal- 
ing policy: when an idle processor steals a task, the oldest 
available fork point is chosen. In this example the oldest 
fork point represents the largest available subtree and hence 
a task of maximal run-time granularity. 

Because of the dynamic nature of both lazy task creation 
and load-based inlining, real-life execution of a program like 
psum-tree may not match Figure 2 exactly. For example, 
some additional tasks may be created at the tail end of pro- 
gram execution as processors become idle, but this is un- 
likely to have a noticeable effect on overall efficiency. 
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3 Comparison of Dynamic Methods 

‘Needless to say, not all programs are as simple as psura-tree. 
Load-based inlining does in fact produce good results for 
some programs [14] but it also has drawbacks, consideration 
of which led to the idea of lazy task creation. After summa- 
rizing these drawbacks we discuss each in turn as a basis for 
comparing the two dynamic strategies. The problems with 
load-based inlining: 

1. 

2. 

3. 

4. 

5. 

3.1 

The programmer must decide when to apply load-based 
inlining, and at what load threshold T. 

Load-based inlining is irrevocable; processors can starve 
even though many inlined tasks are pending. 

Deadlock can result if inlining is used on some types 
of programs. 

For programs with irregular call trees, load-based in- 
lining can create many more tasks than an optimal 
BUSD division would create. 

Load-based inlining is ineffective for fine-grained linear 
recursions (loops). 

Programmer Involvement 

The first drawback is straightforward; even though load- 
based inlining is an automatic mechanism, it still requires 
programmer input. Some programs run better without in- 
lining, so the programmer must identify where it should be 
applied. The programmer must also supply a value for the 
load threshold T. Lazy task creation needs no such parame- 
terization, and, because stealing tasks is the primary means 
of scheduling, lazy task creation can be used with any pro- 
gram. 

3.2 Irrevocability 

The irrevocability of load-based inlining can mean that pro- 
cessors become idle even though many inlined tasks are 
pending, due to either bursty task creation or parent-child 
welding. Bursty task creation refers to the fact that oppor- 
tunities to create tasks may be distributed unevenly across 
a program. At the moment when a task is inlined, it may 
appear that there are plenty of other tasks available to ex- 
ecute, but by the time these tasks finish executing there 
may be too few opportunities to create more tasks. Conse- 
quently, processors may go idle because the inlined tasks are 
not available for execution. This problem never arises with 
lazy task creation because inlined tasks are always available 
for stealing. 

Parent-child welding refers to the fact that inlining ef- 
fectively ‘welds” together a parent and child task. If an 
inlined child becomes blocked waiting for a future to resolve 
(or for some other event), the parent is blocked as well and 
is not available for execution. With lazy task creation, the 
information kept for each inlined child allows the child to 

be decoupled if it becomes blocked, allowing the parent to 
continue. 

3.3 Deadlock 

Irrevocability is also behind the deadlock problem. To 
see how inlining can lead to deadlock, consider the program 
in Figure 3 for finding primes. It uses a standard prime- 
finding algorithm, checking each (odd) integer n for primal- 
ity by looking for divisors among the primes found so far, 
up to .fi. Futures introduce parallelism, as well as getting 
around the difficulty of accessing both ends of a single list 
(adding primes to the end while reading primes from the 
front). 

all-primes is initially bound to a lazily generated list 
of all the odd primes.5 The function f ind-prines>=n gen- 
erates a tail of all-primes by first making a future to find 
all (odd) primes above n, and then checking n for primal- 
ity by walking down all-primes, using the primes already 
generated. 

This program could deadlock with inlining. Say a task T 
calIs (f ind-primes>=n 5)) and inlines the subsequent calls 
for n = 7,9, . . . . 25. Then T makes a real future for n = 27 
and calls prime? to test the prima&y of 25. prime? will 
attempt’ to use the second element of all-primes, but will 
block because it hasn’t been computed yet. But T itself was 
computing this second element, so deadlock arises because T 
has blocked on itself. No such deadlock is possible with lazy 
task creation, because of the decoupling of blocked tasks 
mentioned above. Programs that are deadlock-free with ea- 
ger task creation are also deadlock-free with lazy task cre- 
ation. 

