
Crosscutting Techniques in Program Specification and
Analysis

Patrick Lam, Viktor Kuncak, and Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{plam,vkuncak,rinard}@csail.mit.edu

ABSTRACT
We present three aspect-oriented constructs (formats, scopes,
and defaults) that, in combination with a specification lan-
guage based on abstract sets of objects, enable the modular
application of multiple arbitrarily precise (and therefore ar-
bitrarily unscalable) analyses to scalably verify data struc-
ture consistency properties in sizable programs. Formats
use a form of field introduction to group together the dec-
larations of all of the fields that together comprise a given
data structure. Scopes and defaults enable the developer to
state certain data structure consistency properties once in
a single specification construct that cuts across the precon-
ditions and postconditions of the procedures in the system.
Standard approaches, in contrast, scatter and duplicate such
properties across the preconditions and postconditions. We
have implemented a prototype implementation, specifica-
tion, analysis, and verification system based on these con-
structs and used this system to successfully verify a range of
data structure consistency properties in several programs.

Most previous research in the field of aspect-oriented pro-
gramming has focused on the use of aspect-oriented con-
cepts in design and implementation. Our experience indi-
cates that aspect-oriented concepts can also be extremely
useful for specification, analysis, and verification.

Keywords
aspect-oriented programming, program verification, static
analysis tools, crosscutting concerns

1. INTRODUCTION
A key principle of good software engineering is to col-

lect related items together into a single program unit. Each
collection of related items comprises a concern of the pro-
gram; a decomposition of the program into appropriate con-
cerns minimizes interactions between program units, mak-
ing the program easier to develop, understand, and main-
tain. Over the years a set of standard program units has

emerged: record declarations group together related data
fields, procedures group together related computations and
actions, and classes group together related data fields and
computations that operate on those fields.

A key insight behind aspect-oriented programming is that
the exclusive use of the standard set of program units may
force developers to scatter (and in some cases, duplicate)
items from a single concern across many different units.
In response to this situation, researchers have developed
new kinds of program units (such as aspects [13] and hy-
perslices [35]) and new composition mechanisms (such as
dynamic weaving [28] and hyperslice compositors [35]). To-
gether, these new aspect-oriented constructs may enable de-
velopers to improve the structure of their programs by col-
lecting previously scattered items from the same concern
into more intellectually coherent program units.

This paper discusses our use of aspect-oriented concepts
in the Hob program specification, analysis, and verification
system [18–21,37]. The goal is to specify data structure con-
sistency properties, then verify that the program preserves
these properties. The approach is to encapsulate each data
structure inside a separate module, then apply potentially
different, arbitrarily precise (and therefore arbitrarily un-
scalable) analyses in a scalable, modular fashion to verify
that each module correctly preserves the consistency prop-
erties of the data structures that it encapsulates. A common
specification language based on abstract sets of objects en-
ables the analyses to interoperate to verify consistency prop-
erties that involve multiple data structures encapsulated in
multiple modules and analyzed by different analyses.

The traditional approach to modular specification and
verification uses assume/guarantee reasoning: each proce-
dure has a specification that consists of a precondition (the
properties that it assumes hold upon entry) and a post-
condition (the properties that it guarantees will hold upon
exit if the precondition holds upon entry). We have found,
however, that a phenomenon we call specification aggrega-
tion makes this approach fundamentally unscalable. The
problem is that each procedure’s specification must typically
contain, as part of its precondition and postcondition, the
preconditions and postconditions of any procedures that it
invokes. These properties therefore become scattered across
the procedure specifications as the preconditions and post-
conditions of callees are duplicated in the preconditions and
postconditions of their (transitive) callers, with the speci-
fication and verification overhead becoming prohibitive as
one moves up the procedure invocation hierarchy.

1

Note that aspect-oriented constructs were originally de-
signed (in a different context) to eliminate similar kinds of
scattering and duplication. Indeed, we have been able to
use constructs either borrowed from or conceptually related
to those in aspect-oriented programming languages to elim-
inate specification aggregation and make the modular veri-
fication of data structure consistency properties feasible for
programs of arbitrary size. Formats provide a form of field
introduction [6] that enables developers to group together,
in a single module, all of the declarations of all of the fields
(potentially from different kinds of objects) that together
comprise the data structure that the module encapsulates.
Standard approaches, in contrast, group together all of the
declarations of all of the fields of a given record or object,
with fields from the same data structure scattered across the
record declarations or classes of the objects that may partic-
ipate in that data structure. Scopes and defaults enable the
developer to state a property once in a single location; stan-
dard approaches require the developer to explicitly duplicate
the property across the preconditions and postconditions of
procedures that either require the property themselves or
(transitively) invoke procedures that require the property.
Scopes can be seen as enabling the effective specification
and verification of data structure consistency properties in
certain types of program hyperslices [35].

1.1 Formats
Our approach supports the deployment of multiple anal-

yses, with each analysis specialized to verify an arbitrar-
ily complex but potentially quite narrow class of properties
characteristic of a corresponding class of data structures.
Each analysis operates on a single module to verify that 1)
the module preserves the consistency of any encapsulated
data structures and 2) each procedure in the module con-
forms to its specification.

One factor that complicates this approach is the need for
objects to participate in multiple data structures and there-
fore the need to share objects between modules analyzed
by different analyses. To eliminate the possibility that one
module may corrupt another’s data structure (and to en-
sure that each analysis algorithm analyzes all of the relevant
code), modules encapsulate fields, not objects. Each module
uses format declarations to add the fields that implement
its encapsulated data structure to the objects that partic-
ipate in this data structure. The complete set of fields of
a given object is equal to the union of all of the fields in
all of the format declarations that involve that object. In
general, these format declarations may appear distributed
across multiple modules.

A key insight behind the format construct is that a field
is more closely related to other fields in the same data struc-
ture than to other fields in the same object; a field decla-
ration construct should therefore group together fields from
the same data structure rather than fields from the same
object, even though fields from the same data structure may
occur in different kinds of objects. From an aspect-oriented
perspective, formats isolate a concern (the set of fields that
comprise a given data structure) that cuts across the ob-
jects in that data structure. Formats support many of the
same kinds of program structuring strategies as other field
introduction constructs from a variety of aspect-oriented
languages [6, 13,35].

1.2 Scopes
Systems often maintain important invariants that involve

multiple data structures and cross encapsulation boundaries.
Such invariants are typically violated (temporarily and legit-
imately) as modules execute a coordinated sequence of data
structure updates. Because these invariants involve objects
that participate in different data structures encapsulated in
different modules analyzed by different analyses, the anal-
yses must somehow interoperate if they are to successfully
verify the invariant.

Our approach uses scopes to identify invariants that in-
volve multiple data structures encapsulated in multiple mod-
ules. Each scope has an invariant (a property expressed in
the common abstract set specification language), a set of ex-
ported modules, and a set of local modules. The exported
modules can be invoked from outside the scope; the local
modules can be invoked only from within the scope. To-
gether, the exported and local modules include all of the pro-
cedures that may directly modify the data structures that
affect the truth value of the invariant. When the analysis
processes an exported module it ensures that, if the invari-
ant holds upon entry to the exported modules, then it is
correctly restored upon exit.

