
Integrated Reasoning and Proof Choice Point
Selection in the Jahob System

(Mechanisms for Program Survival)

Martin Rinard

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
32 Vassar Street, 32-G744

Cambridge, Massachusetts 02139

Abstract. In recent years researchers have developed a wide range of
powerful automated reasoning systems. We have leveraged these systems
to build Jahob, a program specification, analysis, and verification system.
In contrast to many such systems, which use a monolithic reasoning ap-
proach, Jahob provides a general integrated reasoning framework, which
enables multiple automated reasoning systems to work together to prove
the desired program correctness properties.

We have used Jahob to prove the full functional correctness of a collec-
tion of linked data structure implementations. The automated reasoning
systems are able to automatically perform the vast majority of the rea-
soning steps required for this verification. But there are some complex
verification conditions that they fail to prove. We have therefore devel-
oped a proof language, integrated into the underlying imperative Java
programming language, that developers can use to control key choice
points in the proof search space. Once the developer has resolved these
choice points, the automated reasoning systems are able to complete the
verification. This approach appropriately leverages both the developer’s
insight into the high-level structure of the proof and the ability of the
automated reasoning systems to perform the mechanical steps required
to prove the verification conditions.

Building on Jahob’s success with this challenging program verification
problem, we contemplate the possibility of verifying the complete ab-
sence of fatal errors in large software systems. We envision combining
simple techniques that analyze the vast majority of the program with
heavyweight techniques that analyze those more sophisticated parts of
the program that may require arbitrarily sophisticated reasoning. Modu-
larity mechanisms such as abstract data types enable the sound division
of the program for this purpose. The goal is not a completely correct pro-
gram, but a program that can survive any remaining errors to continue
to provide acceptable service.



1 Introduction

Data structure consistency is a critical program correctness property. Indeed,
it is often directly related to the meaningful survival of the program. As long
as a program preserves the integrity of its core data structures, it is usually
able to execute through errors to continue to provide acceptable (although not
necessarily perfect) service to its users [1–7].

We have developed a general program specification and verification system,
Jahob, and used Jahob to verify, for the first time, the full functional correctness
of a collection of linked data structure implementations [8–10]. This verification
constitutes a key step towards the goal of statically ensuring data structure
consistency — part of the verification process is ensuring that individual data
structure implementations preserve invariants that capture key internal data
structure consistency constraints.

1.1 Integrated Reasoning

To verify the full functional correctness of linked data structure implementa-
tions, Jahob must work with sophisticated properties such as transitive closure,
lambda abstraction, quantified invariants, and numerical relationships involving
the sizes of various data structure components. The diversity and complexity
of the resulting verification conditions makes the use of a single monolithic rea-
soning system counterproductive. Instead, Jahob uses integrated reasoning —
it implements a general framework that enables arbitrary reasoning systems to
interoperate to prove the complex verification conditions that arise in this con-
text [8, 10]. The success of integrated reasoning depends on two techniques:

– Splitting: Jahob splits verification conditions into equivalent conjunctions
of subformulas and processes each subformula independently. Splitting en-
ables Jahob to take a single formula that requires many kinds of reasoning,
divide the formula up into subformulas (each of which requires only a single
kind of reasoning), then apply multiple different reasoning systems as appro-
priate to solve the subformulas. The result is that Jahob is able to leverage
the combined power of an arbitrary number of reasoning systems to solve
complex formulas.

– Formula Approximation: In general, each reasoning system will have its
own restrictions on the set of formulas that it will accept as input. Several
formula approximation techniques make it possible to successfully deploy
a diverse set of reasoning systems together within a single unified reason-
ing framework. These approximation techniques accept higher-order logic
formulas and create equivalent or semantically stronger formulas accepted
by specialized decision procedures, provers, and other automated reasoning
systems.
Our approximation techniques rewrite equalities over complex types such
as functions, apply beta reduction, and express set operations using first-
order quantification. They also soundly approximate constructs not directly



   

MONAZ3

field 
constraint
analysis

vcgen

Isabelle 
interface

BAPA

Coq
interface

splitter,
dispatcher,

syntactic prover

FOL
interface

SMT-LIB
interface

SPASS E

verification 
conditions (VCs)

CVC3

desugar

lexer, parser, 
resolver

implementation,
specification,
proof hints

interactively 
 proven lemmas

Coq

Isabelle 

Fig. 1. Integrated Reasoning in the Jahob System

supported by a given specialized reasoning system, typically by replacing
problematic constructs with logically stronger and simpler approximations.