3.4 Irregular Call Trees 

The fourth drawback of load-based inlining only shows up in 
programs with irregular call trees. In programs with regular 
call trees, load-based inlining gives a good approximation 
to BUSD-a few initial forks saturate the machine, creating 
tasks which expand subtrees of essentially identical shape. 
Tasks are always inlined because all processors are busy. 
But consider a program where the call tree is not a complete 
tree (e.g. a search program like n queens). As above, a few 
initial forks saturate the machine. But now the subtrees 
being expanded by each task have widely varying shapes, so 
some processors will run out of work early on in the program 
execution. The next task received by such a processor is 
determined dynamically, by whatever other task happens 
to come to a fork point next. Because the majority of fork 
points lie toward the leaves of the tree, our processor is likely 
to get a task representing only a small subtree. This results 
in tasks of small run-time granularity, so many more tasks 
are created than with an ideal BUSD execution. 

When lazy task creation is used with an oldest-first steal- 
ing policy this probIem doesn’t arise. When a processor 

5delay, which creates a future object but does not spawn a task, is 
used instead of future to avoid a race condition in the letrec binding. 

188 



(define (find-primes limit) 
(letrec ((all-primes (cons 3 (delay (find-primes>=n 5)))) 

(f ind-primes>=n (lambda (n) 
(if (> n limit) 

‘0 
(let ((rest (future (find-primes>=n (+ n 2))))) 

(if (prime? n all-primes) 
(cons n rest) 
rest)))))> 

(cons 2 all-primes)) ) 

(define (prime? n primes) 
(let ((prime (car primes))) 

(cond ((> (* prime prime) n) Wt) 
((zero? (mod n prime)) Itf) 
(else (prime? n (cdr primes)))>)> 

Figure 3: Program find-primes could deadlock with load-based inlining. 

becomes idle, it steals a task from the oldest outstanding 
fork point in the call tree. In a divide-and-conquer program 
(even one with an irregular calI tree) the oldest fork point 
is very likely to represent a substantial subtree, leading to 
large run-time task granularity and a closer approximation 
to BUSD execution. The performance statistics in Section 5 
bear this out. 

3.5 linear Recursion 

Of course not all parallel programs have bushy call trees; 
for example, some programs contain data-level parallelism 
expressed by a linear recursion over a data structure. Load- 
based inlining is not effective in increasing the run-time 
granularity of such programs. To see why, consider the fol- 
lowing versions of parallel map, exemplifying the two straight- 
forward methods of parallelizing a linear recursion on a list: 

(define (parmap-cars f 1) 
(if (null? 1) 

‘0 
(let* ((elt (future (f (car 1)))) 

(rest (parmap-cars f (cdr 1)) )> 
(cons elt rest>>)) 

(define (parmap-cdrs f 1) 
(if (null? 1) 

‘0 
(let* ((rest (future 

(parmap-cdrs f (cdr 1) )>) 
(elt (f (car 1)))) 

(cons elt rest))>) 

With both load-based inlining and lazy task creation, 
efficiency is increased for fine-grained programs when each 
taskis able to inline many other tasks, increasing the average 
run-time task granularity and reducing overhead due to task 
creation. In both of these versions of parallel map, many 

tasks are unable to inline any subtasks, leading to high task- 
creation overhead when f is fine-grained. 

In parmap-cars a parent task loops through the list, call- 
ing future for each application of f to a list element. In this 
program, inlining futures can only increase the granularity of 
the parent task; any child tasks created will be fine-grained 
because they have no inlining opportunities. So at best we 
will have one task of large granularity and many of small 
granularity, leading to poor performance. 

In parmap-cdrs, future appears around a call to map 
down the rest of the list; the parent task then applies f 
to the current list element. It is conceivable in this case 
that inlining could create several tasks of large granularity; 
the parent could inline several futures before making a real 
future Fr, FI could inline several futures before making a 
real future Fz, etc. In practice however, the system load 
is low initially and many small tasks are created. With 
numerous processors, tasks are executed faster than they can 
be created so the backlog necessary.for load-based inlining 
never builds up. 

Unfortunately, lazy task creation suffers the same prob- 
lems as load-based inlining on this type of program. The 
eager stealing policy necessary for timely scheduling of tasks 
leads in this case to many small tasks and poor performance. 
We have considered several strategies for addressing this 
problem, and will have more to say about it at the end of 
the paper. 

But as we have seen, lazy task creation overcomes all 
of the other drawbacks of load-based inlining, warranting a 
study of its implementation costs. 