Scopes eliminate scattering and duplication within the
specification because they eliminate the need for callers of
procedures in the exported modules to include invariants
explicitly in their preconditions and postconditions. The
resulting specifications are smaller, simpler, and more mod-
ular. From an aspect-oriented perspective, scopes isolate a
concern (the invariant) that cuts across the specifications of
the (transitive) callers of procedures in exported modules.

1.3 Defaults
Sometimes a data structure must satisfy a given prop-

erty before clients can successfully invoke some of its oper-
ations. The canonical example is initialization: some data
structures must be properly initialized before clients can use
them at all. With standard approaches, the precondition of
each operation in this kind of data structure explicitly re-
quires the data structure to be initialized. This requirement
then scatters throughout the system as it is duplicated in the
specifications of the (transitive) clients of the data structure.

Defaults allow the developer to state a property and ef-
ficiently identify, using a pointcut specifier, the program
points where the property must hold. The simplest point-
cut specifier identifies every precondition and postcondition
in the program (the developer can explicitly suspend the
default if it does not hold in a specific precondition or post-
condition). More sophisticated pointcuts enable the pro-
grammer to exclude certain classes of procedures (such as
procedures that initialize data structures or transitively in-
voke such initialization procedures).

For data structures with initialization constraints, defaults
enable the developer to eliminate any mention of the initial-
ization constraint from the vast majority of the program.
With an accurate pointcut that excludes the initialization
procedures, the initialization constraint appears only in the
default. Even with a less accurate pointcut that applies
the default to all of the procedures, only the specifications
of the initialization procedures mention the constraint (be-
cause they must explicitly suspend it). In practice, this
approach eliminates virtually all occurrences of the initial-
ization constraint.

2

Defaults therefore eliminate the scattering and duplica-
tion that is otherwise present in the specifications of pro-
grams with data structures that require initialization (or
other conditions that would otherwise propagate across large
regions of the program). From an aspect-oriented perspec-
tive, defaults isolate a concern (the default property) that
cuts across the specifications of the (transitive) callers of
procedures whose preconditions require the default property
to hold.

1.4 Contributions
A primary contribution of this research is the combination

of these aspect-oriented constructs to work together to en-
able the scalable automatic verification of arbitrarily precise
and sophisticated data structure consistency properties: a
goal that has, to this point, appeared to be completely be-
yond the reach of automated program analysis techniques.
We claim the following contributions:

• Specification Aggregation: The identification of
specification aggregation as a key problem that pre-
vents standard assume/guarantee reasoning approaches
from scaling to sizable programs.

• Aspect-Oriented Approach: The recognition that
aspect-oriented constructs can substantially simplify
the specification, analysis, and verification of sizable
programs.

• Aspect-Oriented Constructs: The identification
of three aspect-oriented implementation and specifi-
cation constructs (namely, formats, scopes, and de-
faults) that, working together, largely eliminate the
specification aggregation problem for data structure
consistency properties.

• Multiple Analyses: The recognition that these three
aspect-oriented implementation and specification con-
structs, in combination with a specification framework
based on abstract sets of objects, make it possible to
apply multiple arbitrarily precise, arbitrarily narrow,
and arbitrarily unscalable analyses in a general, scal-
able way to verify sophisticated data structure consis-
tency properties in sizable programs.

• Implementation and Specification Languages:
The realization of these concepts in concrete specifi-
cation and implementation languages.

• Analysis and Verification System: A prototype
program analysis and verification system that contains
multiple analyses and can use these analyses to verify
a range of data structure consistency properties.

• Experience: Our experience using our prototype to
verify data structure consistency properties in several
complete programs. We have been able to verify de-
tailed consistency properties of individual data struc-
tures, then use these properties to verify larger prop-
erties that involve multiple data structures analyzed
by different analyses.

Consider the implications. The world is full of capable
program analysis researchers who are, given adequate re-
sources, able to deliver a virtually unlimited supply of pre-
cise, specialized (but potentially unscalable) analyses that

can verify almost any data structure consistency property in
appropriately-sized program fragments. But for these anal-
yses to have any practical impact, they must be embedded
within a framework that 1) effectively deploys each analy-
sis to verify appropriate properties in appropriate regions of
the program and 2) supports the combination of the anal-
ysis results to verify properties that depend on regions of
the program analyzed by different analyses. Our research
provides just such a framework.

2. EXAMPLE
We next present an example that illustrates how formats,

scopes, and defaults promote the implementation, specifica-
tion, and modular verification of data structure consistency
properties in the Hob program implementation, specifica-
tion, and analysis system1 [18–20, 37]. Figure 1 presents a
module that encapsulates a doubly-linked list implementa-
tion; this module is part of a larger program that implements
the popular Minesweeper game. The list implementation
consists of a set of next and prev fields distributed across
a set of Node objects. The list data structure also contains
a header node, which simplifies the implementation of the
add and remove procedures.

The format declaration in Figure 1 adds next and prev

fields to each Node object. These fields implement the list
and are accessible only within the List module. Note that
Node objects may also participate in other data structures,
in which case the modules that encapsulate those data struc-
tures would use similar format statements to add any addi-
tional required fields. In this way, format statements sup-
port field introduction declarations in which each module
adds the fields it needs to the objects that participate in its
data structure.

Formats are aspect-oriented in that they cut across the
set of objects that participate in a given data structure to
group together the declarations of the fields that implement
that data structure. To the best of our knowledge, field
introduction declarations were first proposed in [6] and have
since become available in aspect-oriented languages [13,35].
They support modular analysis because they eliminate the
possibility that one module may corrupt another module’s
data structure. They also enable each analysis to easily
locate all of the code that may affect any of the fields in the
analyzed data structure.

Programs may instantiate a module multiple times. The
code in Figure 2, for example, instantiates the List module
twice to create two lists of Cell objects: a list of exposed
Cells, and a list of hidden Cells. Minesweeper uses such
lists to maintain sets of exposed and hidden cells on the
Minesweeper board. The instantiation statements in Fig-
ure 2 use the construct Node <- Cell to replace the Node

type with the Cell type to obtain lists of Cells rather than
lists of Nodes. In effect, the Node type is simply a placeholder
in the List module.

Figure 3 presents the Board implementation module. This
module uses an array cells of Cell objects to represent the
board. It also uses a format statement to add several fields
to Cell objects. These fields join the next and prev fields
from the ExposedList and HiddenList modules in Cell ob-
jects, but are accessible only inside the Board module. Note

1See http://cag.csail.mit.edu/~plam/hob/ for more in-
formation about the Hob project.

3

impl module List {
format Node {

next : Node; prev : Node;
}

var initialized : bool;
var root : Node;

proc init() {
root = new Node();
initialized = true;

}

proc add(n : Node) {
Node nn = root.next;
n.next = nn;
if (nn != null) {

nn.prev = n;
}
n.prev = root;
root.next = n;

}

proc remove(n : Node) {
if (n==current) {

current = current.next;
}
Node prv, nxt;
prv = n.prev;
nxt = n.next;
prv.next = nxt;
if (nxt!=null) {

nxt.prev = prv;
}
n.next = null;
n.prev = null;

}
}

Figure 1: Implementation Section of List Module

impl module ExposedList = List with Node <- Cell;
impl module HiddenList = List with Node <- Cell;

Figure 2: List Instantiations

impl module Board {
format Cell {

init, isMined, isExposed, isMarked : bool;
i, j : int;
init : bool; }

var cells:Cell[][];
...
proc setExposed(c:Cell; v:bool) returns gameOver:bool
{

if (c.isExposed) ExposedList.remove(c);
else HiddenList.remove(c);
c.isExposed = v;
if (v) ExposedList.add(c);
else HiddenList.add(c);
if (v && c.isMined) return true;
else return false;

}
}

Figure 3: Implementation Section of Board Module

that the Board data structure and list data structures have
redundant information: specifically, the isExposed field in
the Board data structure indicates whether its Cell object is
exposed or hidden; the ExposedList and HiddenList data
structures also maintain this information. Our analysis can
verify invariants associated with such redundant state — see
Section 5 and [18,19].