Together, these techniques make it possible to productively apply arbitrary
collections of specialized reasoning systems to complex higher-order logic for-
mulas. Jahob contains a simple syntactic prover, interfaces to first-order provers
(SPASS [11] and E [12]), an interface to SMT provers (CVC3 [13, 14] and Z3 [15,
16]), an interface to MONA [17, 18], an interface to the BAPA decision pro-
cedure [19, 20], and interfaces to interactive theorem provers (Isabelle [21] and
Coq [22]) (see Figure 1). The interactive theorem prover interfaces make it pos-
sible for Jahob to, when necessary, leverage human insight to prove arbitrarily
complex formulas requiring arbitrarily sophisticated reasoning.

The reason integrated reasoning is so appropriate for our program verification
tasks is the diversity of the generated verification conditions. The vast majority
of the formulas in these verification conditions are well within the reach of even
quite simple decision procedures. But there are always a few complex formulas
that require sophisticated techniques. Integrated reasoning makes it possible for
Jahob to apply multiple reasoning systems as appropriate: simple, fast solvers
for simple formulas, and arbitrarily sophisticated (and therefore arbitrarily un-



scalable) solvers for complex formulas, and, if absolutely necessary, interactive
theorem proving.

In recent years the automated reasoning community has developed a range
of very powerful reasoning systems. We have found integrated reasoning to be
an effective way to productively apply the combined power of these reasoning
systems to verify complex and important program correctness properties. One
particularly important aspect of integrated reasoning is its ability to leverage
arbitrarily specialized reasoning systems that are designed to operate within
arbitrarily narrow domains. The tight focus of these reasoning systems makes
them irrelevant for the vast majority of the reasoning steps that Jahob must
perform. But they are critical in enabling Jahob to deal effectively with the
full range of properties that arise in the verification of sophisticated linked data
structure implementations (and, we expect, will arise in other ambitious program
verification efforts). Jahob’s integrated reasoning technique makes it possible for
these kinds of reasoning systems to make a productive contribution within a
larger program analysis and verification system.

1.2 Proof Choice Point Selection

In our experience, automated reasoning systems encounter difficulties proving
verification conditions when the corresponding proof search spaces have key
choice points (such as quantifier instantiations, case splits, selection of induction
hypotheses, and lemma decompositions) that the reasoning systems are unable
to resolve in any relevant amount of time.

We have therefore developed a proof language that enables developers to
resolve these key choice points [9]. Because this proof language is integrated
into the underlying imperative programming language (Java), it enables devel-
opers to stay within a familiar conceptual framework as they work with choice
points to shape the overall structure of the path through the proof search space.
The automated reasoning systems in Jahob are then able to leverage this high-
level guidance to perform all of the remaining proof steps. This approach ap-
propriately leverages the complementary capabilities of the developers and the
automated reasoning systems. Developers usually have the insight required to
effectively shape the high-level structure of the correctness proof; automated rea-
soning systems excel at the detailed symbolic manipulation required to leverage
the guidance to complete the proof.

Given the substantial reasoning capabilities of current reasoning systems and
the rate at which these reasoning capabilities are improving, we expect technolo-
gies (such as the Jahob integrated proof language) that are designed to leverage
high-level developer insight into the proof process to become increasingly viable.
And because these techniques can significantly reduce the effort required to ob-
tain a given result, we expect them to be increasingly deployed across a wide
range of automated reasoning scenarios.



1.3 Program Survival

Data structure consistency provides, by itself, no guarantee that the program
as a whole will execute correctly. Indeed, given the difficulty of obtaining full
program correctness specifications (and, more fundamentally, the fact that no
one can state precisely what most large software systems should do), we expect
full program verification to remain beyond reach for the foreseeable future.

But it is possible, however, to systematically identify all of the errors that
could cause a program to fail outright. And because standard techniques such
as testing can deliver programs that operate reliably on almost all inputs, the
elimination of fatal errors is a key step towards obtaining software systems that
can survive the inevitable remaining errors to continue to deliver acceptable
service.