4 Implementation 

As described above, our dynamic methods increase efficiency 
by ignoring selected instances of future. But ignoring a 
future will never be as cheap as no future at all-lazy task 
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creation requires maintaining enough information when a 
future is provisionally inlined to allow another processor to 
steal the future’s continuation cleanly. The cost of main- 
taining this information is the critical factor in determining 
the finest source granularity that can be handled efficiently. 
The cost is incurred whether a new task is created or not, 
so a large overhead would overwhelm a fine-grained pro- 
gram. By comparison the cost of actually stealing a task is 
somewhat less critical; if enough inlining occurs the cost of 
stealing a task will be small compared to the total amount 
of work the task ultimately performs. 

Still, the cost of stealing a continuation must be kept in 
the ballpark of the cost of creating an eager future. Stealing 
a continuation requires splitting an existing stack, which in a 
conventional stack-based implementation requires the copy- 
ing of frames from one stack to another. We discuss such 
copying costs later, but it is attractive to consider instead 
using a linked-frame implementation where splitting a stack 
requires only pointer manipulations. However, care must be 
taken with such an implementation that the normal opera- 
tions of pushing and popping a stack frame have comparable 
cost with conventional stack operations. 

We have pursued both avenues of implementation: a 
linked-frame implementation for the ALEWIFE multipro- 
cessor as well as a conventional stack-based implementation 
for the Encore Multimax version of Mul-T. 

In both implementations, instances of future are com- 
piled as special procedure calls. When making a lary future 
call, a task T first pushes a pointer to the future’s continu- 
ation onto a queue of continuations that are stealable from 
T (its lazy future queue). If upon return the continuation 
has not been stolen by another processor, T dequeues it. 
We refer to the processor making lazy future calls as the 
producer of lazy futures; another processor stealing them is 
called a consumer. Consumers remove frames from the head 
of the lazy future queue while the producer pushes and pops 
frames from the tail. 

In order to steal the continuation to a lazy future call, 
the consumer must change the producer’s stack to make it 
look as though an eager future call had been made. Consider 
again the expression: 

(C (future X)) 

The producer makes a lazy future call to compute X, 
queueing its continuation C. Sometime later, a consumer 
decides to steal C. It creates a placeholder and modifies 
the producer’s call stack so that the value returned by the 
call to X will determine (i.e. supply a value for) the place- 
holder rather than being passed directly to the continua- 
tion C. The consumer then calls C itself, passing the un- 
determined placeholder as an argument. It now looks as 
though an eager future had been created, with one proces- 
sor (the producer) evaluating the child X and another (the 
consumer) evaluating the parent C. 

Implementations must take care to guard against two 
kinds of race conditions to ensure correctness of the stealing 
operation. First, a producer trying to return to a continu- 
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ation may race with a consumer trying to steal it; second, 
two consumers may race to steal the same continuation. 

4.1 ALEWIFE implementation 

The ALEWIFE machine is a cache-coherent machine being 
developed at MIT with distributed, globally shared mem- 
ory. The processing elements are SPARC’ chips modified to 
support rapid context switching, traps for strict operations 
on futures, and full/empty bits in the memory [l]. 

For the ALEWIFE implementation of lazy futures, stacks 
are represented as a two-way doubly linked list of stack 
frames [17] in order to minimize copying in the stealing op- 
eration. An important feature of this scheme is that stack 
frames are not deallocated when popped. A subsequent push 
will re-use the frame, meaning that in the average case the 
cost of stack operations associated with procedure call and 
return is very close to the cost of such operations with con- 
ventional stacks. 

In this implementation the lazy future queue is threaded 
through the doubly linked list of stack frames, using frame 
slots reserved for the queue pointers. The easiest way to 
understand the lazy future operations is to look at pseudo- 
code for a lazy future call first from the point of view of the 
producer and then from that of the consumer. In this code 
we use the following register names: 

FP Frame pointer register. Points to the current stack frame. 

LFT Lazy future tail register. Modified only by the pro- 
ducer. 

LFH Head of the lazy future queue. This must be in memory 
so that consumers on other processors can steal frames 
from the head of the queue. Its full/empty bit serves 
as the lock limiting access to one potential consumer 
at a time. 

Each stack frame has the following slots: 

If-next Frame slot points to the next frame on the lazy 
future queue (toward the tail of the queue). This lo- 
cation’s full/empty bit is the lock arbitrating between 
a consumer stealing a continuation and the producer 
trying to invoke that continuation. 

If -prev Frame slot points to the previous frame on the lazy 
future queue (toward the head of the queue). 

