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Abstract. We describe an algorithm for deciding the first-order maltisd theory BAPA,
which combines 1) Boolean algebras of sets of uninterprekehents (BA) and 2) Pres-
burger arithmetic operations (PA). BAPA can express thegiciship between integer vari-
ables and cardinalities of a priory unbounded finite setd,saupports arbitrary quantifica-
tion over sets and integers.

Our motivation for BAPA is deciding verification conditiortisat arise in the static anal-
ysis of data structure consistency properties. Data strestoften use an integer variable
to keep track of the number of elements they store; an invdfsuch a data structure is
that the value of the integer variable is equal to the numbetemments stored in the data
structure. When the data structure content is representedsbt, the resulting constraints
can be captured in BAPA. BAPA formulas with quantifier alefans arise when verify-
ing programs with annotations containing quantifiers, oemproving simulation relation
conditions for refinement and equivalence of program fragmd-urthermore, BAPA con-
straints can be used for proving the termination of progrémasmanipulate data structures,
and have applications in constraint databases.

We give a formal description of a decision procedure for BARAich implies the decid-
ability of BAPA. We analyze our algorithm and obtain an eletaey upper bound on the
running time, thereby giving the first complexity bound fohBA. Because it works by a
reduction to PA, our algorithm yields the decidability of antbination of sets of uninter-
preted elements with any decidable extension of PA. Ourlgo can also be used to yield
an optimal decision procedure for BA through a reductionAamith bounded quantifiers.
We have implemented our algorithm and used it to dischargéoation conditions in the
Jahob system for data structure consistency checking afplagrams; our experience with
the algorithm is promising.

1 Introduction

Program analysis and verification tools can greatly couteitio software reliability,
especially when used throughout the software developmenéps. Such tools are even
more valuable if their behavior is predictable, if they cardlpplied to partial programs,
and if they allow the developer to communicate the desigarination in the form of
specifications. Combining the basic idea of [18] with deblddogics leads to analysis
tools that have these desirable properties. Such analysgsecise (because formulas
represent loop-free code precisely) and predictable (Isexcthe checking of verification
conditions terminates either with a realizable countemg{a or with a sound claim that
there are no counterexamples).

A key challenge in this approach to program analysis andiwation is to iden-
tify a logic that captures an interesting class of prograopprties, but is neverthe-
less decidable. In [29] we identify the first-order theoryBaiolean algebrasBA) as a
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useful language for reasoning about dynamically allocatgects:BA allows express-
ing generalized typestate properties and reasoning aldausttuctures as dynamically
changing sets of objects. (We are intereste8Anof all subsets of some set; this theory
was shown decidable already in [31, 46], see [22] for theudision of other models of
Boolean algebra axioms.)

The motivation for this paper is the fact that we often nee#son not only about
the data structure content, but also about the size of tlaestiatcture. For example, we
may want to express the fact that the number of elementsdsiore data structure is
equal to the value of an integer variable that is used to cdehdata structure size, or
we may want to introduce a decreasing integer measure orataesttucture to show
program termination. These considerations lead to a najareralization of the first-
order theory ofBA of sets, a generalization that allows integer variablesdiditaon
to set variables, and allows stating relations of the fo#th = &£ meaning that the
cardinality of the setd is equal to the value of the integer variallleOnce we have
integer variables, a natural question arises: which riatand operations on integers
should we allow? It turns out that, using only tB& operations and the cardinality
operator, we can already define all operationBAf This leads to the structui2APA,
which properly generalizes boBA andPA.

As we explain in Section 2, a version BAPA was shown decidable already in [14]
(which also proves the well-known Feferman-Vaught theofg&®n Section 9.6] about
the products of first-order theories). Recently, a decigimtedure for a fragment of
BAPA without quantification over sets was presented in [55], eash multi-sorted
theory. Starting from [29] as our motivation, we have obedrin [26] the decidability
of the full BAPA (which was initially left open in [55]). An algorithm for arsgle-sorted
version ofBAPA was presented independently in [42] as a way of evaluatiegiesiin
constraint databases; [42] leaves open the complexityeo$dttisfiability problem.

Our paper gives the first formal description of a decisioncpdure for the full
first-order theory oBAPA. Furthermore, we analyze our decision procedure and show
that it yields an elementary upper bound on the complexitBAPA. Our result is
the first upper complexity bound dBAPA; along with a lower bound fronPA, we
obtain a good estimate &APA worst-case complexity. We have also implemented our
decision procedure; we report on our initial experiencesimg the decision procedure
in the context of a system for checking data structure ctarsiy.

Contributions. We summarize the contributions of our paper as follows.

1. As amotivation for BAPA, we show in Section 3 how BAPA constraints can be
used for program analysis and verification by expressingaig dtructure invari-
ants, 2) the correctness of procedures with respect tospetifications, 3) simu-
lation relations between program fragments, and 4) tertioinaonditions for pro-
grams that manipulate data structures.