We have developed a set of (in most cases quite simple) dynamic techniques
that, together, enable programs to survive virtually all errors [1–7]. The exper-
imental results show that these techniques are surprisingly effective in enabling
programs to survive otherwise fatal errors so that they can continue to provide
effective service to users.

1.4 Static Verification of Survival Properties

In this paper we explore the possibility of using program analysis and verification
technology to statically guarantee the absence of fatal errors in software systems.
A recurring theme is that relatively simple and scalable techniques that can
operate effectively across large parts of the program should be sufficient to verify
the absence of fatal errors in almost all of the program.

But there will always be (for reasons of efficiency and desired functionality)
complex parts of the program that are difficult if not impossible to analyze using
these techniques. For these parts of the program we advocate the use of sophisti-
cated heavyweight program analysis and verification techniques that potentially
involve the developer, in some cases quite intimately, in the verification process.
We see two keys to the success of this approach:

– Modularity: It is practical to apply heavyweight reasoning techniques only
to a feasibly sized region of the program. Modularity mechanisms (such as
abstract data types) that restrict the regions of the program to which these
techniques must be applied are essential to the success of this approach.

– Developer Interaction: We have found both integrated reasoning and
proof choice point selection to play critical roles in enabling successful data
structure consistency proofs. Given the quite sophisticated properties that
will inevitably arise, we believe that both of these techniques will also prove
to be critical to the verification of other survival properties.

For any particular program correctness property, there is a temptation to
develop specification languages and verification techniques that are tailored to
that property. We have chosen, in contrast, to use a general purpose specifi-
cation and verification approach. The disadvantage of this general approach is



that for any specific property it can require more developer specification and
verification effort than an approach tailored for that property. But the range
of properties that our general approach can address justifies the engineering
effort required to build a powerful and versatile reasoning system that the devel-
oper can use to specify and verify virtually any desired property. In particular,
the system can usually smoothly extend to handle unforeseen extensions of the
original properties. Tailored approaches, in contrast, usually have difficulty sup-
porting unforeseen extensions, in which case the developer is left with no good
specification and verification alternative at all.

We focus on the static verification of several properties that are especially
relevant to program survival: data structure consistency, the absence of memory
errors such as null pointer dereferences and out of bounds accesses, the absence
of memory leaks, and control flow properties such as the absence of infinite
loops. In all of these cases, with the exception of memory leaks, we expect a
dual analysis approach to be effective in making it possible to statically verify
the desired property. In particular, we expect simple and scalable techniques
to suffice for the vast majority of the program, with standard encapsulation
mechanisms such as abstract data types providing the modularity properties
required to apply heavyweight techniques successfully to those feasibly small
regions of the program that require such techniques. While the current focus is
on verifying complex properties in targeted parts of the program, in the longer
run we expect the construction of effective scalable analyses for the simpler
properties that must hold across large regions of the program to prove to be the
more challenging problem.

2 Dynamic Techniques

Before considering static verification techniques for survival properties, we first
review our experience with a collection of dynamic survival techniques. We ob-
tained these techniques by analyzing the different ways that programs could
fail, then developing a simple technique that enables the program to survive
each class of failures.

In comparison with the static techniques considered in this paper, the great
advantage of these dynamic techniques is their simplicity — instead of relying on
potentially quite heavyweight program analysis and verification technology, the
techniques simply change the semantics of the underlying model of computation
to completely eliminate the targeted class of failures. The insight here is that
standard models of computation are unforgiving and brittle — the unstated
assumption is that because programs should be perfect, the developer should
bear all of the responsibility for making the program execute successfully. Our
new models of computation, in contrast, acknowledge that although developers
make mistakes, these mistakes need not be fatal in the context of a more forgiving
model of computation that works harder to make the program succeed. Our
experimental results show that the resulting nonstandard models of computation
can be quite effective in practice in enabling programs to execute effectively



through situations that would cause them to fail with standard brittle models
of computation.