2.1 List Specification
In addition to an implementation section, each module

also has a specification section. Figure 4 presents the spec-
ification section for the List module. The specification
uses an abstract boolean flag ready (which is true when
the list has been initialized and false otherwise) and an ab-
stract set of Node objects Content (which contains the set
of Node objects in the list) to state, for each procedure,
a requires clause (the precondition of the procedure), a
modifies clause (the flags and sets that the procedure may
modify), and an ensures clause (the postcondition of the
procedure). Note that the ready and Content specification
variables exist only for specification, analysis, and verifica-
tion purposes: they do not exist when the program runs.

spec module List {
specvar ready : bool;
specvar Content : Node set;

proc init()
requires not ready
modifies ready
ensures card(Content)=0 & ready’;

proc add(n : Node)
requires ready & card(n)=1 & not (n in Content)
modifies Content
ensures (Content’ = Content + n);

proc remove(n : Node)
requires ready & card(n)=1 & (n in Content)
modifies Content, Iter
ensures (Content’ = Content - n) &

(Iter’ = Iter - n);
}

Figure 4: Specification Section of List Module

All requires and ensures clauses use a specification lan-
guage based on the boolean algebra of sets (this language
includes cardinality constraints on the number of objects in
the sets). For example, the precondition of the add proce-
dure requires 1) the list to be initialized, 2) the parame-
ter n to point to a Node object and not be null (in other
words, the set of objects to which n points must be of size
1), and 3) the parameter n to not be in the set Content of
objects already in the list. The postcondition states that the
set Content’ in the list after the add procedure executes is
equal to the union of the set Content from before add ex-
ecutes with the set containing the object referenced by the
parameter n.

2.2 List Abstraction
Finally, each module has an abstraction section that es-

tablishes the connection between the implementation and
the specification. Figure 5 presents the abstraction section
for the List module. This abstraction section uses object
fields to define abstraction functions that provide the mean-
ing of the abstract flags and sets of objects in the specifi-
cations. For example, the Content statement in Figure 5

4

defines the Content set to be the set of all objects reachable
by following next fields starting from the header node.

In general, the abstraction section uses a specification lan-
guage that is specific to whatever analysis is used to analyze
the module. In our example, the abstraction section uses
notation based on the monadic second-order logic over trees
and is designed for an analysis (the PALE analysis) that
implements a decision procedure for this logic [15, 24].

abst module List {
use analysis "PALE";
Content = { n : Elem | "root<next.next*>n" };
ready = initialized;
invariant "type Elem = {

data next:Elem;
pointer prev:Elem[this^Elem.next = {prev}];

}";
invariant "data root : Elem;";
invariant "(!ready => root=null) &

(ready => root != null)";
}

Figure 5: Abstraction Section of List Module

The procedures in the List module rely on the consis-
tency of the list data structure for their correct operation.
We call such internal consistency properties representation
invariants [23]. The abstraction section in Figure 5 uses
invariant statements and notation based on the monadic
second-order logic over trees to specify that the next and
prev fields are inverses. During the analysis of the imple-
mentation module, the analysis assumes that this invariant
holds at the start of each procedure and proves that it holds
at the end of each procedure. In effect, the representation
invariants are conjoined with the precondition and postcon-
dition of each procedure. The doubly-linked list invariant
is crucial: if prev is not an inverse of next, remove(n) may
not correctly remove n from the list.

In general, the Hob system analyzes individual modules
as follows. For each module, Hob examines the implementa-
tion, specification, and abstraction sections of that module,
as well as the specifications of all procedures that the module
invokes. Hob first uses the abstraction function (from the
abstraction section) to translate the requires and ensures

clauses into the internal representation of the specialized
analysis that will analyze the module (the abstraction sec-
tion specifies which analysis to use). Hob then conjoins
the representation invariant to the translated requires and
ensures clauses. Finally, Hob invokes the specialized anal-
ysis to verify that each procedure conforms to its translated
requires and ensures clauses.

The List module is an example of a leaf module that does
not invoke any other modules. The analysis of this module
therefore takes as input the three sections in Figures 1, 4,
and 5. Hob uses the definition of the Content set in Figure 5
to translate the specifications in Figure 4 into the specifica-
tion language of the PALE analysis [24] (see [18] for details).
Finally, Hob invokes the PALE analysis to verify that each
procedure conforms to its (translated) specification.

2.3 Defaults in List Specification
Recall that the specification of each procedure in Figure 4

(except the init procedure) requires the list to be prop-
erly initialized. This requirement causes the ready flag to
appear in the precondition of every procedure. In the ab-
sence of some mechanism to eliminate this explicit require-

ment, specification aggregation would cause the ready flag
to propagate up the call hierarchy to appear in the precon-
ditions and postconditions of the (transitive) callers of List
procedures.

spec module List {
...
proc init()

suspends I
requires not ready
modifies ready
ensures card(Content)=0 & ready’;

...
}

Figure 6: List Specification for init With Defaults

Defaults largely eliminate this form of specification aggre-
gation. The developer can use the following default state-
ment to specify that the ready flag is true by default at
all preconditions and postconditions of all procedures in the
program. It would also be possible to use a pointcut spec-
ification (see Section 4) to identify a more precise set of
procedures (in this case, all procedures not involved in the
initialization of the program).

default I = ready;

With this default, the ready flag need not explicitly appear
in any of the List procedure specifications (and therefore
need not appear in the specifications of transitive callers
of these procedures) except for the init procedure — the
precondition for init requires the ready flag to be false on
entry and ensures that the ready flag is true on exit. As
shown in Figure 6, the init specification therefore explicitly
suspends the default so that it can express these properties.

Note that the default construct eliminates specification
aggregation only if the pointcut precisely identifies the pro-
cedures where the default property holds. In our example,
the preconditions of all of the (transitive) callers of the init

procedure must use a suspend clause to specify that the
ready flag is false upon entry. In practice, programs tend
to contain a small initialization phase that initially suspends
all of the initialization defaults, then establishes the defaults
one by one as it invokes the initialization procedures. At the
end of this phase, all of the defaults hold and they need not
appear in the remainder of the program.

2.4 Scopes in Minesweeper
Representation invariants correspond to standard data

structure invariants — each representation invariant is en-
capsulated inside a single module, verified by the analysis
that processes that module, and stated in the internal speci-
fication language of that analysis. Some invariants, however,
involve multiple data structures encapsulated inside differ-
ent modules analyzed by different analyses. Verifying these
kinds of invariants requires multiple analyses to interoperate
within a scope that includes all of the modules.

