
An Implementation of Scoped Memory for
Real-Time Java

William S. Beebee, Jr. and Martin Rinard

MIT Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge MA, 02139

wbeebee@alum.mit.edu, rinard@lcs.mit.edu

Abstract. This paper presents our experience implementing the mem-
ory management extensions in the Real-Time Specification for Java.
These extensions are designed to given real-time programmers the control
they need to obtain predictable memory system behavior while preserv-
ing Java’s safe memory model. We describe our implementation of certain
dynamic checks required by the Real-Time Java extensions. In particu-
lar, we describe how to perform these checks in a way that avoids harmful
interactions between the garbage collector and the memory management
system. We also found that extensive debugging support was necessary
during the development of Real-Time Java programs. We therefore used
a static analysis and a dynamic debugging package during the develop-
ment of our benchmark applications.

1 Introduction

Java is a relatively new and popular programming language. It provides a safe,
garbage-collected memory model (no dangling references, buffer overruns, or
memory leaks) and enjoys broad support in industry. The goal of the Real-Time
Specification for Java [3] is to extend Java to support key features required for
writing real-time programs. These features include support for real-time schedul-
ing and predictable memory management.

This paper presents our experience implementing the Real-Time Java mem-
ory management extensions. The goal of these extensions is to preserve the safety
of the base Java memory model while giving the real-time programmer the addi-
tional control that he or she needs to develop programs with predictable memory
system behavior. In the base Java memory model, all objects are allocated out
of a single garbage-collected heap, raising the issues of garbage-collection pauses
and unbounded object allocation times.

Real-Time Java extends this memory model to support two new kinds of
memory: immortal memory and scoped memory. Objects allocated in immortal
memory live for the entire execution of the program. The garbage collector scans
objects allocated in immortal memory to find (and potentially change) references
into the garbage collected heap but does not otherwise manipulate these objects.

Each scoped memory conceptually contains a preallocated region of memory
that threads can enter and exit. Once a thread enters a scoped memory, it can



allocate objects out of that memory, with each allocation taking a predictable
amount of time. When the thread exits the scoped memory, the implementation
deallocates all objects allocated in the scoped memory without garbage collec-
tion. The specification supports nested entry and exit of scoped memories, which
threads can use to obtain a stack of active scoped memories. The lifetimes of
the objects stored in the inner scoped memories are contained in the lifetimes of
the objects stored in the outer scoped memories. As for objects allocated in im-
mortal memory, the garbage collector scans objects allocated in scoped memory
to find (and potentially change) references into the garbage collected heap but
does not otherwise manipulate these objects.

The Real-Time Java specification uses dynamic access checks to prevent dan-
gling references and ensure the safety of using scoped memories. If the program
attempts to create either 1) a reference from an object allocated in the heap
to an object allocated in a scoped memory or 2) a reference from an object al-
located in an outer scoped memory to an object allocated in an inner scoped
memory, the specification requires the implementation to throw an exception.

1.1 Threads and Garbage Collection

The Real-Time Java thread and memory management models are tightly in-
tertwined. Because the garbage collector may temporarily violate key heap in-
variants, it must be able to suspend any thread that may interact in any way
with objects allocated in the garbage-collected heap. Real-Time Java therefore
supports two kinds of threads: real-time threads, which may access and refer
to objects stored in the garbage-collected heap, and no-heap real-time threads,
which may not access or refer to these objects. No-heap real-time threads exe-
cute asynchronously with the garbage collector; in particular, they may execute
concurrently with or suspend the garbage collector at any time. On the other
hand, the garbage collector may suspend real-time threads at any time and for
unpredictable lengths of time.

The Real-Time Java specification uses dynamic heap checks to prevent inter-
actions between the garbage collector and no-heap real-time threads. If a no-heap
real-time thread attempts to manipulate a reference to an object stored in the
garbage-collected heap, the specification requires the implementation to throw
an exception. We interpret the term “manipulate” to mean read or write a mem-
ory location containing a reference to an object stored in the garbage collected
heap, or to execute a method with such a reference passed as a parameter.

1.2 Implementation

The primary complication in the implementation is potential interactions be-
tween no-heap real-time threads and the garbage collector. One of the basic
design goals in the Real-Time Java specification is that the presence of garbage
collection should never affect the ability of the no-heap real-time thread to run.
We devoted a significant amount of time and energy working with our design to



convince ourselves that the interactions did in fact operate in conformance with
the specification.

1.3 Debugging

We found it difficult to use scoped and immortal memories correctly, especially
in the presence of the standard Java libraries, which were not designed with the
Real-Time Specification for Java in mind. We therefore found it useful to develop
some debugging tools. These tools included a static analysis which finds incorrect
uses of scoped memories and a dynamic instrumentation system that enabled
the implementation to print out information about the sources of dynamic check
failures.

