
86 communications of the acm | december 2008 | vol. 51 | no. 12

C programmers are all too familiar with
out-of-bounds memory errors. A typical
scenario involves a pointer calculation
that produces an address outside the tar-
get block of memory that the developer
intends the program to write. The result-
ing out-of-bounds writes corrupt the data
structures of otherwise unrelated parts of
the program, causing the program to fail
or mysteriously generate unexpected out-
puts. Analogous errors in Java and other
type-safe languages cause out-of-bounds
exceptions, which typically terminate the
execution of the program.

The paper here presents an intriguing
technique for automatically isolating and
correcting these errors. The basic idea is
simple. Allocate blocks randomly within
a memory much larger than required
to execute the program. Set the remain-
ing unused memory to contain specific
“canary” values. Run multiple versions
of the program to failure, then observe
overwritten canary values to compute 1)
the target block the out-of-bounds writes
were intended to write, and 2) how much
additional memory would have been re-
quired to bring the writes back within
bounds. The fix is to go back to the allo-
cation site in the program that allocated
the target block, then apply a patch that
suitably increases the size of blocks al-
located at that site. The paper also pres-
ents a conceptually similar technique
for dealing with accesses to prematurely
deallocated blocks of memory. Note that
the combination of random allocation
and multiple heaps is the key insight
that makes it possible to isolate the tar-
get block. Randomizing the block place-
ment provides the block location diver-
sity required to ensure that, with high
probability, only the target block will
have the same offset from the overwrit-
ten canary values in all of the heaps.

One interesting aspect of this ap-
proach is that it generates patches
almost immediately and without the
need for human interaction. It is there-
fore suitable for uses (such as eliminat-
ing security vulnerabilities) that place a
premium on obtaining fast responses
to newly exposed errors. It can also
eliminate the need to interact with a

(potentially distracted, indifferent, re-
calcitrant, or defunct) software develop-
ment organization to obtain relief from
an error, even when the software is dis-
tributed only in binary form.

An even more interesting aspect of
this approach is that it may very well
produce patches that do not complete-
ly fix the problem—the fact that the
addition of a given amount of memo-
ry would have eliminated the out-of-
bounds accesses in one observed ex-
ecution provides no guarantee that it
will eliminate such accesses in other
executions. Benefits of this approach
include simplicity and feasibility of
implementation and deployment.

Over the last several years I have had
many conversations about this and oth-
er (more aggressive or even unsound)
techniques for automatically correcting
or tolerating errors. Many developers
and researchers find something deeply
unsettling about a program that con-
tinues to execute in the face of errors. In
fact, the most common response is that
programs should stop when they en-
counter an error and not continue until
a developer fixes the error.

I believe I get this response for two
reasons. First, most developers feel re-
sponsible for the behavior of the pro-
grams they produce. Automatic interven-
tion can often invalidate, undermine, or
simply bypass the reasoning the devel-
oper originally used when developing
the program. It is not clear what is go-
ing to replace that reasoning or who is
then responsible for the actions of the
modified program. Second, the needs
of the developer are usually best served
with a fail-stop approach. Stopping the
execution as close as possible to the er-
ror makes it easier for developers to iso-
late and fix errors while the program is
under development. Many developers
instinctively reject any approach that
involves continued execution after an er-
ror, presumably because the continued
execution can complicate debugging by
obscuring the location of the error.

But the needs of users are very differ-
ent from the needs of developers. Stop-
ping the program at the first sign of an

error can unacceptably deny access to im-
portant functionality. The undesirability
of this denial of service can be seen (in
embryonic form) in the common prac-
tice of removing assertions before releas-
ing a system for production use.

Even if you believe that programs
that continue to execute through errors
are more likely to produce unacceptable
results than programs that execute with-
out a detected error, there are clearly
many scenarios in which continued
execution is superior. Consider, for ex-
ample, a program that produces a result
(such as a drawing or digitally edited
picture) whose acceptability is obvious
upon inspection. Continued execution
in the face of errors may very well enable
the program to produce an acceptable
result that satisfies the user’s needs.

A fail-stop approach can also be dan-
gerous when applied to programs that
control unstable physical phenomena. In
this case, continued execution through
errors can offer the only real hope of ob-
taining an acceptable outcome. To cite
a real-world example, consider the infa-
mous Ariane 5 disaster. This disaster was
directly caused by the inappropriate use
of a fail-stop approach in a safety-critical
embedded software system.

So what does the future hold for au-
tomatic error recovery and repair? At
this point we have a variety of viable
strategies for dealing with errors (such
as out-of-bounds memory accesses or
null-pointer dereferences) that no pro-
gram should ever commit. Future ad-
vances will focus on correcting applica-
tion-specific errors. The key is to obtain
specifications that provide a foundation
for the recognition and elimination of
unacceptable behavior. One particu-
larly fruitful area is sure to be unsound
techniques that (in return for simplicity
and feasibility of implementation and
deployment) ignore traditional require-
ments that program transformations
should never perturb error-free execu-
tions. The success of such techniques
could then pave the way for a more ma-
ture software engineering perspective
that views correctness as simply one of
a set of engineering trade-offs to be ap-
propriately managed during the lifetime
of the system.

Martin C. Rinard (rinard@cag.csail.mit.edu) is a professor
in the Department of Electrical Engineering and Computer
Science at MIT, Cambridge, MA.

technical Perspective
Patching Program errors
By Martin C. Rinard

research highlights

doi:10.1145/1409360.1409381