2.1 Failure-Oblivious Computing

Programs that use failure-oblivious computing check each memory access (either
statically or dynamically) for memory errors. On write memory errors (for ex-
ample, an out of bounds write or write via a null pointer), the program simply
discards the write. On read memory errors, the program simply makes up a value
to return as the result of the read [4]. In effect, this technique changes the se-
mantics of the underlying programming language to make every memory access
that the program can ever execute succeed. Experimental results indicate that,
in practice, this technique enables programs to successfully survive otherwise
fatal memory errors. And it provides an absolute guarantee that a memory error
will never terminate the execution. Discarding out of bounds writes also helps
eliminate data structure corruption errors that would otherwise occur on out of
bounds writes. The standard way to apply failure-oblivious computing is to use
a compiler to introduce the memory error checks (although it is, in principle,
possible to apply the technique at the binary or even hardware level [23]).

Note that throwing exceptions on memory errors in the hope of invoking a
developer-provided exception handler that can recover from the error is usually
totally ineffective. In practice, the exception usually propagates up to the top-
level exception handler, which terminates the program. And in general, it can be
difficult for developers to provide effective exception handlers for unanticipated
exceptions. Most memory errors are, of course, unanticipated — after all, if the
developer had thought a memory error could occur, he or she would have written
different code in the first place.

2.2 Loop Termination

Infinite loops threaten the survival of the program because they deny parts of the
program access to a resource (the program counter) that they need to execute
successfully. The following bounded loop technique completely eliminates infinite
loops [24]: 1

– Training: Execute the program for several training runs. For each loop,
record the observed maximum — i.e., the maximum number of iterations
the loop performed during any training run.

1 Of course, any program that is designed to execute for an unbounded period of time
must have at least one unbounded loop (or other form of unbounded execution such
as unbounded recursion). For example, many event-driven programs have an event-
processing loop that waits for an event to come in, processes the event, then returns
back to the top of the loop to wait for the next event. It is relatively straightforward
for the developer to identify these loops and for the system to not apply the infinite
loop termination technique to these loops.



– Iteration Bound: Select a slack factor (typically a number around several
thousand) and, for each loop, compute an iteration bound — i.e., the slack
factor times the observed maximum for that loop. If the loop never executed
during the training runs, simply use the maximum iteration bound for loops
that did execute during training runs.

– Iteration Bound Enforcement: If necessary, transform the program to
add an explicit loop counter to each loop. During production runs, use the
loop counter to exit the loop whenever the number of iterations exceeds the
iteration bound. If the loop exits after executing more iterations than the
observed maximum number of iterations from the training runs but fewer
iterations than the iteration bound, update the iteration bound to be the
slack factor times the number of iterations from the current execution of the
loop.

2.3 Cyclic Memory Allocation

Like infinite loops, memory leaks are a form of unbounded resource consumption
that enable one component to exhaust resources required for the program to
survive. It is possible to completely eliminate memory leaks by allocating a fixed
size buffer for each memory allocation site, then allocating objects cyclically out
of that buffer [24]. Specifically, the nth object allocated at each site is allocated
in slot n mod s, where s is the number of objects in the buffer. If the program
only accesses at most the last s objects allocated at the corresponding site, this
transformation does not affect the correctness of the program.

The potential disadvantage of cyclic memory allocation is that it may allocate
multiple live objects in the same slot. The result is that writes to one object will
overwrite other objects allocated in that same slot. Our experimental results
indicate that overlaying live objects in this way typically causes the program
to gracefully degrade rather than fail [24]. We attribute this property, in part,
to the fact that the transformation (typically) preserves the type safety of the
program.

2.4 Data Structure Repair

In the presence of failure-oblivious computing corrupted data structures are, by
themselves, incapable of causing an outright program failure. They can, how-
ever, significantly disrupt the execution of the program and make it difficult for
the program to execute acceptably. Data structure repair, which is designed to
restore important consistency properties to damaged data structures, can sig-
nificantly improve the ability of the program to deliver acceptable results [1, 6,
7]. We have found that this result holds even when the repair is unable to com-
pletely reconstruct information originally stored in the data structure (typically
because the data structure corruption error destroyed the information before the
repair was invoked).



3 Data Structure Consistency

Our experience with data structure repair and failure-oblivious computing shows
that data structure consistency can be a critical component of meaningful pro-
gram survival. We propose a multistage approach to the static verification of
data structure consistency. The first stage is to obtain fully verified implemen-
tations of standard abstract data types. This goal has been largely achieved in
Jahob program verification system [9, 8, 10]. The second stage is to verify prop-
erties that involve multiple abstract data types. Building on verified abstract
data type implementations, the Hob project made significant progress towards
this goal [25–28], but challenges still remain.