2. We present amalgorithm « (Section 4) that translatd3APA sentences int®A
sentences by translating set quantifiers into integer dieast

3. We analyze our algorithm and show that it yields aglementary upper bound on
the worst-case complexity of the validity problem BAPA sentences that is close
to the bound orPA sentences themselves (Section 5). This is the first coniplexi
bound forBAPA, and is the main contribution of this paper.



4. We discuss our initial experience in using ommplementation of BAPA to dis-
charge verification conditions generated in the Jahob watifin system [23].
5. In addition, we note the following related results:
(a) PA sentences generated by translatd?y sentences without cardinalities can
be decided iroptimal alternating time (Section 5.2);
(b) Our algorithm extends tcountable sets with a predicate distinguishing finite
and infinite sets (Section 7);
(c) In contrast to the undecidability of MSOL with equicardiity operator, we
identify adecidable combination of MSOL over trees witBA (Section 7).
A preliminary version of our results, including the algbrit and complexity analysis
appear in [26], which also contains proofs and further deetdiour results.

2 TheFirst-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Pregyukrithmetic BAPA),
which is the focus of this paper. We next present some juatifio for the operations in
Figure 3. Our initial motivation foBAPA was the use dBA to reason about data struc-
tures in terms of sets [28]. Our language B3 (Figure 1) allows cardinality constraints
of the form|A| = K where K is aconstantinteger. Such constant cardinality con-
straints are useful and enable quantifier elimination ferrésulting language [31, 46].
However, they do not allow stating constraints such4s= | B| for two setsA and B,
and cannot represent constraints on changing progranblesiaConsider therefore the
equicardinality relatiomd ~ B that holds iff|A| = | B|, and consideBA extended with
relation A ~ B. Define the ternary relatioplus(4, B,C) < (|A| + |B| = |C])
bythe formuladz. 3z0. 21Nz =0 A A~21 A B~29 A 21 Uzo = C. The
relationplus(A4, B, C) allows us to express addition using arbitrary sets as reptas
tives for natural number@;can represent the natural number zero, and any singleton set
can represent the natural number one. (The propertylzding a singleton is definable
using e.g. the first-order formuld # ) AVB.ANB =B = (B=0V B = A))
Moreover, we can represent integers as equivalence claépasgs of natural numbers
under the equivalence relatidn, y) ~ (u,v) < xz + v = u + y; this construction
also allows us to express the unary predicate of being ngative. The quantification
over pairs of sets represents quantification over integers,quantification over inte-
gers with the addition operation and the predicate “beinymegative” can express all
PA operations, presented in Figure 2. Therefore, a naturaliobounder definable oper-
ations leads to our formulation of the langudgy&PA in Figure 3, which contains both
sets and integers.

The argument above also explains why we attribute the deitityaof BAPA to [14,
Section 8], which showed the decidability BA over sets extended with the equicar-
dinality relation~, using the decidability of the first-order theory of the didai of
cardinal numbers.

The languag8APA has two kinds of quantifiers: quantifiers over integers arahgu
tifiers over sets; we distinguish between these two kindsdmoting integer variables
with symbols such a#,! and set variables with symbols such ag,. We use the
shorthand8™ k. F (k) to denotedk.k > 0 A F (k) and, similarlyv*k.F (k) to denote
Vk.k > 0 = F(k). In summary, the language &APA in Figure 3 subsumes the
language ofPA in Figure 2, subsumes the languageB# in Figure 3, and contains
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Ti=K|T\+T |K-T
B:=x|0|1|BiUBy|BiNBy| B [T+ 12 |

Kem0(1]2]... Ku=...—2|-1|0|1]2...

Fig. 1. Formulas of Boolean Algebra) Fig. 2. Formulas of Presburger ArithmetiBA)

Fu:=A|FiNF | L1V Fy | -F|

3¢.F | Va.F | 3k.F | Vk.F
Au=Bi =By | BiCB, |

T =Ty | T <Tp | KdvdT
B:=2|0|1|Bi1UBy | BiNB;y|B°
Tu=k|K|MAXC| T+ T2 | K-T| | Bl
Ku=...—2]-1]0]1]2...

Fig. 3. Formulas of Boolean Algebra with Presburger ArithmeB&pPA)

non-trivial combination of these two languages in the fofrmging the cardinality of a
set expression as an integer value.

The semantics of operations in Figure 3 is the expected orenWrpret integer
terms as integers, and interpret set terms as elements pbterset of a finite set. The
MAXC constant denotes the size of the finite univé{seso we requirdAXC = ||
in all models. Our results generalize to the Boolean algebpawersets of a countable
set, see Section 7.