If -link The lazy future call code stores the return address 
for the consumer in this slot. The consumer reads out 
the return address and stores the placeholder object it 
creates in this slot as well. When the producer tries 
to invoke a stolen continuation it will trap and instead 
store the returned value in this placeholder. 

next Frame slot points to the “next” frame, which will be- 
come current if a stack-frame push operation is per- 
formed. 

6SPAR.C is a trademark of Sun Microsystems, Inc. 



cant Frame slot points to the %ontinuation” frame, which 
will become current if a stack-frame pop operation is 
performed. 

regs Some number of slots for local variable bindings and 
temporary results. 

Pseudo-code for lazy future call: 

store address of continue: in If-linkCFP1 
store LFT, If -prev CFPI 
store FP ,lf -next [LFT] # allow stealing 
move FP, LFT 
call procedure 
load If-prev[FP],LPT # pop tail back to lft 
test If-next [LFT] and trap if stolen 
c ont inue : 

Pseudo-code for consumer: 

acquire LFH lock 
dequeue cant inuation frame f ram head of 

lazy future queue if present 
copy the continuation frame 

read return address from If-link slot 
of old frame 

create placeholder and store in If-link 
slot of old fraae, setting empty bit 

adjust links in old and new frame 
return to continuation by jumping to the 

return address that was in If-link 

We have omitted some details of the synchronization be- 

tween the producer and consumer. As mentioned, the race 
condition between the producer trying to return to a contin- 
uation frame and the consumer trying to steal it is controlled 
by the lock in the If -next slot of the frame. The producer, 
after detecting that its continuation has been stolen, must 
also wait for the consumer to fill in the If-link slot with 
the placeholder. This synchronization is controlled by the 
lock (empty bit) in the If-link slot. The lazy future call 
sequence shown ensures that the producer writes the return 
address into the If -link slot before the consumer can access 
it. 

Figures 4-6 show the lazy future call and stealing opera- 
tions graphically. Figure 4 shows how the stack frames and 
relevant registers might Iook before a lazy future call. Note 
that each frame’s next pointer points to the next frame to- 
ward the top of the stack and each cant pointer points to the 
next frame toward the bottom of the stack. An “X” in the 
left-hand part of a frame slot indicates that the full/empty 
bit of the corresponding memory word is set to “empty”; 
note that the If-next slot of a frame is always empty un- 
less that frame is part of the lazy future queue. If a frame 
slot’s contents are left blank in the figure, its contents are ei- 
ther unimportant (they will never be used) or indeterminate: 
for example, the next slot of the leftmost frame in Figure 4 
could either be empty or point to another, currently unused 
frame. 

If-next 

If-prev 

If-link 

FP LFT;LFH 

Figure 4: Before lazy future call. 

If-next 

If-prev 

If-link 

. . . 

( regs ) 

. . . 

next 

cant 

FP,LFT 

Figure 5: After lazy future call. 

LFH 

Figure 5 shows the situation after a lazy future call. The 
current frame (pointed to by FP) has joined the lazy future 
queue. Accordingly, LFT has changed to point to that frame, 
and If -next and If -prev links have been updated as needed 
to maintain the doubly linked lazy future queue. The ad- 
dress for the lazy future call’s continuation has been stored 
in the current frame’s If-link field. The middle frame is 
not part of the lazy future queue, but simply part of the 
stack. 

Finally, Figure 6 shows the state of the producer and 
consumer tasks if a consumer steals the continuation from 
the task shown in Figure 5 {the consumer task’s state vari- 
ables have a “3 appended, e.g. LFHc). The stealer has made 
the producer’s If-prev link point to a dummy frame that 
will cause a trap when the producer tries to return from 
the lazy future call. Note that the consumer’s stack now 
looks just like the producer’s did in Figure 4, just before 
the original lazy future call. The consumer has also made 
the producer’s If -link field point to a newly-created place- 
holder; the placeholder will be determined by the producer 
and is also passed to the consumer. (The synchronization 
here is slightly unusual, with If -link marked “empty” even 
though it contains useful data.) 
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lf-“~Xt 

1 f -prev 
If-Link 

FP,LFT,LFH 

Placeholder 

Figure 6: After steal. 

4.2 Encore Implementation 

We have also implemented lazy futures in the version of Mul- 
T running on the Encore Multimax, a bus-based shared- 
memory multiprocessor. In this implementation stacks are 
represented conventionally, in contiguous sections of the heap. 
(When a stack overflows, its contents are copied to a new 
stack of twice the original size.) 