3.1 Jahob

Jahob is a general program verification system with a powerful specification
language based on higher-order logic. Because the specifications take the form
of specialized comments, it is possible to use standard Java implementation
frameworks to execute specified programs. Given these specifications, the Jahob
implementation processes the program to generate verification conditions. It
then uses its underlying integrated reasoning system to prove these verification
conditions.

3.2 The Jahob Specification Language

Jahob specifications use primitive types (such as integers and booleans), sets,
and relations to characterize the abstract state of the data structure. A verified
abstraction function establishes the correspondence between the concrete values
that exist when the program executes (the implementation directly manipulates
these values) and the abstract state in the specification (which exists only for ver-
ification purposes). Method contracts, class invariants, and annotations within
method bodies use classical higher-order logic to express the desired properties
of the data structure interface and implementation.

Specification Variables In addition to concrete Java variables, Jahob sup-
ports specification variables, which do not exist during program execution but
are useful to specify the behavior of methods without revealing the underly-
ing data structure representation. In addition to other purposes, developers use
specification variables to identify the abstract state of data structure implemen-
tations. Abstraction functions specify the connection between the concrete Java
variables and the corresponding specification variables.

Method Contracts A method contract in Jahob contains three parts: 1) a
precondition, written as a requires clause, stating the properties of the program
state and parameter values that must hold before a method is invoked; 2) a frame
condition, written as a modifies clause, listing the components of the state that



the method may modify (the remaining components remain unchanged); and 3)
a postcondition, written as an ensures clause, describing the state at the end of
the method (possibly defined relative to the parameters and state at the entry
of the method). Jahob uses method contracts for assume/guarantee reasoning in
the standard way. When analyzing a method m, Jahob assumes m’s precondition
and checks that m satisfies its postcondition and the frame condition. Dually,
when analyzing a call to m, Jahob checks that the precondition of m holds,
assumes that the values of state components from the frame condition of m
change subject only to the postcondition of m, and that state components not
in the frame condition of m remain unchanged. Public methods omit changes
to the private state of their enclosing class and instead use public specification
variables to describe how they change the state.

Class Invariants A class invariant can be thought of as a boolean-valued
specification variable that Jahob implicitly conjoins with the preconditions and
postconditions of public methods. The developer can declare an invariant as
private or public (the default annotation is private). Typically, a class invariant is
private and is visible only inside the implementation of the class. Jahob conjoins
the private class invariants of a class C to the preconditions and postconditions
of methods declared in C. To ensure soundness in the presence of callbacks,
Jahob also conjoins each private class invariant of class C to each reentrant call
to a method m declared in a different class D. This policy ensures that the
invariant C will hold if D.m (either directly or indirectly) invokes a method in
C. To make an invariant F with label l hold less often than given by this policy,
the developer can write F as b→ I for some specification variable b. To make F
hold more often, the developer can use assertions with the shorthand (theinv l)
that expand into F .

Loop Invariants The developer states a loop invariant of a while loop imme-
diately after the while keyword using the keyword invariant (or inv for short).
Each loop invariant must hold before the loop condition and be preserved by
each iteration of the loop. The developer can omit conditions that depend only
on variables not modified in the loop — Jahob uses a simple syntactic analysis
to conclude that the loop preserves such conditions.

3.3 The Jahob Integrated Proof Language

Conceptually, most reasoning systems search a proof space — they start with
a set of known facts and axioms, then (at a high level) search the resulting
proof space in an attempt to discover a proof of the desired consequent fact. We
have found that, in practice, when automated reasoning systems fail, they fail
because there are key choice points in the proof search space that are difficult
for them to resolve successfully. We have therefore developed a proof language,
integrated into the underlying imperative programming language, that enables
the developer to resolve such choice points [9]. Examples of such choice points



include lemma decompositions, case splits, universal quantifier instantiations,
and witness identification for existentially quantified facts. We have also aug-
mented the language with constructs that allow developers to structure proofs
by contradiction and induction.

Although we focus on the constructs that developers use to resolve choice
points, Jahob provides a full range of proof constructs. Developers can therefore
provide as much or as little guidance as desired. It is even possible for a developer
to use the integrated proof language to explicitly perform every step of the proof.