3 Applications of BAPA

This section illustrates the importanceBAPA constraints. Section 3.1 shows the uses
of BAPA constraints to express and verify data structure invesiastwell as proce-
dure preconditions and postconditions. Section 3.2 shaws d class of simulation
relation conditions can be proved automatically using asitet procedure foBAPA.
Section 3.3 shows hoBAPA can be used to express and prove termination conditions
for a class of programs.

3.1 Verifying Data Structure Consistency

Figure 4 presents a proceduneert in a language that directly manipulates sets. Such
languages can either be directly executed [13] or can asisdbstractions of programs
in standard languages [29]. The program in Figure 4 manipsikaglobal set of objects
content and an integer fieldize. The program maintains an invariahthat the size of
the setcontent is equal to the value of the variabdize. Theinsert procedure inserts
an element into the set and correspondingly updates the integer Varidhe requires
clause (precondition) of thasert procedure is that the parameteis a non-null refer-



ence to an object that is not stored in thecs@tent. The ensures clause (postcondition)
of the procedure is that thsize variable after the insertion is positive. Note that we rep-
resent references to objects (such as the procedure parames sets with at most
one element. An empty set represents a null reference; Eeinget{o} represents a
reference to objeat. The value of a variable after procedure execution is intditay
marking the variable name with a prime.

var content : set;
var size : integer;
invariant ] <= (size = |content|);

procedure insert(e : element)
maintains [

requires |e| = 1 A |e N content| = 0
ensures size’ > 0

{ {|e| = 1A |eNcontent| = 0 A size = |content|}
content := content U e; content := content U e; size := size + 1;
size := size + 1; ., .,
} {S|ze > 0 Asize’ = |content’|}
Fig. 4. An Example Procedure Fig.5. Hoare Triple forinsert Procedure

Ve. Vcontent. Vcontent'. Vsize. Vsize'.
(le] = 1 A |e N content| = 0 A size = |content| A
content’ = content U e A size’ =size + 1) =
size’ > 0 A size’ = |content’|

Fig. 6. Verification Condition for Figure 5

Theinsert procedure maintains an invariaiit,which captures the relationship be-
tween the size of the sebntent and the integer variabkéze. The invariant is implic-
itly conjoined with the requires and the ensures clauseh@ftocedure. The Hoare
triple in Figure 5 summarizes the resulting correctnesglitimm for theinsert proce-
dure. Figure 6 presents a verification condition correspuntb the Hoare triple in
Figure 5. Note that the verification condition contains bs¢h and integer variables,
contains quantification over these variables, and relatesizes of sets to the values of
integer variables. Our small example leads to a formulaoutiguantifier alternations;
in general, formulas that arise in verification may contédteraations of existential and
universal variables over both integers and sets. This psip@rs the decidability of
such formulas and presents the complexity of the decisioogquiure.

3.2 Proving Simulation Relation Conditions

BAPA constraints are also useful when proving that a given biredagion on states is a
simulation relation between two program fragments. Figisbows one such example.
The concrete procedurgartl manipulates two sets: a set of running processes and
a set of suspended processes in a process scheduler. Theelymestartl inserts a
new process: into the set of running processBs unless there are already too many
running processes. The procedutert2 is a version of the procedure that operates



in a more abstract state space: it maintains only the uRiofi all processes and the
numberk of running processes. Figure 7 shows a forward simulatilation » between
the transition relations fastartl andstart2. The standard simulation relation diagram
condition isVs;.Vs} .Vsa.(t1(s1, 81) Ar(s1, $2)) = Tsh. (t2(s2, s5) Ar(s], s5)). Inthe
presence of preconditions,(s1, s7) = (pre;(s1) = post,(s1,s])) andta(sz2, s5) =
(prey(s2) = post,(se, s5)), and sufficient conditions for simulation relation are:

1. Vs1.Vs2.r(s1, S2) A prey(s2) = pre,(s1)
2. Vs1.Vs1.Vs2.3s5. 7(s1, 82) A posty (s1,81) A prey(s2) = posty(sz, sh) A r(sh, sh)

Figure 7 show8APA formulas that correspond to the simulation relation caodg in
this example. Note that the secoBAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiersBAPA.

var P : set;

var R : set; .
’ var k : integer;

var S : set;

procedure start2(x)
requires z Z P A |z| =1 A k < MAXR
ensuresP  =PUz Ak =k+1

procedure startl(x)
requires z Z RA |z| = 1 A |R| < MAXR

ensuresR'  =RUzAS =S (
{
P:=PUu;
R:=RUu; Koi=k+1;
} }

Simulation relatiomn:
r((R,S), (P,k)) = (P=RUSAk=R|)

Simulation relation conditions iBAPA:
1.Vz,R,S,P,k.(P=RUSAk=|R))A (z L PA|z|] =1 Ak < MAXR) =
(x Z RA |z| =1 A |R| < MAXR)
2.Vz,R,S,R",)S,P,k.IP" K'.(P=RUSAk=|R)A(R =RUzAS =S)A
(z Z PA|z| =1Ak < MAXR)) =
(PP=PUzAK =k+1)A(PP=R US AK =|R))
Fig. 7. Proving simulation relation iBAPA