2 Programming Model

Because of the proliferation of different kinds of memory areas and threads,
Real-Time Java has a fairly complicated programming model.

2.1 Entering and Exiting Memory Areas

Real-Time Java provides several kinds of memory areas: scoped memory, immor-
tal memory, and heap memory. Each thread maintains a stack of memory areas;
the memory area on the top of the stack is the thread’s default memory area.
When the thread creates a new object, it is allocated in the default memory
area unless the thread explicitly specifies that the object should be allocated in
some other memory area. If a thread uses this mechanism to attempt to allo-
cate an object in a scoped memory, the scoped memory must be present in the
thread’s stack of memory areas. No such restriction exists for objects allocated
in immortal or heap memory.

Threads can enter and exit memory areas. When a thread enters a memory
area, it pushes the area onto its stack. When it exits the memory area, it pops
the area from the stack. There are two ways to enter a memory area: start a
parallel thread whose initial stack contains the memory area, or sequentially
execute a run method that executes in the memory area. The thread exits the
memory area when the run method returns.

The programming model is complicated somewhat by the fact that 1) a single
thread can reenter a memory area multiple times, and 2) different threads can
enter memory areas in different orders. Assume, for example, that we have two
scoped memories A and B and two threads T and S. T can first enter A, then
B, then A again, while S can first enter B, then A, then B again. The objects
in A and B are deallocated only when T exits A, then B, then A again, and S
exits B, then A, then B again. Note that even though the programming model
specifies nested entry and exit of memory areas, these nested entries and exits
do not directly translate into a hierarchical inclusion relationship between the
lifetimes of different memory areas.



2.2 Scoped Memories

Scoped memories, in effect, provide a form of region-based memory allocation.
They differ somewhat from other forms of region-based memory allocation [2]
in that each scoped memory is associated with one or more computations (each
computation is typically a thread, but can also be the execution of a sequentially
invoked run method), with all of the objects in the scoped memory deallocated
when all of its associated computations terminate.

The primary issue with scoped memories is ensuring that their use does not
create dangling references, which are references to objects allocated in scoped
memories that have been deallocated. The basic strategy is to use dynamic access
checks to prevent the program from creating a reference to an object in a scoped
memory from an object allocated in either heap memory, immortal memory,
or a scoped memory whose lifetime encloses that of the first scoped memory.
Whenever a thread attempts to store a reference to a first object into a field in
a second object, an access check verifies that:

If the first object is allocated in a scoped memory, then the second object
must also be allocated in a scoped memory whose lifetime is contained
in the lifetime of the scoped memory containing the first object.

The implementation checks the containment by looking at the thread’s stack of
scoped memories and checking that either 1) the objects are allocated in the
same scoped memory, or 2) the thread first entered the scoped memory of the
second object before it first entered the scoped memory of the first object. If
this check fails, the implementation throws an exception.

Let’s consider a quick example to clarify the situation. Assume we have two
scoped memories A and B, two objects O and P, with O allocated in A and P
allocated in B, and two threads T and S. Also assume that T first enters A, then
B, then A again, while S first enters B, then A, then B again. Now T can store
a reference to O in a field of P, but cannot store a reference to P in a field of O.
For S, the situation is reversed: S cannot store a reference to O in a field of P,
but can store a reference to P in a field of O.

2.3 No-Heap Real-Time Threads

No-heap real-time threads have an additional set of restrictions; these restric-
tions are intended to ensure that the thread does not interfere with the garbage
collector. Specifically, the Real-Time Specification for Java states that a no-heap
real-time thread, which can run asynchronously with the garbage collector, “is
never allowed to allocate or reference any object allocated in the heap nor is it
even allowed to manipulate the references to objects in the heap.” Our implemen-
tation uses five runtime heap checks to ensure that a no-heap real-time thread
does not interfere with garbage collection by manipulating heap references. The
implementation uses three of these types of checks, CALL, METHOD, and
NATIVECALL to guard against poorly implemented native methods or illegal
compiler calls into the runtime. These three checks can be removed if all native
and runtime code is known to operate correctly.



– CALL: A native method invoked by a no-heap real-time thread cannot re-
turn a reference to a heap allocated object.

– METHOD: A Java method cannot be passed a heap allocated object as an
argument while running in a no-heap real-time thread.

– NATIVECALL: A compiler-generated call into the runtime implementa-
tion from a no-heap real-time thread cannot return a reference to a heap
allocated object.