Figure 7 contains the Model scope from the Minesweeper
program. This scope contains an invariant that specifies a
variety of properties that involve multiple data structures in
different modules — for example, the first property states
that the set of all exposed cells from the Board module (as
determined by the values of the isExposed flags in the Board
data structure) is the same as the set of cells stored in
the ExposedList module. The scope contains the Board,

5

scope Model
{
modules Board, ExposedList, HiddenList;
exports Board;
invariant (Board.ExposedCells = ExposedList.Content) &

(Board.HiddenCells = HiddenList.Content) &
(Board.ready => ExposedList.ready) &
(Board.ready => HiddenList.ready) &
(Board.peeking | (card(HiddenList.Iter) = 0));

}

Figure 7: The Minesweeper Model scope

ExposedList, and HiddenList modules. Together, these
modules define all of the abstract flags and sets in the invari-
ant. The system verifies that the invariant holds whenever
these modules are not executing (and therefore potentially
updating the data structures that determine the abstract
flags and sets in the invariant).

For the invariant to hold, the Board module must properly
coordinate invocations of the ExposedList and HiddenList

procedures. The Model scope therefore exports only the
Board module — procedures outside the scope may invoke
Board procedures, but not ExposedList or HiddenList pro-
cedures. This encapsulation ensures that the Board controls
the operation of the ExposedList and HiddenList modules
and enables the Board to preserve the invariant.

Many of the procedures in the Board module rely on the
Model scope invariant for their correct operation. Without
this scope, all of the procedures that rely on this invari-
ant would have to explicitly include the invariant in their
requires clauses. Because of specification aggregation, the
invariant would then propagate up the call hierarchy to ap-
pear in the preconditions and postconditions of (transitive)
callers of Board procedures.

Scopes eliminate this form of specification aggregation —
they take properties that would otherwise appear duplicated
in preconditions and postconditions throughout the program
and place them in a single scope that conceptually cuts
across all of these preconditions and postconditions.

Our system verifies scope invariants as follows. It first
checks that the invariant holds in the initial state of the
program (it verifies that the invariant is true in the initial
state when sets are initialized to the empty set and flags are
initialized to false). It also checks that the form of the invari-
ant is acceptable: each abstract flag and set in the invariant
must be defined in modules in the scope. Because a module
may modify only its own sets and flags, no module outside
the scope can directly affect the invariant. Our system then
conjoins the invariant to the requires and ensures clauses
of all procedures in exported modules and proceeds to ana-
lyze the procedures of exported modules to verify that they
conform to the augmented requires and ensures clauses.
This analysis ensures that the scope invariant holds at each
of the scope’s entry and exit points.

Consider the analysis of the setExposed procedure in Fig-
ure 3 (Figure 8 presents the specification of this procedure).
The only explicit precondition of setExposed is the property
that the parameter c is not null. However, because Board is
an exported module in the Model scope, our analysis system
conjoins the the invariant in Figure 7 to the explicit pre-
condition of setExposed. Furthermore, the I default from
Figure 8 applies to setExposed because it is not explicitly
suspended, so the resulting precondition is the conjunction
of 1) the explicit precondition card(c)=1, 2) the scope in-
variant in Figure 7, and 3) the default formula ready. Given

spec module Board
{

specvar MarkedCells, MinedCells,
ExposedCells, HiddenCells, U : Cell set;

specvar init, gameOver : bool;
default I = init;

proc setExposed(c:Cell; v:bool) returns gameOver:bool
requires card(c)=1
modifies ExposedCells, HiddenCells,

ExposedList.Content, HiddenList.Content
ensures

v => ((ExposedCells’ = ExposedCells + c) &
(UnexposedCells’ = UnexposedCells - c);

...
}

Figure 8: Specification Section of Board Module

abst module Board
{

MarkedCells = U cap { x : Cell | x.isMarked = true };
ExposedCells = U cap { x : Cell | x.isExposed = true };
UnexposedCells = U cap { x : Cell | x.isExposed = false };
MinedCells = U cap { x : Cell | x.isMined = true };

}

Figure 9: Abstraction Section of Board Module

this precondition, our flag typestate analysis [19] success-
fully verifies that setExposed conforms to its specification
in Figure 8. In particular, the analysis uses the set equal-
ity ExposedCells = ExposedList.Content and the defini-
tion of the ExposedCells set from Figure 9 to verify that
the if statement condition c.isExposed implies the pre-
condition of the ExposedList.remove. Note that Hob uses
assume/guarantee reasoning to avoid descending into the
ExposedList.remove procedure. It instead relies on the
specification in Figure 4 to determine the effect of the proce-
dure call. Note also that the analysis of setExposed success-
fully reasons about the precondition of ExposedList.remove
without being aware of the internal representation of the
List module. At the end of the procedure, the analysis
proves the explicit postcondition of setExposed, the default,
and the scope invariant in Figure 7. In general, the rela-
tionships between sets that the analysis preserves can corre-
spond to relations between complex data structures, imple-
mented using linked data structures and even arrays [17,37];
our abstraction mechanism successfully decouples such com-
plex properties into conformance of data structures with re-
spect to set specifications and relations between resulting
abstract sets.

3. SCOPES
Developers use scopes to identify invariants and regions

of the program relevant to some concern; our system au-
tomatically verifies that the invariants hold at appropriate
program points. Figure 10 presents the syntax of scope dec-
larations. A scope groups together a set of modules, some of
which are exported. Only procedures in exported modules
may be called from outside the scope; modules which are not
exported are local to that scope. A scope may also state a
scope invariant, which is a formula verified to be true in the
initial state, assumed to hold whenever the program enters
a scope, and verified whenever the program exits that scope.

Set Stationarity Check. Our system checks that the
scope invariant uses only sets and flags that are defined in
the scope’s modules. This set stationarity check ensures that

6

only the procedures in the scope can affect the values of the
sets and flags of the invariant. Verifying that the invariant
holds in the initial state and at scope exit points therefore
ensures that it always holds at scope entry points.

Scope Call Check. One of the basic concepts behind
scopes is that procedures in exported modules control the
operation of local modules to ensure the preservation of the
scope invariant. Our system therefore checks that no proce-
dure outside a given scope directly invokes a local procedure
of that scope. We formalize this scope call check as follows.

Let scopes(M) denote the set of scopes C such that C de-
clares M in its modules clause, and let exportingScopes(M)
denote the set of scopes C such that C declares M in its
exports clause. A procedure call from M ′ to M passes the
scope call check if and only if M is exported in precisely the
scopes C ∈ scopes(M) \ scopes(M ′) of the scope difference.
More precisely, we say that a module M ′ calls a module M
if the body of some procedure of M ′ contains a call to a
procedure in M . We require the following condition to be
satisfied for every pair of modules (M ′, M): if module M ′

calls module M , then

scopes(M) \ scopes(M ′) ⊆ exportingScopes(M).

Note that this definition combines the calling restrictions
from all relevant scopes: if M is a local module in some
scope C, only modules that are also in C can call M .

Scope Reentrancy Check. In general, a call site inside a
given scope may (potentially transitively) call an exported
procedure from the same scope (which will assume the scope
invariant). We call such a call site a reentrant call site.

Our system ensures that scope invariants hold on entry to
exported procedures, in part, by requiring scope invariants
to hold at all reentrant call sites. It is the developer’s re-
sponsibility to identify reentrant call sites (it would also be
possible to automatically detect such call sites). A simple
link-time check (the call reentrancy check) ensures that the
developer has correctly identified all reentrant sites.

Entering and Exiting Scopes. A program can exit a
scope in two places: at the exit point of an exported proce-
dure, or at a call site that invokes either a procedure outside
the scope or an exported procedure in the same scope. We
call such a call site an external call site. The program can
enter a scope in two places: at the entry point of an exported
procedure, or at the return point of an external call site.