3.3 Proving Termination of Programs

We next show thaBAPA is useful for proving program termination. A standard tech-
nigue for proving termination of a loop is to introduce a rengkfunction f that maps
program state into a non-negative integer, then prove tigatalue of the function de-
creases at each loop iteration. In other word&sf s') denotes the relationship between
the state at the beginning and the state at the end of eaclitémapon, then the con-
dition Vs.Vs'.t(s,s’) = f(s) > f(s') holds. Figure 8 shows an example program that
processes each element of the initial value ofteetthis program can be viewed as ma-
nipulating an iterator over a data structure that implemarstet. Using the the ability to
take cardinality of a set allows us to define a natural rankimgtion for this program.
Figure 9 shows the termination proof based on such rankingtion. The resulting
termination condition can be expressed as a formula thangsltoBAPA, and can



var iter : set;
. Ranking function:
procedure iterate() £(s) = |s|

while iter # () do Transition relation:

vare: set; t(iter,iter’) = (Je. |e| = 1 Ae C iter Aiter’ = iter \ e)

e := choose iter;

iter := iter \ ; Termination condition irBAPA:

process(e); Viter.Viter’. (Je.le] = 1 A e C iter Aiter’ = iter \ )
done

= |iter'| < [iter]|

}

] o Fig. 9. Termination proof for Figure 8
Fig. 8. Terminating program

be discharged using our decision procedure. In generalaweeaduce the termination
problem of programs that manipulate both sets and integestsdwing a simulation re-
lation with a fragment of a terminating program that marégpes only integers, which
can be proved terminating using techniques [38]. The sitimiaelation condition can
be proved correct using oBAPA decision procedure whenever the simulation relation
is expressible with 8APA formula.

4 Decision Procedure for BAPA

This section presents our algorithm, denotedvhich decides the validity oBAPA
sentences. The algorithm reduceBAPA sentence to an equivale®d sentence with
the same number of quantifier alternations and an expotéerdiaase in the total size
of the formula. This algorithm has several desirable pridgsr

1. Given the space and time bounds Rk sentences [41], the algorithm yields
reasonable space and time bounds for deciBiABA sentences (Section 5).

2. The algorithmx does not eliminate integer variables, but instead prodarcesjuiv-
alent quantifiedPA sentence. The resultir@A sentence can therefore be decided
usingany decision procedure fdPA, including the decision procedures based on
automata [21, 30].

3. The algorithm can eliminate set quantifiers from any extensioriPAf We thus
obtain a technique for adding a particular form of set reampto every extension
of PA, and the technique preserves the decidability of the ekien®ne example
of decidable theory that exten&8 is MSOL over strings, see See Section 7.

4. For simplicity we present the algorithm as a decision procedure for formulas
with no free variables, but the algorithm can be used to fommsand simplify
formulas with free variables as well, because it transfoomes quantifier at a time
starting from the innermost one. Because of this featurezameuse the algorithm
« to project out local state components from formulas thatidles invariants and
transition relations, and simplify the resulting formulas

We next describe the algorithm for transforming aBAPA sentencely into a PA
sentence. As the first step of the algorithm, transfégninto prenex form

QpUp. ... Q1v1. F(v1,...,vp)



whereF is quantifier-free, and each quantifi@fv; is of one the formsik, vk, 3y, Vy
wherek denotes an integer variable apdenotes a set variable.

The next step of the algorithm is to separAteto BA part andPA part. To achieve
this, replace each formula = y wherex andy are sets, with the conjunction C
y Ay C z, and replace each formulaC y with the equivalent formuléx N y¢| = 0.
In the resulting formula, each setoccurs in some terni(x)|. Next, use the same
reasoning as when generating disjunctive normal form fopgpsitional logic to write
each set expressidgfi) as a union of cubes (regions in Venn diagram). The cubes have
the form A", =i wherez{" is eitherz; or z¢; there aren = 2" cubess, ..., s,,.
Suppose that(z) = s;,U...Us;,; thenreplace the tertn(z)| with the term>_¢_, [s;, |.
In the resulting formula, each setappears in an expression of the fojsy wheres; is
a cube. For eacky introduce a new variablg. Then the resulting formula is equivalent
to

Qpl)p....Qll)l. (1)
3+ll7...,lm. /\:11 |81| =1; N G

where G, is a PA formula. Formula (1) is the starting point of the main phage o
algorithm «. The main phase of the algorithm successively eliminatemntifiers

Q1v1, ..., Qpu, While maintaining a formula of the form
Qpup ... Qrur. @
E|+l1 .. .lq. /\;1:1 |Sz| =1l N Gr

whereG,. is aPA formula,r grows froml top + 1, andg = 2¢ wheree for0 < e <n
is the number of set variables amonyg. . ., v,. The listsy, .. ., s, is the list of all2¢
partitions formed from the set variables amang. . ., v,.