Finally, Jahob provides a construct that enables developers to deal with a
pragmatic problem that arises with modern reasoning systems. In practice, these
reasoning systems are very sensitive to the assumption base — the assumptions
from which to prove the desired consequent fact. If the assumption base is too
large or contains too many irrelevant assumptions, the search space becomes too
difficult for the reasoning system to search effectively and it fails to find a proof.
Jahob therefore allows developers to name and identify a set of assumptions
for the reasoning systems to use when attempting to prove a specific fact. The
resulting precise identification of a minimal assumption base can often enable the
reasoning systems to prove desired facts without any additional assistance. This
capability can be especially important when verifying complex data structures
(because the reasoning systems place many properties into the assumption base
during the course of the verification).

3.4 Verification Condition Generation and Integrated Reasoning

Jahob produces verification conditions by simplifying the Java code and trans-
forming it into extended guarded commands, then desugaring extended guarded
commands into simple guarded commands, and finally generating verification
conditions from simple guarded commands in a standard way [10, 8]. It then
splits the verification conditions into subformulas and, with the aid of formula
approximation, uses the integrated automated reasoning systems to prove the
subformulas [10, 8]. It runs each automated reasoning system with a timeout and,
on multicore machines, supports the invocation of multiple automated reasoning
systems in parallel to prove a given subformula. Our current system verifies most
of our data structure implementations within several minutes [8]. Our binary
search tree implementation, with a verification time of an hour and forty-five
minutes (primarily because of time spent in the MONA decision procedure), is
an outlier.

3.5 Hob

Certain data structure consistency properties involve multiple data structures.
The goal of the Hob project was to develop techniques for statically verifying
such properties. Hob worked with set abstractions — it modelled the state of each
data structure as an abstract set of objects. Developers could then use a standard
set algebra (involving the boolean operators along with operations such as set
inclusion and set difference) to state the desired consistency properties [25–28].



Although Hob contained techniques for verifying the consistency of individual
data structure implementations, in the long run a more effective approach would
be to first use a system like Jahob to verify the full functional correctness of
individual data structure implementations, then use a more scalable system like
Hob to verify properties involving multiple data structures. The Hob verification
would, of course, work with the interfaces for the individual data structures
(these interfaces would be verified by Jahob or a system like Jahob), not the
data structure implementations. This approach would appropriately leverage
the relative strengths of the two systems.

Our experience with Hob indicates that sets of objects provide a particu-
larly compelling abstraction. In many domains it is possible to model user-level
concepts with sets of objects; in these domains the resulting Hob specifications
often capture properties that are directly relevant to the user. This relevance
stands in stark contrast to standard specifications, which tend to focus heavily
on internal implementation details as opposed to high-level concepts that are
directly meaningful to users.

Extending Hob to support relations would significantly increase its expres-
siveness and utility. This extension would enable Hob to support more sophisti-
cated consistency constraints — for example, that one data structure contains
every object in the domain of a map implemented by another data structure.
The challenge with this extension is developing the scalable analyses required to
verify these more expressive constraints.

3.6 Self-Defending Data Structures

Many verification approaches (including Jahob and Hob) use assume/guarantee
reasoning. Each procedure has a precondition that it assumes is true upon en-
try. It is the responsibility of the client to ensure that the precondition holds.
Each procedure also has a postcondition, which the procedure implementation
guarantees to be true assuming that the precondition holds upon entry to the
procedure. Encapsulated invariants capture the key consistency properties.

With this approach, the data structure consistency depends both on the im-
plementation and on the client — if the client fails to satisfy a precondition, there
is no guarantee that the implementation will preserve any encapsulated invari-
ants. Moreover, the standard preconditions for many abstract data types are
often quite complicated and difficult to verify with the kind of scalable analyses
required to successfully verify that clients correctly satisfy the preconditions.

We therefore advocate the use of self-defending data structures with empty
preconditions (such data structures can, of course, have encapsulated invari-
ants). Self-defending data structures contain all of the checks required to ensure
that they remain consistent regardless of client behavior. The advantage is that
such data structures completely eliminate the need for client analyses in the
verification of the consistency of individual data structures.