As seen in Figure 7, the lazy future queue is kept in con- 
tiguous memory in the “top” part of a stack. As the pro- 
ducer pushes lazy continuations the queue grows downward 
while the stack frames grow upward. Stealing continuations 
effectively shrinks the stack by removing information from 
both ends (the head of the lazy future queue and the bottom 
frames of the stack). 

To steal from the stack pictured, a consumer first locates 
the oldest continuation by following the If-head pointer, 
through the lazy cant 1 pointer, to frame 1. The con- 
sumer then replaces frame 1 in the stack with a contin- 
uation directing the producer to determine a placeholder. 
Next the consumer copies frames from frame 1 down to 
the bottom of the live area of the stack (indicated by base) 
to a new stack, updating base and If-head appropriately. 

I frame2 

F= hELUE1 

I 

-I 
- . . . . ..- . . . . m-. .m.-... . --. 

I 

Figure 7: Lazy futures implemented using a conventional 
stack. 

To guard against the race conditions mentioned earlier 
there is a lock on the entire stack plus a lock on each lazy 
continuation. As with the ALEWIFE implementation, only 
the producer modifies If-tail, and only consumers modify 
If-head and base. 

4.3 Discussion 

What are the advantages and disadvantages of these im- 
plementations? The main disadvantage of the conventional 
stack implementation is in copying. It would appear that 
the amount of copying required for a stealing operation is 
potentially unlimited, so that the cost of stealing a lazy task 
is also unlimited. While this is technically true it is some- 
what misleading; the overhead of copying when stealing a 
lazy continuation should be viewed against the cost of creat- 
ing the continuation in the first place. A program with fine 
source granularity does little work between lazy future calls, 
and so is not able to push enough items onto the stack to 
require significant copying. A program which creates large 
continuations (requiring stealers to do lots of copying) must 
do a fair amount of work to push all that information on the 
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stack, and the cost of copying is unlikely to be a significant 
overhead. 

One exception to this argument is a program which builds 
up a lot of stack and then enters a loop which generates fu- 
tures: 

(define (example) 
(build-up-stack-and-then-call loop)) 

(define (loop) 
(future . . . 1 
(loop) 1 

Stealing the continuation to the first lazy future requires 
copying the built-up stack. As argued, that cost is unlikely 
to be significant compared with the cost of building up the 
stack in the first place. But in this example the stolen con- 
tinuation immediately creates another lazy future, so the 
next steal must copy the same information again. In fact, 
spreading work to rr processors in this example via lazy fu- 
tures requires the built-up stack information to be copied vz 
times. . 

There are two easy solutions to this problem. First, 
loop can be rewritten to resemble parraap-cdrs rather than 
par-map-cars (see section 3.5), resulting in a program where 
the built-up stack is never copied. Or, a future could be in- 
serted around the call to loop, resulting in a program where 
the built-up stack is copied only once. 

It appears then that the effects of copying in a con- 
ventional stack implementation can be minimized. But it 
is still attractive to eliminate copying altogether using the 
linked-frame implementation described for the ALEWIFE. 
Such an implementation is certainly more efficient on lazy 
future operations. It is somewhat more difficult to gauge ex- 
actly the overhead introduced in sequential sections of code. 
One ramification of re-using stack frames is that all frames 
have a fixed size; choosing the correct frame size involves 
a trade-off. If a small frame size is chosen, frames needing 
more space will need to create an overflow vector, increas- 
ing costs for accessing frame elements and for memory al- 
location. If a large frame size is chosen, most frames will 
contain a lot of unused slots. This could lead to more fre- 
quent garbage collection and might use up valuable space 
in cache and/or virtual memory, although these latter fac- 
tors could well be minimal in today’s memory-rich systems. 
The current ALEWIFE implementation uses a frame size 
of 22 slots. We must accumulate more experience with this 
promising implementation technique before making a final 
evaluation. 

5 Performance 

In this section we present performance figures for both Mul- 
T implementations. Experiments for the conventional stack 
version used Yale’s Encore Multimax, configured with 18 
NS-32332 processors and 64 megabytes of memory. 

Figures for the linked-frame version were obtained us- 
ing a detailed simulator of the ALEWIFE machine. We 

stress that this simulation is very realistic: the Mul-T im- 
plementation for the simulator would run essentially as-is 
on an ALEWIFE machine if one were available. The Mul- 
T run-time system as well as code for the benchmarks are 
compiled to SPARC instructions, which are interpreted by 
the simulator. Overheads due to future creation, blocking, 
scheduling, etc., are accurately reflected in the statistics. 
Memory-referencing delays were not simulated in these ex- 
periments. 