We next show how to eliminate the innermost quantifjer,. from the formula (2).
During this process, the algorithm replaces the forntlavith a formulaG,.,1 which
has more integer quantifiers.df is an integer variable then the number of sgte-
mains the same, and if. is a set variable, theq reduces fron2¢ to 2¢~1. We next
consider each of the four possibilitieg, vk, Jy, Vy for the quantifiel,v,..

Consider first the cas#k. Becausé does not occuri\?_, |s;| = I;, simply move
the existential quantifier t&',. and letG,.,.1 = 3k.G,., which completes the step.

For universal quantifiers, it suffices to 18t ; = Vk.G,., again because does not
occurinAYL_, [si| = L.

We next show how to eliminate an existential set quantifiefrom

q
Jy. 3. L. /\|si| =1 A Gy 3
i=1

which is equivalent tad*; ...1,. (3y. AL, |si| = ;) A G,. This is the key step of
the algorithm and relies on the following lemma (see [26]daof).

Lemmal. Letby,...,b, be finite disjoint sets, and, ..., 1., k1,..., k, be natural
numbers. Then the following two statements are equivalent:

1. There exists a finite sgtsuch that\"_, |b; Ny| = ki A |b; Ny =1
2. Nizy |bil = ki + s



In the quantifier elimination step, assume without loss oigality that the set variables
$1,...,5q are numbered such that;_, = s; N y° andsy; = s, Ny for some cube’.
Then apply Lemma 1 and replace each pair of conjuncts

lsi Nyel =laim1 A |s; Nyl =l

with the conjuncts;| = lz;_1 + l2;, yielding formula

q
ERr /\ si] = l2ic1 +l2i A Gr (4)

i=1

for ¢/ = 2°~1. Finally, to obtain a formula of the form (2) for+ 1, introduce fresh
variableg constrained by, = ly;_1 + l2;, rewrite (4) as

I=lai—1 + 12 A Gy)

=

q/
Iy NIsil =1 A @l
i=1 i=1

and let

’

q
Gri1 =301, /\z; =lai—1 +12i A Gr
i=1

This completes the description of elimination of an exis&set quantifiedy.

To eliminate a set quantifiéty, observe that
q

(3l N sil =1 A Gy)

i=1

is equivalent tadt iy ... 1,. AL, |sil = 1; A —G,, because the existential quantifier
is used as a let-binding, so we may first substitute all valuggo G,., then perform
the negation, and then extract back the definitions of aliesl;. By expressing’y
as—3Jy—, we can show that the elimination ®f is analogous to elimination afy:
introduce fresh variabld$ = l5;_1 + l2; and let

ql
Grp1 =Vl 1, (/\z; =ly1+1ln) = G,
=1

After eliminating all quantifiers as described above, waoba formula of the form
31 U] = I A Gpya(1). We define the result of the algorithm, denotgdy), to be the
PA sentencéx, 1 (MAXC).

This completes the description of the algorithirGiven that the validity oPA sen-
tences is decidable [39], the algorithiris a decision procedure f&APA sentences.

Theorem 2. The algorithma described above maps eaBPA-sentence into an
equivalentPA-sentencex(Fp).

Formalization of thealgorithm «. To formalize the algorithna,, we wrote a concise
implementation in O’Caml, see [26]. As an illustration, whe&e run the implemen-
tation on theBAPA formula in Figure 6 which represents a verification conditiove
immediately obtain th€A formula in Figure 10. Note that the structure of the resgltin



formula mimics the structure of the original formula: evegt quantifier is replaced by
the corresponding block of quantifiers over non-negatitegers constrained to parti-
tion the previously introduced integer variables. Figutepflesents the correspondence
between the set variables of tBAPA formula and the integer variables of the translated
PA formula. Note that the relationshi@@ntent’ = content U e translates into the con-
junction of the constraintgontent’N(contentUe)¢| = 0 A |(contentUe)Ncontent’| =

0, which reduces to the conjunctidry, = 0 A lo11 + lgo1 + lo1o = 0 using the trans-
lation of set expressions into the disjoint union of pastis, and the correspondence in
Figure 11.

general relationship:
VT VTl MAXC =1 + 1o = i

Liy..ip, = |setit Nset’?, N...Nsetd
V1.V lor Y 110V lgo. B R S

l1 = li1 +lo1 ANlo = l1o + loo =

(S is number of set variablgs
Y11 Vo1, Vo1 YT oor.