Figure 11 presents an example that illustrates the possible
cases. The entry point of each procedure in the exported
module M is an entry point for the scope C. The exit points
of these procedures are scope exit points. Call sites from
procedures inside C (in the example, from procedures in the
local module Q) to procedures outside C are scope exit points.
The corresponding return points after the call sites are scope
entry points. Finally, call sites from procedures inside C

(in the example, from procedures in the local module P)
to procedures in exported modules in C are also scope exit
points. The corresponding return points after the call sites
are also scope entry points.

Public and Private Scope Invariants. Our system
supports two kinds of scope invariants. Public scope invari-
ants are visible throughout the program; in particular, the
verification system may simply (potentially under developer
guidance) assume the public scope invariant at any point in
the program outside the scope. To ensure that this verifica-

S ::= scope C {
modules M∗ ; exports M∗ ;
[[public] invariant B;] ∗ }

Figure 10: Syntax of Scope Declarations

Exported Module M

Local Module P Local Module Q

Exit
Point

Entry
Point

Entry
Point

Exit
Point

Entry
Point

Exit
Point

Exit
Point

Entry
Point

Scope C

Call Edge Return Edge

Figure 11: Scope Entry and Exit Points

tion strategy is sound, the system requires the public scope
invariant to hold whenever the program may exit the scope
(either at the exit point of an exported procedure or at an
external call site).

In contrast, private scope invariants are not visible outside
the scope. It would be possible for the verification system to
require private scope invariants to hold at the same program
points as public scope invariants. But because private scope
invariants are not visible outside the scope, the verification
system applies a less restrictive policy. Specifically, it only
requires private scope invariants to hold at exit points of
exported procedures and at reentrant call sites. Note that
this policy allows the scope invariant to be (temporarily)
violated across non-reentrant calls outside the scope. The
fact that private scope invariants are not visible outside their
scope ensures that this policy is sound.

Finally, the verification system assumes that the sets and
flags of a given scope invariant (and more generally, all sets
and flags defined in the modules in the scope) do not change
across non-reentrant calls. The set stationarity check de-
scribed above ensures that the computation rooted at such
call sites does not affect these sets and flags.

An Alternate Treatment of Scope Invariants. It
is possible to generalize the preceding treatment of scope
invariants. Specifically, the system could require the devel-
oper (or an analysis) to identify, at each external call site, all
of the scope invariants that any potentially (transitively) in-
voked procedure may assume. The verification system would
then require these scope invariants to hold at the call site.
A simple link-time check (similar to the link time check for
reentrant call sites) would verify the correctness of the scope
invariant usage information. This more general treatment
eliminates the distinction between public and private scope
invariants, gives the developer more control over when scope
invariants are required to hold, and supports a wider range
of scope invariant placement policies. The potential draw-
back is that it might require the developer to interact more
closely with the verification system.

7

Scopes and Set Visibility. The sets and flags of local
modules are not visible outside the enclosing scopes. In par-
ticular, the preconditions and postconditions of procedures
in exported modules, the modifies clauses of such proce-
dures, and public scope invariants must not contain sets or
flags from local modules.

This design decision means that modifies clauses have a
slightly different meaning in the presence of scopes with local
modules. Sets and flags from local modules will be absent
from the modifies clauses of all exported procedures, even
if the procedures may modify some of the sets or flags. To
ensure that this absence does not cause soundness violations,
the analysis must assume that the procedure invoked at any
reentrant call site may modify all sets and flags from the
local modules of the scopes to which the module containing
the call site belongs.

Multiple Scopes. In our system, a module can partic-
ipate in multiple scopes simultaneously; this multiple par-
ticipation enables modules to be grouped into scopes along
orthogonal axes. The ability to define multiple non-disjoint
scopes within a single program gives our system great ex-
pressive power.

First of all, given any region of code expressed as a set
of modules, and any invariant I, a developer can introduce
a scope exporting these modules, thereby precisely indicat-
ing where the invariant I should hold without imposing any
unwanted additional constraints on the program structure.

Next, consider the set of all modules M1, . . . , Mk in a
program, and suppose that we wish to ensure an arbitrary
set of restrictions on whether module Mi can call module
Mj , given by a boolean matrix aij (with the natural prop-
erty that aii is true). Then we can always define at most k
scopes that precisely encode the call matrix aij . Indeed, it
suffices to introduce one scope Ci for module Mi, make Mi

be the sole local module of Ci, and make the set of mod-
ules {Mj | aji = true}, that are allowed to call Mi, be the
set of exported modules of the scope Ci. The set of scopes
C1, . . . , Ck then ensures the desired call matrix aij . In prac-
tice, programs exhibit non-trivial (even if not hierarchical)
structure, which implies that many fewer than k scopes suf-
fice to define the desired calling restrictions.

Finally, note that scopes can encode the situation where
a module M exposes different subsets of its functionality
to different modules, providing more or less restrictive in-
terfaces to different clients [11]. To model this situation,
write M by exposing a wide (flexible) interface, and define
the proxy modules M1, . . . , Mp, each of which calls M but
propagates only a subset of the functionality of M . Then
create a scope with M as a local module and M1, . . . , Mp as
exported modules.

4. DEFAULTS
The default construct enables developers to state that a

specific property holds at a set of procedure preconditions
and postconditions (identified by a pointcut) unless explic-
itly suspended. The syntax of a default declaration is

default N(A1, ..., Ak) : C = P

where N is the name of the default, the Ai are a set of
optional parameter names, C is an optional pointcut spec-
ification, and P is a property expressed in the shared set
specification language. As discussed in Section 2, defaults
are typically used to capture initialization constraints.

P ::= P1−P2 | P1&P2 | P1|P2 | not P
| pre S | post S | prepost S

S ::= S1 − S2 | S1&S2 | S1|S2 | not S
| proc pn(tn1, . . . , tnn) returns tnr

| exported (module ms) | exported (scope ss)
| local (module ms) | local (scope ss)
| all (module ms) | all (scope ss)
| all

pn, tn, ms, ss ::= identifier | identifier*

Figure 12: Pointcut Language for Defaults

Our system implements defaults by conjoining P to pro-
cedure preconditions and postconditions that 1) match the
pointcut specification C and parameter names Ai (discussed
below) and 2) do not explicitly suspend the default N with
a specification clause “suspendN”.

Defaults are useful for several reasons: they reduce the
size of the specifications, eliminate the specification aggre-
gation that would otherwise occur when default conditions
would propagate up the procedure call hierarchy from pro-
cedures that require the default, and eliminate specification
errors that would otherwise occur when developers inadver-
tently omit default properties. Developers often appear to
unconsciously assume that the default holds (this is under-
standable as many defaults do, in fact, hold almost every-
where in a correct program) and therefore tend to write spec-
ifications that omit required default properties. Defaults can
transform these incomplete, unsound, but intuitively correct
specifications into complete, sound specifications.

Pointcut Specification Language. Figure 12 presents
the syntax for the default pointcut specification language.
The developer can use this language to identify a set of pro-
cedures S to which the default applies, then specify that
the default applies to the preconditions (pre S), postcon-
ditions (post S), or both preconditions and postconditions
(prepost S) of all procedures in S. The developer may se-
lect the procedures by name, by membership in modules,
or by membership in scopes. A missing pointcut indicates
that the default should apply to all preconditions and all
postconditions of all procedures.