As mentioned earlier, it is crucial to minimize the over- 
head of lazy future calls. Below are statistics for both imple- 
mentations on the additional cost of a lazy future call over 
that of a conventional call, namely pushing a continuation 
onto the lazy future queue and popping it off. 

Encore 1 12 instructions, 12.6 psec 
ALEWIFE 1 9 instructions, 14 SPARC cycles 

For the Encore, 4 instructions could be eliminated by us- 
ing a compiler optimization for continuations to lazy future 
calls, saving roughly 3 psec. Still, the ALEWIFE sequence 
is probably the cheaper of the two, since the RISC instruc- 
tions of the SPARC are simpler than NS-32332 instuctions. 
Another important factor in the Encore time is that synchro- 
nization must be done by the rather expensive mechanism of 
a test-and-set instruction which acquires exclusive access to 
the bus. ALEWIFE’s full/empty bits provide much cheaper 
synchronization. 

Table 1 shows performance statistics for several Mul-T 
programs, comparing eager and lazy task creation for both 
Encore and ALEWIFE implementations. Statistics for load- 
based inlining (“LBI”) are included as well for the Encore 
implementation, with the load threshold T chosen in each 
case to give the fastest time on 16 processors. 

The columns marked t show elapsed time, in seconds for 
the Encore and thousands of simulated SPARC cycles for 
ALEWIFE. The columns marked nT show the number of 
tasks actually created. Statistics are shown for running the 
parallel code on 1, 2, 4, 8, and 16 processors, as well as 
for a sequential version of the benchmark with future com- 
piled as a no-op macro. The eager and lazy sequential times 
differ slightly for ALEWIFE because of a one-instruction op- 
timization in the standard procedure calling sequence under 
lazy futures. Encore times are somewhat variable despite 
our best efforts; a given column of times may change by 
5% after a re-initialization, preventing exact comparisons 
between “lazy” and the other columns. 

fib is the standard brute-force doubly recursive program 
for computing the nth Fibonacci number (n = 16 in this 
case). This program is very fine-grained, and to compli- 
cate matters was written with two futures in the procedure 
body instead of one. With eager task creation the overhead 
of creating futures completely overwhelms the calculation. 
Load-based inlining eliminates much of the overhead, but 
still creates many more tasks than an ideal BUSD execution 
would create. This is because of the program’s non-uniform 
call tree, as discussed in section 3.4. Lazy task creation pro 
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n 

seq 
1 
2 
4 
8 

16 

Encore 
Eager 1 LB1 (T = 2) 1 Lazy 

t nT t nT t nT 
XI48 - .048 - .049 - 
.714 3192 .055 244 .093 0 
.366 3192 .044 327 .050 8 
,198 3192 .038 381 .030 26 
.113 3192 .028 567 .019 112 

’ .086 3192 .027 832 .014 159 

ALEWIFE 

prime-factor 
Encore ALEWIFE 

Eager LB1 (T = 2) Lazy Eager Lazy 
n t nT t nT t nT t nT t nT 

s-4 .81 - .81 - .81 - 746 - 713 - 
1 1.04 999 .82 55 .82 0 ,1129 999 721 0 
2 .53 999 .43 153 .42 7 565 999 362 5 
4 .27 999 .23 284 .21 14 284 999 183 20 
8 .14 999 .12 344 .11 38 143 999 93 52 

16 .07 999 .06 419 .06 96 74 999 53 322 

queens 

Encore ALEWIFE 
Eager LB1 (T = 1) Lazy Eager Lazy 

n t nT t nT t nT t nT t nT 
seq 1.02 - 1.02 - 1.02 - 1707 - 1703 - 

1 1.55 2056 1.01 5 1.06 0 2450 2056 1730 0 
2 .70 2056 .53 170 .54 9 1146 2056 868 10 
4 .35 2056 .28 328 .‘28 27 569 2056 438 33 
8 .19 2056 .15 558 .15 91 301 2056 224 81 

16 .12 2056 .lO 745 .lO 231 171 2056 122 352 ~ 

r 

n 

seq 
1 
2 
4 
8 

16 - 

- 
speech 

Encore 
q Eager 

t nT t nT t nT 
95.9 - 95.9 - 96.4 - 

104.7 39856 96.2 1378 96.9 0 
53.7 39856 50.0 6173 49.3 583 
27.8 39856 26.5 12577 25.8 1907 
14.9 39856 15.3 18011 14.4 4440 

