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C programmers are all too familiar with 
out-of-bounds memory errors. A typical 
scenario involves a pointer calculation 
that produces an address outside the tar-
get block of memory that the developer 
intends the program to write. The result-
ing out-of-bounds writes corrupt the data 
structures of otherwise unrelated parts of 
the program, causing the program to fail 
or mysteriously generate unexpected out-
puts. Analogous errors in Java and other 
type-safe languages cause out-of-bounds 
exceptions, which typically terminate the 
execution of the program. 

The paper here presents an intriguing 
technique for automatically isolating and 
correcting these errors. The basic idea is 
simple. Allocate blocks randomly within 
a memory much larger than required 
to execute the program. Set the remain-
ing unused memory to contain specific 
“canary” values. Run multiple versions 
of the program to failure, then observe 
overwritten canary values to compute 1) 
the target block the out-of-bounds writes 
were intended to write, and 2) how much 
additional memory would have been re-
quired to bring the writes back within 
bounds. The fix is to go back to the allo-
cation site in the program that allocated 
the target block, then apply a patch that 
suitably increases the size of blocks al-
located at that site. The paper also pres-
ents a conceptually similar technique 
for dealing with accesses to prematurely 
deallocated blocks of memory. Note that 
the combination of random allocation 
and multiple heaps is the key insight 
that makes it possible to isolate the tar-
get block. Randomizing the block place-
ment provides the block location diver-
sity required to ensure that, with high 
probability, only the target block will 
have the same offset from the overwrit-
ten canary values in all of the heaps.

One interesting aspect of this ap-
proach is that it generates patches 
almost immediately and without the 
need for human interaction. It is there-
fore suitable for uses (such as eliminat-
ing security vulnerabilities) that place a 
premium on obtaining fast responses 
to newly exposed errors. It can also 
eliminate the need to interact with a 

(potentially distracted, indifferent, re-
calcitrant, or defunct) software develop-
ment organization to obtain relief from 
an error, even when the software is dis-
tributed only in binary form.

An even more interesting aspect of 
this approach is that it may very well 
produce patches that do not complete-
ly fix the problem—the fact that the 
addition of a given amount of memo-
ry would have eliminated the out-of-
bounds accesses in one observed ex-
ecution provides no guarantee that it 
will eliminate such accesses in other 
executions. Benefits of this approach 
include simplicity and feasibility of 
implementation and deployment.

Over the last several years I have had 
many conversations about this and oth-
er (more aggressive or even unsound) 
techniques for automatically correcting 
or tolerating errors. Many developers 
and researchers find something deeply 
unsettling about a program that con-
tinues to execute in the face of errors. In 
fact, the most common response is that 
programs should stop when they en-
counter an error and not continue until 
a developer fixes the error.

I believe I get this response for two 
reasons. First, most developers feel re-
sponsible for the behavior of the pro-
grams they produce. Automatic interven-
tion can often invalidate, undermine, or 
simply bypass the reasoning the devel-
oper originally used when developing 
the program. It is not clear what is go-
ing to replace that reasoning or who is 
then responsible for the actions of the 
modified program. Second, the needs 
of the developer are usually best served 
with a fail-stop approach.  Stopping the 
execution as close as possible to the er-
ror makes it easier for developers to iso-
late and fix errors while the program is 
under development. Many developers 
instinctively reject any approach that 
involves continued execution after an er-
ror, presumably because the continued 
execution can complicate debugging by 
obscuring the location of the error.

But the needs of users are very differ-
ent from the needs of developers. Stop-
ping the program at the first sign of an 

error can unacceptably deny access to im-
portant functionality. The undesirability 
of this denial of service can be seen (in 
embryonic form) in the common prac-
tice of removing assertions before releas-
ing a system for production use.

Even if you believe that programs 
that continue to execute through errors 
are more likely to produce unacceptable 
results than programs that execute with-
out a detected error, there are clearly 
many scenarios in which continued 
execution is superior. Consider, for ex-
ample, a program that produces a result 
(such as a drawing or digitally edited 
picture) whose acceptability is obvious 
upon inspection. Continued execution 
in the face of errors may very well enable 
the program to produce an acceptable 
result that satisfies the user’s needs. 

A fail-stop approach can also be dan-
gerous when applied to programs that 
control unstable physical phenomena. In 
this case, continued execution through 
errors can offer the only real hope of ob-
taining an acceptable outcome. To cite 
a real-world example, consider the infa-
mous Ariane 5 disaster. This disaster was 
directly caused by the inappropriate use 
of a fail-stop approach in a safety-critical 
embedded software system.

So what does the future hold for au-
tomatic error recovery and repair? At 
this point we have a variety of viable 
strategies for dealing with errors (such 
as out-of-bounds memory accesses or 
null-pointer dereferences) that no pro-
gram should ever commit. Future ad-
vances will focus on correcting applica-
tion-specific errors. The key is to obtain 
specifications that provide a foundation 
for the recognition and elimination of 
unacceptable behavior. One particu-
larly fruitful area is sure to be unsound 
techniques that (in return for simplicity 
and feasibility of implementation and 
deployment) ignore traditional require-
ments that program transformations 
should never perturb error-free execu-
tions. The success of such techniques 
could then pave the way for a more ma-
ture software engineering perspective 
that views correctness as simply one of 
a set of engineering trade-offs to be ap-
propriately managed during the lifetime 
of the system. 
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