Defaults and Modules. Defaults are often coupled to a
specific module — for example, a data structure initializa-
tion default is typically coupled to the module that encapsu-
lates the data structure. In such cases the developer should
define the default within the corresponding module so that
the instantiation of the module correctly includes the instan-
tiation of the default (and the constraint that it enforces).
Developers may also declare defaults on their own outside of
any module — such declarations are typically appropriate
when the default property involves multiple modules.

Default Parameter Names. If the default includes pa-
rameter names, these parameter names further constrain the
set of procedures to which the default applies — if the de-
fault has a list of parameter names A1, . . . , Ak then it applies
only to procedures that have at least k parameters with for-
mal parameter names A1, . . . , Ak. The parameter names
may appear in any order in the procedure’s parameter list.
For example, in the Water benchmark (Section 5.2), the de-
fault

default padRead(p) : pre(all(module Reduce)) =
card(p)=1 & (p in Reduce.Read)

applies only to preconditions of procedures in the Reduce

8

module that have (at least) a parameter named p. When
conjoined with the precondition of such a procedure, the
default requires p to have cardinality 1 (i.e. it must not be
null) and to be a member of the Reduce.Read set.

Defaults as Formula Transformers Conceptually, de-
faults are formula transformers: the defaults we have dis-
cussed so far transform preconditions and postconditions by
conjoining the default property P to these formulas. The
default concept smoothly generalizes to include arbitrary
formula transformers that may transform formulas in more
sophisticated ways. We have implemented such general for-
mula transformers in the Hob system as part of its sup-
port for defaults. One issue is that multiple transformers
may apply to a single precondition or postcondition. If the
transformers do not commute, different application orders
may produce different final formulas. One way to eliminate
any such nondeterminism is to group formula transformers
into classes (so that all transformers in the same class com-
mute), then prioritize the classes to fix an application order
for transformers that may not commute.

5. EXPERIENCE
We have implemented formats, scopes and defaults in the

Hob progam implementation, specification, and analysis sys-
tem. In this section, we discuss how we used these constructs
in the specification and verification of several benchmark
programs.

5.1 Minesweeper
We have implemented the popular Minesweeper game in

our implementation language and used Hob to verify that
our implementation conforms to its specification. Our Mine-
sweeper implementation uses the standard model/view/con-
troller (MVC) design pattern [11]. The implementation con-
tains several modules: a game board module (which repre-
sents the game state), a controller module (which responds
to user input), a view module (which produces the game’s
output), an exposed cell module (which stores the exposed
cells in an array), and a hidden-cell module (which stores the
hidden cells in a linked list). The example’s Model scope en-
capsulates the complete concrete and abstract states of the
game board; the scope contains the game board and the
exposed and hidden cell modules.

Our system verifies that our implementation has the fol-
lowing properties (among others):

• The linked list satisfies its representation invariants
and is used correctly.

• The array set satisfies its representation invariants and
is used correctly [37].

• Unless the game is over, the set of mined cells is dis-
joint from the set of exposed cells.

• The sets of exposed and hidden cells are disjoint.

• At the end of the game, all cells are revealed; i.e. the
set of hidden cells is empty.

• The set of hidden cells maintained in the Board mod-
ule equals the set of hidden cells maintained in the
HiddenList list.

• The set of exposed cells maintained in the Board mod-
ule equals the set of exposed cells maintained in the
ExposedSet array.

The first five properties are intra-module properties enforced
on the abstract state of the Board module, while the last
two properties are inter-module properties, maintained us-
ing scope invariants.

Although our system focuses on using sets to model pro-
gram state, not every module needs to define its own ab-
stract sets — some modules simply coordinate the activity
of other modules. For example, the view module does not
encapsulate any abstract sets. It instead queries the board
for the current game state and calls the system graphics li-
braries to display the state. Because such interface modules
coordinate the actions of multiple modules, they often be-
come exported modules of a scope that specifies an invariant
involving the data structures encapsulated in the invoked
modules.

Linking global typestate and per-object states. Note
that the set abstraction supports typestate-style reasoning
at a per-object level (for example, all objects in the ab-
stract ExposedCells set can be viewed as having a concep-
tual typestate “exposed”). Our system also supports the
notion of global typestate: for instance, the Board module
has a global gameOver variable which indicates whether or
not the game is over. Using this variable and the definitions
of sets, we maintain the invariant

Board.gameOver |
disjoint(Board.MinedCells,Board.ExposedCells)

This invariant connects a global typestate property — is the
game over? — with a object-based typestate state property
evaluated on objects in the program — there are no mined
cells that are also exposed. Conceptually, one could verify
these global invariants by conjoining them to the precondi-
tions and postconditions of methods. We use a default to
automatically conjoin this particular invariant to the speci-
fications of the procedures in the Controller module. For
this benchmark, such a default is sufficient to guarantee our
property because the Controller is the only module that
mutates Board state. Note that this invariant must be main-
tained outside of the Board module (and hence outside the
Model scope) because it is only true as a result of the way
the Board is actually used; a different client of the Board

module might falsify the invariant.
A scope invariant captures the correspondence between

the Board module’s ExposedCells and HiddenCells sets
and the Content module’s ExposedSet and HiddenList sets:

(Board.ExposedCells = ExposedSet.Content) &
(Board.HiddenCells = HiddenList.Content)

We verify this invariant by including it as a scope invari-
ant for the Model scope, so that the system verifies that
it holds at all exit points from the Board module. Since
the scope prevents other modules from calling ExposedSet

or HiddenList procedures directly, the invariant therefore
holds on entry to the Board module. Note that scope invari-
ants must be true in the initial state of the program. If some
initializer must execute to establish a property that then
remains true for the remainder of the execution, a global
typestate initialization flag can turn the property into an
invariant. The developer may then use a default to state
that the default value of that global typestate flag is true.

9

In the absence of defaults, the developer would have to ac-
cumulate annotations and manually include the property at
every procedure in the module.

The list iterator in our Minesweeper implementation ex-
ports two sets, Iter, containing the objects yet to be re-
turned by the iterator, and Content, containing all objects
in the list. It maintains the public module invariant2 Iter

sub Content. This invariant captures the property that the
iterator only returns objects contained in the list. This in-
variant is always true outside the list iterator module.

5.2 Water
Water is a port of the Perfect Club benchmark MDG [4] to

the Hob implementation language. It contains ten modules
and two scopes, with approximately 2000 lines of implemen-
tation and 500 lines of specification.

The ParametrizedEnsemble scope exports the Ensemble

module and encapsulates the Simparm module. The Simparm
module manages the global simulation parameters, which
are stored in a text file and loaded upon demand. The
ParmsLoaded flag is true when the parameters have been
loaded and stored in the appropriate data structures; the
analysis verifies that the computation does not access the
simulation parameters until they have been loaded. A scope
invariant uses the Init flag in the Ensemble module to shield
the Simparm flag: Ensemble.Init => Simparm.ParmsLoaded.
Thus, in the rest of the program, the Simparm module is
invisible, and external callers need only establish that the
precondition Ensemble.Init holds.