4 Infinite Loops

In the last several years researchers have developed a set of techniques for stati-
cally verifying that loops terminate [29]. We expect that, in general, researchers
will be able to develop techniques that are effective in proving that the vast ma-
jority of loops terminate. But we also expect certain kinds of loops to continue
to be beyond the reach of any practically deployable lightweight static analysis.
Two examples of such loops are loops that operate on linked data structures (the
termination of these loops may depend on complex data structure consistency
properties) and loops whose termination depends on the convergence of complex
numerical algorithms.

Given the tractable size of abstract data types, we advocate the use of heavy-
weight formal reasoning techniques (much like those that the Jahob system sup-
ports) to prove termination properties. Because abstract data types are standard,
widely used components, they can justify large formal reasoning efforts.

We anticipate that a similar approach would work for many numerical al-
gorithms. But formal reasoning techniques for numerical algorithms are less
developed than those for more discrete or symbolic algorithms. And in many
cases properties such as termination depend on subtle mathematical properties
of discretized representations of continuous quantities. It is unclear the extent to
which formally verified termination proofs will become practical for widespread
use. One potential solution is simply to place a predetermined bound on the
number of iterations of each loop (in a manner similar to the loop termination
technique described above in Section 2.2).

5 General Control Flow Anomalies

Infinite loops are a special case of more general control flow anomalies that can
prevent the program from executing components required to provide acceptable
service. For example, many event-driven programs have an event processing loop.
In many cases it may be worthwhile to develop static analyses that reason about
the control flow to prove that every execution will, in a finite amount of time,
return back to the top of the event processing loop. We anticipate that the
major complication (to the extent that there is one) will be reasoning about
the behavior of the program in the face of exceptions and explicit program
exits. Developer-provided assertions and safety checks can be especially counter-
productive in this context. Developers are often overly conservative about the
conditions they check — in our experience, programs are often able to survive
violations of checks that developers have added to terminate the program in the
face of unexpected executing conditions or state changes. One straightforward
approach is to simply excise all calls to primitives that terminate the program [3].

6 Memory Errors

Reasonably simple and usable augmented type systems exist that are capable of
statically guaranteeing the absence of null pointer dereferences [30]. Statically



verifying the absence of out of bounds array accesses is a much more challenging
and complex task, in large part because of the need to reason about (poten-
tially complex) array indexing expressions [31]. Once again, we expect the most
productive approach to involve isolating complex array indexing computations
inside abstract data types or similar modules, then using potentially heavyweight
sophisticated reasoning techniques to prove the absence of array bounds viola-
tions. With this approach, simpler and more scalable techniques should be able
to verify the absence of array bounds violations in the remaining parts of the
code.

7 Memory Leaks

Statically verifying the absence of memory leaks given standard program se-
mantics is, with current program analysis and verification technology, the most
challenging task we consider in this paper. Techniques exist for finding certain
classes of leaks in array-based data structure implementations [32]. Modified es-
cape analyses should also be able to find leaks that occur when the program
takes certain exceptional execution paths [33]. A key difficulty is that objects
may remain reachable in linked data structures with the data structure inter-
face enabling invocation sequences that can cause the computation to access
the objects. But in some cases, because of restricted usage patterns in the data
structure clients, these invocation sequences can never actually occur in the pro-
gram as a whole. We are aware of no static analysis or verification techniques
that are designed to operate successfully in this scenario. The difficulty of devel-
oping such techniques would depend heavily on the characteristics of the usage
patterns that occur in practice.

8 Conclusion

Program survival is a key consideration in a world in which full program verifica-
tion is unrealistic. Statically verifying key survival properties will involve scalable
static analyses that operate over the vast majority of the program working in
combination with sophisticated program verification technologies that leverage
both heavyweight automated reasoning techniques and developer intervention
to prove complex survival properties in targeted regions of the program. These
technologies promise to significantly enhance our ability to deliver software sys-
tems that can successfully execute through errors to provide acceptable service
to users.