YV 110. YT lo10. V1 l100. VT o00- in thisexample:
l11 = li11 +lo1r Alor = lior + loo1 A set; = content’
110 = l110 + lo1o A loo = l100 + looo = setz = content
Vsize.Vsize . setz3 =e
(l111 + loi1 + lio1 +loor = 1 A looo = |content’“ N content® N e°|
l111 +lo1n =0 A loo1 = |content’® N content® N e]
l111 + lo11 + 1o + loio = size A lo1o = |content’“ N content N €|
lioo =0A lo11 = |content’® M content N ¢|
lo11 + loor +lo1o =0 A l100 = |content’ N content® N e°|
size’ = size + 1) = l101 = |content’ N content® N ¢|
(0 < size’ A l110 = |content’ N content N €|
1111 + l101 + 1110 + lioo = size') i = |C0ntentl M content N €|

Fig.10. The translation of theBAPA sentence Fig.11. The Correspondence between In-
from Figure 6 into &PA sentence teger Variables in Figure 10 and Set Vari-
ables in Figure 6

5 Complexity

In this section we analyze the algorithifrom Section 4 and obtain space bounds on
BAPA from the corresponding space boundsiar We then show that the new decision
procedure is optimal foBA if applied toBA formulas. Moreover, by construction, our
procedure reduces to the procedureRérformulas if there are no set quantifiers. In
summary, our decision procedure is optimal B#, does not impose any overhead for
purePA formulas, and the complexity of the geneB#lPA validity has the same height
of the tower of exponentials as the complexityRéf itself.

5.1 An Elementary Upper Bound
We next show that the algorithm in Section 4 transforrB&\#®A sentencéd into aPA

sentence whose size is at most exponential and which haartteersumber of quantifier
alternations.

10



If Fis a formula in prenex form, lafize(F') denote the size of’, and letalts(F)
denote the number of quantifier alternationsFinDefine the iterated exponentiation
functionexp,, () by expy(z) = = andexp,, | (z) = 2P+,

Lemma 3. For the algorithma from Section 4 there is a constant> 0 such that
size(a(Fy)) < 2¢°7<(F0) andalts(o(Fy)) = alts(Fp). Moreover, the algorithna runs
in 20(size(Fo)) time and space.

We next consider the worst-case space boun8ABA. Recall first the following
bound on space complexity f&A.

Fact 1 [15, Chapter 3] The validity of @A sentence of length can be decided in
spaceexp,(O(n)).

From Lemma 3 and Fact 1 we conclude that the validityBaPA formulas can be
decided in spacexp;(O(n)). It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier alternatiansBA and BAPA
formulas.

Fact 2 [41] The validity of aPA sentence of length and the number of quantifier
alternationsm can be decided in spa(%‘o(m).

From Lemma 3 and Fact 2 we obtain our space upper bound, whisles the upper
bound on deterministic time.

Theorem 4. The validity of aBBAPA sentence of length and the number of quantifier
alternationsm can be decided in spaegp,(O(mn)), and, consequently, in determin-
istic timeexps(O(mn)).

If we approximate quantifier alternations by formula size,a@nclude thaBAPA va-
lidity can be decided in spacep,(O(n?)) compared taexp,(O(n)) bound forPA
from Fact 1. Therefore, despite the exponential explosiahé size of the formula in
the algorithme, thanks to the same number of quantifier alternations, ountidas
the same number of exponentials as the bounéAor

5.2 BA asa Special Case

We next analyze the result of applying the algorithnto a pureBA sentence,. By

a pureBA sentence we meanBA sentence without cardinality constraints, containing
only the standard operations U, ¢ and the relations_, =. At first, it might seem that
the algorithma is not a reasonable approach to decidd¥y formulas given that the
best upper bounds fd?A [15, Chapter 3] are worse than the corresponding bounds
for BA [22]. However, we identify a special form &A sentence®Agp = {a(Fp) |

F, is in BA} and show that such sentences can be decided in alternatingopitimal

for BA [22].

Let £y be a purdBA formula and letS be the number of set variablesif (the set
variables are the only variablesia). Letly, . .., [, be the free variables of the formula
Gr(li,...,ly) in the algorithmo. Theng = 2¢fore = S+ 1 —r. Letwy,...,w, be
integers specifying the values &f . . ., [,. We then have the following lemma.

Lemmab. For eachr wherel < r < S, formulaG, (w1, ...,w,) is equivalent to
formulaG, (w1, ..., w,) wherew; = min(w;, 2"~ 1).
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Consider a formuldy of sizen with S variables. Them(Fy) = Gs+1. By Lemma 3,
size(a(Fp)) is O(nS2%). By Lemma 5, it suffices for the outermost quantified vari-
able of a(Fy) to range over the integer intervl, 2°], and the range of subsequent
variables is even smaller. Therefore, the value of eachefti! — 1 variables can
be represented i@(S) space. Because(Fy) hasS quantifier alternationsy(Fp) the
values of all bound variables can be guessed in alternatirg@(S). The truth value

of a PA formula for given values of variables can be evaluated iretpolynomial in
the size of the formula, so deciding F;) can be done in alternating time bounded by
n®2%S for some constants, b. BecauseS < n, we conclude that the algorithmcan