The other scope in the program is the Computation scope,
which exports the Ensemble module and encapsulates the
H2O, Skratch pad, and Atom modules. This scope makes it
possible to remove all of the sets except the Ensemble sets
from the following modifies clause of the main program:

modifies Ensemble.SCALEFORCES, Ensemble.INTERF,
Ensemble.VIR, Ensemble.INTRAF, Ensemble.INITIA,
Ensemble.Init, Ensemble.CORREC, Ensemble.BNDRY,
Ensemble.KINETI, Ensemble.PREDIC,
Skratch_pad.Updated, Skratch_pad.Read, Skratch_pad.Init,
H2O.Vel, H2O.Pos, H2O.Scaled, H2O.Init, H2O.Intraf,
H2O.Predic, H2O.Correc, H2O.Bndry, H2O.Kineti,
Atom.Init, Atom.Correc, Atom.Predic,
Simparm.ParmsLoaded, Simparm.Init,

The Ensemble module manages the sequence of compu-
tational steps that comprise the water simulation. It uses
boolean flags to track the state of the computation; when
the boolean flag INTERF is true, for example, then the inter-
force step has been carried out for all of the molecules in the
simulation. The specification uses these flags to ensure that
the program correctly sequences the steps in the following
order:

Init ; INITIA ; PREDIC ; INTRAF ; VIR ; INTERF ; · · ·

The ability to automatically enforce this step sequencing
information may become especially valuable in the main-
tenance phase of the program’s lifetime, when the original
designer, if available, may have long since forgotten these
sequencing constraints. When appropriate, the specifica-
tion encapsulates phase ordering constraints behind the in-
terfaces of exported modules. The specification also uses

2Module invariants are special cases of scope invariants; we
conceptually treat a module M with an invariant I as a scope
containing the single exported module M and invariant I.

Full With Scopes Ratio
and Defaults

acc double 257 257 N/A
atom 961 868 0.90
consts 3162 3162 N/A
ensemble 8893 6489 0.73
h2o 5472 4557 0.83
main 606 606 N/A
simparm 2308 1722 0.75
skratch pad 1757 1368 0.78
util 82 82 N/A
water total 24820 20433 0.82
arrayset 571 570 1.00
board 4860 5191 1.07
controller 2761 2478 0.90
list 1157 1126 0.97
main 572 572 N/A
view 2353 2209 0.94
minesweeper total 12274 12146 0.99

Figure 13: Specification sizes, in bytes, for bench-
marks with and without scopes and defaults

cardinality constraints to prevent null pointers from being
passed to procedures that require the pointers to refer to an
actual object.

5.3 Scope and Default Evaluation
We have created and compared versions of our benchmark

programs with and without scopes and defaults. Figure 13
presents the sizes of our specification modules with and with-
out scopes and defaults. We found that the use of defaults
and scopes in some cases reduced the specification size up
to 27%. Our benchmarks had shallow inter-module calling
depths, limiting the applicability of scopes. We expect that
a program which uses multiple orthogonal and nested scopes
would see an even greater reduction in specification size. In
any case, we found that defaults and scopes qualitatively
made our specifications much more readable by omitting
conjuncts that appeared in a number of specifications. In
fact, a number of procedures no longer needed any requires

clauses at all after the use of defaults. Finally, specifica-
tions that use scopes and defaults are more likely to be cor-
rect: developers are less likely to inadvertently omit required
clauses once they are placed in scopes and defaults.

6. RELATED WORK
Our work explores the use of mechanisms to address cross-

cutting concerns arising in static analysis of data struc-
ture consistency. We survey related work in the areas of
semantics and analysis of aspect-oriented programs, cross-
cutting module systems, aspect-oriented specification tech-
niques, default logic, and program checking tools in general.

Semantics and analysis of aspect-oriented programs.
Ideas for addressing crosscutting concerns in design and im-
plementation appear in [3, 14, 22, 25, 27, 35]. Classification
systems for aspects are presented in [8, 16], and a seman-
tics of aspects with dynamic join points is presented in [36].
Our module mechanism is more modest than open mod-
ules [1]; our primary goal is to support the analysis of data
structure consistency in the presence of shared objects, so
we preserve the control-flow structure of traditional module
systems. In [30,33,34] the authors present techniques for an-
alyzing and classifying aspects. Our contribution is some-
what dual to the analysis of aspect interactions, because
we explore the use of crosscutting techniques in specifica-
tions themselves. Despite these differences, the present pa-

10

per further contributes to the view that static program anal-
ysis and aspect-oriented development techniques can benefit
from each other.

Crosscutting module systems. Aspect-oriented tech-
niques aim to modularize crosscutting concerns in software
systems. A technique that is particularly relevant to our
work is virtual source files. In the Decal system [12], devel-
opers may browse and effectively edit two distinct views of a
software system: the usual class-based view, and a module-
based view which cuts across classes to separate out parts of
a program relevant to a given concern. Hob’s use of formats
to separate concerns is akin to Decal’s module-based view;
formats allow our system to verify properties of software
systems which have this module-based form of crosscutting.
Formats can also be viewed as a case of intertype declara-
tions in AspectJ [13]. Scopes are related to virtual source
files and hyperslices; augmenting Stellation’s dynamic aggre-
gate generation [7] or hyperslices [26] with invariants could
achieve a similar effect as scope invariants. In particular,
once a developer has identified a scope using a program
query or a specification hyperslice, then the developer could
state cross-module invariants corresponding to this scope.
Hob’s scopes allow developers to both state and verify such
properties.

Our notion of module instantiation is related to Hyper/J’s
equate into construct: our example could be implemented
in Hyper/J by creating a ExposedList hyperslice and an
HiddenList hyperslice, each equating the global List into
that hyperslice and redirecting the List’s reference to Node

into a reference to Cell. If two different modules both con-
tribute a field init to objects of class Cell, these two init

fields remain distinct; our system’s treatment of such fields
corresponds to the Hyper/J nonCorrespondingMerge quali-
fier. Our system differs from Hyper/J with respect to access
control: Hyper/J does not allow developers to restrict access
to fields across slices.

Specifications for aspect-oriented aystems. In [9],
the authors explore the applicability of model checking tech-
niques to modular software systems. The methodology of [9]
allows users of model checking tools to state and modu-
larly prove properties of systems which consist of base mod-
ules, extension points for these base modules, and exten-
sions to the base modules. Both the techniques of [9] and
our approach take advantage of sophisticated software de-
composition constructs to improve the effectiveness of pro-
gram verification. Whereas [9] targets primarily finite-state
properties of collaboration-based software designs, our sys-
tem implements a technique for verification of complex data
structure consistency properties. Hob’s common specifica-
tion language does not have temporal operators typically
supported by model checkers; instead, Hob uses the source-
level concept of program points and the ability to introduce
boolean flags to represent both global and per-object tempo-
ral properties. Hob’s set-based specification language goes
beyond the finite state models used in model checking; the
specification languages for the individual analyses are even
more expressive.

Default logic. Reiter’s default logic [29] is a nonmono-
tonic logic that extends first-order logic by adding a set of
default rules. These default rules automatically add clauses
to formulas in the absence of evidence to the contrary. Our
notion of defaults differs from Reiter’s default logic in that

our defaults do not change the underlying logic of our sys-
tem. We continue to use first-order logic for reasoning about
program state and apply syntactic formula transformations
to certain formulas in our specifications.