8.8 39856 10.6 21667 9.3 7875 

ALEWIFE 
Eager Lazy 

t nT t nT 
85.4 K - 85.3 K - 

100.1 K 39856 85.6 K 0 
51.3 K 39856 44.0 K 613 
26.8 K 39856 23.3 K 1946 
14.8 K 39856 13.0 K 4807 
8.8 K 39856 7.8 K 9930 

Table 1: Performance of Mul-T benchmarks (times in seconds for Encore, in 1000’s of SPARC cycles for ALEWIFE). 
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duces a much better approximation to BUSD, as shown by 
the smaller number of tasks. 

prime-factor uses a generalized divide-and-conquer meth- 
od to find the prime factors of all integers in a given interval 
(1 to 1000 in this case). The recursive division of the interval 
has very fine source granularity; the bulk of the computa- 
tion occurs with medium source granularity at the leaves. 
Lazy task creation successfully eliminates most of the tasks, 
although nT rises faster than it would with pure BUSD ex- 
ecution. Our current scheduler is fairly naive in choosing 
which processor to steal a task from; more attention to this 
area may produce a scheduler which more closely approxi- 
mates an oldest-first stealing policy. 

queens gives results for the 8 queens benchmark. 

speech is a “real” program, part of a multi-stage speech 
understanding system being developed at MIT. This stage 
is essentially a graph-matching problem, finding the closest 
dictionary entry to a spoken utterance. The program has 
medium source granularity, so eager futures don’t perform 
too badly and the improvement with lazy futures is modest. 

The overhead of lazy future calls in all these benchmarks 
can be measured by comparing the sequential time to the 
lazy time with one processor. For these benchmarks, the 
overhead seems acceptably low. 

6 Related Work 

Load-based inlining has been studied previously in the Mul- 
T parallel Lisp system [14], and is also available in Qlisp by 
using (local-deque-size) or (qemptyp) to sense the cur- 
rent load [7, 181. An analytical model of load-based inlining 
for programs like psum-tree has been developed by Weening 
[23, 241. His analytical results generally agree with empirical 
observations of load-based inlining in both Mul-T and Qlisp; 
however, neither the prior Mul-T work nor the prior Qlisp 
work have explored the alternative of lazy task creation. 

The potential for deadlock when using load-based inlin- 
ing was described in [14], but the example of Section 3.3 is 
more plausible than the scenario painted in [14]. It is inter- 
esting to note that selective load-based inlining, as is possi- 
ble in &lisp, could be used by a sophisticated programmer to 
ensure that inlining is never performed where it might cause 
deadlock. However, this solution requires the programmer 
to accurately recognize all situations where the potential for 
deadlock exists, and still does not offer the other advantages 
of lazy task creation. 

WorkCrews [22] is a package that does perform lazy task 
creation, intended for use with a fork-join or cobegin style 
of programming. It is implemented on top of Modula-2+ (an 
extension of Modula-2). For every task that is to be created 
lazily, a WorkCrews program calls RequestHelp(proc,data) 
and then proceeds with other work. A free processor looks 
for unanswered help requests, “steals” one, and applies its 
proc to its data. When the requestor finishes its other work, 
it calls GotHelp to see whether the RequestHelp task was 
stolen. If not, it proceeds to do the work itself; if so, it 

looks for other work to do. The performance of WorkCrews 
was evaluated on several parallel Quicksort programs and 
on HultiGrep, a program that searches for occurrences of a 
given string in a group of files [22]. 

The principal difference between WorkCrews-style lazy 
task creation and Mul-T’s lazy futures is that invoking lazy 
task creation in WorkCrews requires a significantly larger 
amount of source code to be written-the work performed 
by proc must be broken out into a separate procedure, the 
argument block to be passed as data must be explicitly allo- 
cated and filled in, and finally the RequestHelp and GotHelp 
procedures must be called. Moreover, synchronization with 
and value retrieval from the lazily created task are explicit 
responsibilities of the programmer. By contrast, in Mul-T 
it is only necessary to insert the keyword future to begin 
enjoying the benefits of lazy task creation. 

These stylistic differences lead to some implementation 
differences: our lazy future implementations directly manip 
ulate implementation objects such as stack frames and are 
thus more “built in” to the implementation than in the case 
of WorkCrews. We think some efficiency improvements re- 
sult from our approach, but the systems are different enough 
that it is hard to make a conclusive comparison. In any 
case, although the mechanics of the two systems are rather 
different, there is a very close relationship between their un- 
derlying philosophies. 