be used to decide a puBA formula by alternating Turing machine running in time
2¢" for somec > 0 and performing. alternations. The class of all such problems is
called Berman complexity classTA(x, 2¢*,n). Theorem 5.6 in [22] shows th&A
(even if interpreted only over all finite Boolean algebras)n fact complete for the
classSTA(x, 2¢™, n). Therefore, our algorithr allows optimal decision procedure for
BA, if the PA decision procedure exploits the special structure of timegeed formula
a(Fy); this special structure is given by Lemma 5. Note that thesdaA (x, 2", n) is
contained in the deterministic exponential space, whiggigl to alternating exponen-
tial time, the only difference being that the number of altgions inSTA(x, 2, n) is
restricted to be linear.

6 Experience Using Our Decision Procedure for BAPA

We have experimented witBAPA in the context of Jahob system [23] for verifying data
structure consistency of Java programs. Jahob parsesaanee £ode annotated with
formulas in Isabelle syntax written in comments, generadesication conditions, and
uses decision procedures and theorem provers to disclagg\erification conditions.
Jahob currently contains interfaces to the Isabelle intemtheorem prover [36], the
Simplify theorem prover [12] as well as the Omega Calculpt6t and the LASH [30]
decision procedures f&A.

Using Jahob, we have generated verification conditionsdeeral Java program
fragments that require reasoning about sets and theinaditiés, for example, to prove
the equality between the set representing the number ofeglenin a list and the in-
teger fieldsize after they have been updated. The formulas arising from piesnin
Section 3 have also been discharged using our current ingpirtion. By comparing
different decision procedures, we have found that Simpéifgble to deal with some
of the formulas involving only sets or only integers, but aath formulas that relate
cardinalities of operations on sets to cardinalities ofititvidual sets. These formulas
can be proved in Isabelle, but require user interactionrimsenf auxiliary lemmas. On
the other hand, our implementation of the decision procedutomatically discharges
these formulas.

Our initial experience indicates that the direct implenaginh of the basic algorithm
works fast as long as the number of set variables is smalkayfmings are fractions
of a second for 4 or less set variables, less than 10 secon8s/friables. More than
5 set variables cause t& decision procedure to run out of memory. (We have used
the Omega Calculator to decid®d formulas because we found that it outperforms
LASH in the formulas generated from our examples.) On thertiand, the decision
procedure is much less sensitive to the number of integéhlas inBAPA formulas,
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because they translate into the same number of integeblesian the generateldA
formula.

Our current implementation makes use of certain formulestiamations to reduce
the size of the generatdth formula. We found that eliminating set variables by sub-
stitution of equals for equals is an effective optimizatidfe also observed that lifting
quantifiers to the top level noticeably improves the perfamoe of the Omega Calcu-
lator. These transformations extend the range of formilasthe current system can
handle. A possible alternative to the current approachiistésleave the elimination of
integer variables with the elimination of the set varialdaed perform formula simpli-
fications during this process [26, Section 5.2]; this akiue approach does not yield
good worse-case complexity bounds but could be useful foclagses oBAPA for-
mulas.

7 Further Observations

We next sketch some further observations alBARA, see [26] for detalils.

Countable sets. A generalization oBAPA where set variables range over subets of an
arbitrary (not necessarily finite) set is decidable, whiatofvs from the decidability of
the first-order theory of the addition of cardinals [14]. Werdaconsider the case of all
subsets of a countable set, and argue that the complexitiigese have developed so
far still apply. We first generalize the languageB#PA and the interpretation dSAPA
operations, as follows. Introduce functiori(b) which returns 0 if is a finite set and
1if bis a countable set. Defirjg| to be some arbitrary integer (for concreteness, zero)
if b is infinite, and the cardinality of if & is finite. A countable or finite cardinal can
therefore be representedfh using a pair(k, i) of an integerk and an infinity flag:.
The relation representing the addition of cardin(@ls i1) + (k2,i2) = (ks,i3) is then
definable by formula

(11 =0Ai2=0Ais=0Aki+ka=ks) V ((l1 A0Via #0)Aig =1Aks =0)
Moreover, we have the following generalization of Lemma 1.