References

1. Demsky, B., Rinard, M.: Data structure repair using goal-directed reasoning. In:
Proceedings of the 2005 International Conference on Software Engineering. (2005)



2. Rinard, M.: Acceptability-oriented computing. In: 2003 ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
Companion (OOPSLA ’03 Companion) Onwards! Session. (October 2003)

3. Rinard, M., Cadar, C., Nguyen, H.H.: Exploring the acceptability envelope. In:
2005 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications Companion (OOPSLA ’05 Companion) Onwards! Ses-
sion. (October 2005)

4. Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., William S. Beebee, J.:
Enhancing server availability and security through failure-oblivious computing. In:
Proceeding of 6th Symposium on Operating System Design and Implementation
(OSDI 2004). (2004)

5. Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T.: A dynamic technique
for eliminating buffer overflow vulnerabilities (and other memory errors). In: Pro-
ceedings of the 2004 Annual Computer Security Applications Conference . (2004)

6. Demsky, B., Rinard, M.: Automatic detection and repair of errors in data struc-
tures. In: Proc. 18th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications. (2003)

7. Demsky, B., Rinard, M.: Static specification analysis for termination of
specification-based data structure repair. In: IEEE International Symposium on
Software Reliability. (2003)

8. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI 2008) . (June 2008)

9. Zee, K., Kuncak, V., Rinard, M.: An integrated proof language for imperative pro-
grams. In: Proceedings of the ACM SIGPLAN 2009 Conference on Programming
Language Design and Implementation (PLDI 2009) . (June 2009)

10. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology (February 2007)

11. Weidenbach, C.: Combining superposition, sorts and splitting. In Robinson, A.,
Voronkov, A., eds.: Handbook of Automated Reasoning. Volume II. Elsevier Sci-
ence (2001) 1965–2013

12. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3)
(2002) 111–126

13. Barrett, C., Tinelli, C.: CVC3. In Damm, W., Hermanns, H., eds.: Proceedings
of the 19th International Conference on Computer Aided Verification (CAV ’07).
Volume 4590 of Lecture Notes in Computer Science., Springer-Verlag (July 2007)
298–302 Berlin, Germany.

14. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: CADE. (2007)

15. de Moura, L.M., Bjørner, N.: Z3: An efficient smt solver. In Ramakrishnan, C.R.,
Rehof, J., eds.: Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings. Volume 4963 of Lecture Notes in Computer
Science., Springer (2008) 337–340

16. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: CADE. (2007)
17. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sand-

holm, A.: Mona: Monadic second-order logic in practice. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, First International Work-
shop, TACAS ’95, LNCS 1019. (1995)



18. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Technical report,
Department of Computer Science, The University of Iowa (2006) Available at
www.SMT-LIB.org.

19. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger
Arithmetic. J. of Automated Reasoning (2006)
http://dx.doi.org/10.1007/s10817-006-9042-1.

20. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Al-
gebra with Presburger Arithmetic. In: CADE-21. (2007)

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer-Verlag (2002)

22. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development–
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

23. Witchel, E., Rhee, J., Asanović, K.: Mondrix: Memory isolation for linux using
mondriaan memory protection. In: 20th ACM Symposium on Operating Systems
Principles (SOSP-20). (2005)

24. Nguyen, H.H., Rinard, M.: Detecting and eliminating memory leaks using cyclic
memory allocation. In: Proceedings of the 2007 International Symposium on Mem-
ory Management. (2007)

25. Lam, P., Kuncak, V., Rinard, M.: Cross-cutting techniques in program specifica-
tion and analysis. In: 4th International Conference on Aspect-Oriented Software
Development (AOSD’05). (2005)

26. Kuncak, V., Lam, P., Zee, K., Rinard, M.: Modular pluggable analyses for data
structure consistency. IEEE Transactions on Software Engineering 32(12) (De-
cember 2006)

27. Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data struc-
ture consistency. In: 6th Int. Conf. Verification, Model Checking and Abstract
Interpretation. (2005)

28. Lam, P.: The Hob System for Verifying Software Design Properties. PhD thesis,
Massachusetts Institute of Technology (February 2007)

29. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation (PLDI 2006) . (June 2006)

30. Papi, M.M., Ali, M., Jr., T.L.C., Perkins, J.H., Ernst, M.D.: Practical pluggable
types for java. In: Proceedings of the 2008 International Symposium on Software
Testing and Analysis, Seattle, WA (July 2008)

31. Rugina, R., Rinard, M.C.: Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. ACM Trans. Program. Lang. Syst. 27(2) (2005)

32. Shaham, R., Kolodner, E., Sagiv, S.: Automatic removal of array memory leaks in
java. In: Proceedings of the 9th International Conference on Compiler Construc-
tion. (2000)

33. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: OOPSLA, Denver (November 1999)