Our philosophy of encouraging programmers to expose 
parallelism while relying on the implementation to curb ex- 
cess parallelism resembles that of data-flow researchers who 
have been concerned with throttling [3, 191. However, the 
main purpose of throttling is to reduce the memory require- 
ments of parallel computations, not to increase granularity 
(which is generally fixed at a very fine level by data-flow 
architectures [2, 81). Throttling thus serves the same pur- 
pose as our preference for depth-first scheduling and is not 
directly related to lazy task creation. 

7 Conclusions and Future Work 

We are encouraged that our performance statistics support 
the theoretical benefits of lazy task creation. A remain- 
ing problem, described in section 3.5, is that programs with 
data-level parallelism (for example where a fine-grained op 
eration is applied to all members of a set) can have poor 
parallel performance when lists are used to represent sets. 
Other set representations such as arrays can increase pro- 
gram complexity because a coarse-grained re-coding is nec- 
essary to achieve good performance. 

Our current plan is to provide a data abstraction for sets 
which supports global operations efficiently in parallel. Us- 
ing such an abstraction would require a bit more work from 
the programmer, but far less than specifying the details of a 
decomposition directly in the source code. Two attempts in 
this direction with something of a SIMD flavor are the xap- 
pings of Connection Machine Lisp [21] and the Paralation 
model [20]. 
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As with sequential algorithms, where the best set rep- 
resentation varies depending on the mix of operations, it 
is likely that no one data structure will be “right” for all 
parallel algorithms. But by analyzing the requirements of 
numerous algorithms we can provide a spectrum of represen- 
tations. One such representation will certainly be tree-like; 
we know that lazy task creation will give us good paral- 
lel performance on a divide-and-conquer implementation of 
global set operations. 

There is also the important issue of scalability. Both the 
Encore machine and the ALEWIFE simulation described 
assume that all memory references are of equal cost, an un- 
reasonable assumption for a large-scale multiprocessor. We 
are investigating how our lazy task creation strategy can be 
augmented to take advantage of locality in shared-memory 
systems where the physical memory is distributed. In par- 
ticular, the copying of the continuation frame when a task 
is stolen is very expensive in a distributed-memory system, 
so we are implementing a version of lazy task creation that 
avoids the copy. We are also implementing a scheduler that 
takes locality into account. 

Because of their extra record-keeping burden, lazy fu- 
ture calls are unlikely ever to be as cheap as the cheapest 
implementation of normal calls, but the incremental cost of a 
lazy future call can be strongly influenced by a multiproces- 
sor’s hardware architecture. For example, the linked-frame 
implementation shown in Section 4.1 benefits greatly from 
the ALEWIFE architecture’s support for full/empty bits in 
memory that can be accessed efficiently as a side effect of a 
load or store instruction. 

Nevertheless, the linked-frame implementation still re- 
quires some memory operations for every call, and even 
a few more memory operations for every lazy future call. 
For architectures whose processors have register windows we 
have contemplated another approach with the potential of 
eliminating most memory operations: each register window 
could have an associated bit in a processor register indicat- 
ing whether it is logically part of the lazy future queue, but 
only when a register window was unloaded due to a window 
overflow trap would the frame actually be linked into the in- 
memory data structure representing the queue. This would 
further reduce the cost of lazy future calls, since one might 
expect a large fraction of lazy future calls to return without 
their associated register window ever having been unloaded. 
However, some mechanism would have to be provided for 
querying a processor to see if it contains any stealable con- 
tinuations, in the event that none are found in memory, and 
for interrupting a processor to request it to unload stealable 
continuations needed by other processors. The costs and 
benefits of this idea are not currently known. 

The larger quest in which we have been engaged is to pro- 
vide the expressive power and elegance of future at the low- 
est possible cost. Complete success in this endeavor would 
make it unnecessary for programmers ever to shun future 

in favor of lower-level, but more efficient, constructs. Suc- 
cess would also encourage programmers to express the par- 
allelism in programs at all levels of granularity, rather than 

forcing them to hand-tune the granularity (at the source- 
code level) for the best performance. Lazy task creation 
moves us closer to this ideal, producing very acceptable per- 
formance and greatly reducing the number of tasks created 
for all of the benchmark programs of Section 5. And while 
the ideal may never be achieved completely, every step in 
the direction of making future cheaper increases the num- 
ber of situations in which the cost of future is no bar to its 
use. 
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