Program checking tools. ESC/Java [10] is a program
checking tool whose purpose is to identify common errors
in programs using program specifications in a subset of the
Java Modelling Language (JML) [5]. ESC/Java sacrifices
soundness in that it does not model all details of the program
heap, but can detect some common programming errors.
The Spec# programming system [2] adds similar features
to C#, including the ability to specify method contracts,
frame conditions and class contracts. These contracts may
be verified at run-time or by the Boogie static verifier, which
uses a theorem prover to discharge its verification conditions.

We discuss two key differences between our approach and
the proposed Boogie approach. First, Boogie envisions the
use of a single general-purpose theorem prover to discharge
the generated verification conditions. Hob, on the other
hand, is designed to support a diverse range of potentially
narrow, specialized analyses (this range includes shape anal-
yses, typestate analyses [19] and even interactive theorem
provers [37] as well as less detailed analyses). This goal is
reflected in Hob’s format construct and in its abstract set
specification language, both of which are designed to sup-
port a strong separation between different analyses (such a
separation is necessary, of course, if multiple analyses are to
cooperate to successfully analyze a single program). This
approach minimizes the amount of expertise required to
work within the Hob system and maximizes the ability of
developers with specialized skills to contribute. We believe
that enabling as many developers to contribute as possible
will lead to a richer, more powerful analysis system.

Second, Boogie is designed to verify object invariants,
with an object ownership mechanism supporting the hierar-
chical specification and verification of invariants that involve
hierarchies of linked objects. This mechanism eliminates a
form of specification aggregation for computations that tra-
verse a hierarchy of owned objects — if the procedure call
hierarchy matches the ownership hierarchy, each procedure
need only state consistency requirements for the object that
it directly accesses, not all of the child objecs that that ob-
ject owns. This hierarchical specification approach is remi-
niscent of hierarchical access specifications in Jade [31] and
hierarchical locking mechanisms in databases [32].

Hob, on the other hand, is designed to support computa-
tions organized around a flat set of data structures. The con-
structs that eliminate specification aggregation cut across
the procedure call hierarchy rather than working within it.
This adoption of cross-cutting organizational approaches re-
flects the maturation of computer science as a discipline —
over time, the overwhelming dominance of hierarchical ap-
proaches will fade as the effectiveness of using other ap-
proaches in addition to hierarchies becomes obvious.

7. CONCLUSION
Our experience with modular pluggable analyses has iden-

tified crosscutting concerns as an issue in program specifi-
cation and verification. We designed several constructs and
added them to our implementation and specification lan-
guages to address these issues. We found these constructs
to be useful for verifying data structure consistency: the

11

use of formats allowed us to independently specify and ana-
lyze sets of shared objects implemented using different data
structures, whereas scopes and defaults improved the local-
ity and clarity of our specifications, and, at the same time,
reduced the sizes of these specifications. Together, these
constructs enabled us to build a prototype analysis system
that deploys multiple precise, unscalable analyses to verify,
in a scalable and modular fashion, precise data structure
consistency properties in sizable programs.

8. REFERENCES
[1] J. Aldrich. Open modules: Reconciling extensibility and

information hiding. Software Engineering Properties of
Languages for Aspect Technologies, March 2004.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In CASSIS 2004:
International Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart devices, March 2004.

[3] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and
Methodology, 1(4), Oct. 1992.

[4] W. Blume and R. Eigenmann. Performance analysis of
parallelizing compilers on the Perfect Benchmarks
programs. IEEE Transactions on Parallel and Distributed
Systems, 3(6):643–656, Nov. 1992.

[5] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. Technical Report NII-R0309,
Computing Science Institute, Univ. of Nijmegen, March
2003.

[6] D. R. Cheriton and M. E. Wolf. Extensions for
multi-module records in conventional programming
languages. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 296–306. ACM Press, 1987.

[7] M. C. Chu-Carroll. Supporting distributed collaboration
through multidimensional software configuration
management. In Proceedings of the 10th ICSE Workshop
on Software Configuration Management, 2001.

[8] C. Clifton and G. Leavens. Observers and assistants: A
proposal for modular aspect-oriented reasoning. Technical
Report TR 02-04, Department of Computer Science, Iowa
State University, Mar. 2002.

[9] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Proceedings of the
Joint European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Vienna, Austria, Sept. 2001.

[10] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended Static Checking for
Java. In Proc. ACM PLDI, 2002.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlisside. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1994.

[12] D. Janzen and K. D. Volder. Programming with
crosscutting effective views. In M. Odersky, editor, 18th
ECOOP, pages 195–218, 2004.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In ECOOP,
2001.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP, 1997.

[15] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
implementation secrets. In Proc. 5th International
Conference on Implementation and Application of
Automata. LNCS, 2000.

[16] R. Laddad. AspectJ in Action. Manning Publications
Company, Greenwich, CT, 2003.

[17] P. Lam, V. Kuncak, and M. Rinard. On modular pluggable
analyses using set interfaces. Technical Report 933, MIT
CSAIL, December 2003.

[18] P. Lam, V. Kuncak, and M. Rinard. On our experience
with modular pluggable analyses. Technical Report 965,
MIT CSAIL, September 2004.

[19] P. Lam, V. Kuncak, and M. Rinard. Generalized typestate
checking for data structure consistency. In 6th
International Conference on Verification, Model Checking
and Abstract Interpretation, 2005.

[20] P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for
verifying data structure consistency. In 14th International
Conference on Compiler Construction (tool demo), April
2005.

[21] P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob
project web page. http://catfish.csail.mit.edu/∼plam/hob/,
2004.

[22] K. Lieberherr, D. Lorenz, and M. Mezini. Programming
with aspectual components. Technical Report
NU-CCS-99-01, College of Computer Science, Northeastern
University, Mar. 1999.

[23] B. Liskov and J. Guttag. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[24] A. Møller and M. I. Schwartzbach. The Pointer Assertion
Logic Engine. In Proc. ACM PLDI, 2001.

[25] D. Moon. Object-oriented programming with flavors. In
OOPSLA, 1986.

[26] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns using hyperspaces. Technical Report Research
Report 21452, IBM, 1999.

[27] H. Ossher and P. Tarr. Using multidimensional separation
of concerns to (re)shape evolving software.
Communications of the ACM, Oct. 2001.

[28] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. In Proceedings of the 1st
International Conference on Aspect-Oriented Software
Development, pages 141–147, Enschede, The Netherlands,
2002.

[29] R. Reiter. A logic for default reasoning. Artificial
Intelligence, pages 81–132, 1980.

[30] M. Rinard, A. Sălcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. In Proc.
12th Symposium on the Foundations of Software
Engineering, 2004.

[31] M. C. Rinard. The Design, Implementation and Evaluation
of Jade, a Portable, Implicitly Parallel Programming
Language. PhD thesis, Stanford University, 1994.

[32] A. Silberschatz and Z. Kedem. Consistency in hierarchical
database systems. Journal of the ACM, 27(1):72–80,
January 1980.

[33] G. Snelting and F. Tip. Semantics-based composition of
class hierarchies. In ECOOP, 2002.

[34] M. Störzer and J. Krinke. Interference analysis for AspectJ.
In Workshop on Foundations of Aspect-Oriented
Languages, Mar. 2003.

[35] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In ICSE, 1999.

[36] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented
programming. Transactions on Programming Languages
and Systems, 26(5), 2004.

[37] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining
theorem proving with static analysis for data structure
consistency. In International Workshop on Software
Verification and Validation (SVV 2004), Seattle, November
2004.

12