Lemmaé. Letby,...,b, be disjoint setsly,...,l,, k1i,..., k, be natural numbers,
andp1,...,pn,q1,---,qn € {0,1}. Then the following two statements are equivalent:

1. There exists a sgtsuch that

J\ 16 0yl = ki Ainf(biNy) = pi A b Ny°| =L Ainf(b N y°) = g
=1
2. n
i=1
The algorithm for the case of countable set then generalizegy Lemma 6 in the
natural way; the resultin@A formulas are at most polynomially larger than for the
finite case, so we obtain the same complexity bounds.
Relationship to MSOL. The monadic second-order logic (MSOL) over strings is a
decidable logic that can encode Presburger arithmetic bgding addition using one
successor symbol and quantification over sets. There arartpartant differences be-
tween MSOL over strings anBAPA: (1) BAPA can express relationships of the form
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|A] = k where A is a set variable and is an integer variable; such relation is not
definable in MSOL over strings; (2) when MSOL over stringssedito represeritA
operations, the sets contain binary integer digits whereB#PA the sets contain un-
interpreted elements. Note also that MSOL extended withrestcoct that takes a set
of elements and returns an encoding of the size of that setdeaidabe, because it
could express MSOL with equicardinality, which is undebil@aby a reduction from
Post correspondence problem. Despite this differencealgmithma gives a way to
combine MSOL over strings witBA yielding a decidable theory. Namely,does not
impose any upper bound on the complexity of the theory fosarang about integers,
so it implies the decidability of thBAPA extension where the constraints on cardinal-
ities of sets are expressed using relations on integersathddiin MSOL over strings;
these relations go beyorird [48, Page 400], [7].

8 Redated Work

Our paper is the first result that shows a complexity boundHerfirst-order theory
of BAPA. The decidability foBAPA, presented aBA with equicardinality constraints
was shown in [14] (see Section 2). A decision procedure fgrexial case 0BAPA
was presented in [55], which allows only quantification oglementdut not oversets
of elements. [42] shows the decidability of a single-sorersion ofBAPA that only
contains the set sort. Note that bound integer variabledeasimulated using bound
set variables, but there are notational and efficiency reamoallow integer variables.

Presburger arithmetic. The original result on decidability dPA is [39]. The best

known bound on formula size is [15]. An analysis based on thbrer of quantifier
alternations is presented in [41]. Our implementation ugestifer-elimination based
Omega test [40]. Among the decision procedures for Pdl] [9] is the only proof-

generating version, and is based on [11]. Decidable fraggnaharithmetic that go
beyondPA include [6, 21].

Boolean Algebras. The first results on decidability @A are from [31], [1, Chap-
ter 4] and use quantifier elimination, from which one can\dgesgmall model prop-
erty; [22] gives the complexity of the satisfiability probie[33] studies unification in
Boolean rings. The quantifier-free fragmentBA is shown NP-complete in [32]; see
[27] for a generalization of this result using parametaticemplexity of the Bernays-
Schonfinkel-Ramsey class of first-order logic [5, Page 2E8]gives an overview of
several fragments of set theory including theories withngjfiars but no cardinality
constraints and theories with cardinality constraints faitquantification over sets.
Among the systems for interactively reasoning about richeories of sets are Is-
abelle [36], HOL [17], PVS [37], TPS [2]; first-order framevks such as Athena [3]
can use axiomatizations of sets along with calls to reswmidtiased theorem provers
such as Vampire [51] to reason about sets.

Combinations of Decidable Theories. The techniques for combininguantifier-free
theories [35,43] and their generalizations such as [48564] are of great importance
for program verification. Our paper shows a particular caraton result foquantified
formulas which add additional expressive power in writing spectfaas. Among the
general results for quantified formulas are the Fefermamgktatheorem for products
[14] and term powers [24, 25]. While we have found quantifterbe useful in several
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contexts, many problems can be encoded in quantifier-fireeui@s, so it is interesting
to consider a combination &APA with solvers for quantifier-free formulas [16, 47],
which would likely improve the efficiency on common verificat conditions compared
to the current direct use of Omega decision procedure. ipdisar logics [4] support
sets with cardinalities as well as relations, but do not supguantification over sets.

Analyses of Dynamic Data Structures. In addition to the new technical results, one
of the contributions of our paper is to identify the uses of decision procedure for
verifying data structure consistency. We have shown BéWwA enables the verifica-
tion tools to reason about sets and their sizes. This catyabiparticularly important
for analyses that handle dynamically allocated data strastwhere the number of ob-
jects is statically unbounded [34, 45, 52]. Recently, theggeroaches were extended to
handle the combinations of the constraints representitegaiaicture contents and con-
straints representing numerical properties of data strasff10,44]. Our result provides
a systematic mechanism for building precise and predietadsions of such analyses.
Among other constraints used for data structure analA$A is unique in being a
complete algorithm for an expressive theory that suppobisrary quantifiers. In addi-
tion to applications in Section 3, possible applicationswfdecision procedure include
query evaluation in constraint databases [42] and loopriawtinference [20].

9 Conclusion

Motivated by static analysis and verification of relatioesieen data structure content
and size, we have presented an algorithm for deciding thedfider theory of Boolean
algebras with Presburger arithmetBAPA), showed an elementary upper bound on
the worst-case complexity, implemented the algorithm gglied it to discharge ver-
ification conditions. Our experience indicates that theoatgm will be useful as a
component of a decision procedure of our data structuréication system.
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