– READ: A no-heap real-time thread cannot read a reference to a heap allo-
cated object.

– WRITE: As part of the execution of an assignment statement, a no-heap
real-time thread cannot overwrite a reference to a heap allocated object.

3 Example

We next present an example that illustrates some of the features of the Real-Time
Specification for Java. Figure 1 presents a sample program written in Real-Time
Java. This program is a version of the familiar “Hello World” program augmented
to use the Real-Time Java features. It first creates a scoped memory with a
worst-case Linear Time allocation scheme (LTMemory) with a size of 1000 bytes.
It then runs the code of the run method in this new scope. The run method
creates a new variable time allocation scoped memory (the VTMemory object)
and a new Worker NoHeapRealtimeThread. Both of these objects are allocated
in the LTMemory scoped memory. The run method then starts the Worker thread
and executes its join method, which will return when the Worker finishes.

The Worker thread runs in the new VTMemory. The Worker’s run method al-
locates a new String[1] in ImmortalMemory and stores a reference to this string
in the static results field of the Main class, which was previously initialized to
null. The Worker then creates a new String, “Hello World!”, to place in the
array. The worker then finishes, and the implementation deallocates all of the
objects allocated in the VTMemory. Back in the main thread, the join method
returns, and the main thread returns back out of its run method. The imple-
mentation deallocates all of the objects allocated in the LTMemory. Finally, the
main thread prints “Hello World”, the first element of the results array, to the
screen.

Note that the LTMemory and VTMemory constructors differ slightly from the
constructors described in the Realtime Java specification. We implemented these
constructors in addition to the specified constructors to provide additional flex-
ibility and convenience for the programmer.

This Hello World program is a legal program using our system. However, any
of the following changes would make it an illegal program:



class Worker extends NoHeapRealtimeThread {

Worker(MemoryArea ma) { super(ma); }

public void run() {

ImmortalMemory im = ImmortalMemory.instance();

try {

Main.results = (String[])im.newArray(String.class, new int[] { 1 });

Main.results[0] = (String)im.newInstance(String.class,

new Class[] { String.class },

new Object[] { ‘‘Hello World!’’ });

} catch (Exception e) { System.exit(-1); }

}

}

public class Main {

public static String[] results = null;

public static void main(String args[]) {

LTMemory lt = new LTMemory(1000);

lt.enter(new Runnable() {

public void run() {

Worker w = new Worker(new VTMemory());

w.start();

try { w.join(); } catch (Exception e) { System.out.println(e); }

}

});

System.out.println(results[0]);

}

}

Fig. 1. A Real-Time Java Example Program

1. Replace the im.newInstance... with ‘‘Hello World!’’ and there would
be an illegal reference from an ImmortalMemory to a ScopedMemory.

2. Replace the im.newArray... with new String[1] and there would be an
illegal static reference to a ScopedMemory.

3. Replace the ImmortalMemory.instance() with HeapMemory.instance(),
and there would be an illegal heap reference in a NoHeapRealtimeThread
(READ).

4. Replace the null with a new String[1] and the NoHeapRealtimeThread
would be illegally destroying a heap reference by assigning Main.results
(WRITE).

5. Place the Worker w in the main method and the assignment
w = new Worker... would illegally create a reference from the heap to a
ScopedMemory.

6. Place the System.out in the NoHeapRealtimeThread and the
NoHeapRealtimeThread would be illegally reading from the heap. System.out
is initialized in the initial MemoryArea at the start of the program, the



HeapMemory (READ) As a consequence, the NoHeapRealtimeThread can-
not System.out.println the message from the exception.

7. Place the entire Worker w = new Worker(new VTMemory()); outside the
LTMemory scope, and the this pointer of the NoHeapRealtimeThread would
illegally point to the heap (METHOD).

4 Implementation

Our discussion of the implementation focuses on three aspects: implementing the
heap and access checks, implementing the additional scoped immortal memory
functionality, and ensuring the absence of interactions between no-heap real-time
threads and the garbage collector.

4.1 Heap Check Implementation

The implementation must be able to take an arbitrary reference to an object
and determine the kind of memory area in which it is allocated. To support
this functionality, our implementation adds an extra field to the header of each
object. This field contains a pointer to the memory area in which the object is
allocated.

One complication with this scheme is that the garbage collector may violate
object representation invariants during collection. If a no-heap real-time thread
attempts to use the field in the object header to determine if an object is allocated
in the heap, it may access memory rendered invalid by the actions of the garbage
collector. We therefore need a mechanism which enables a no-heap real-time
thread to differentiate between heap references and other references without
attempting to access the memory area field of the object.

We first considered allocating a contiguous address region for the heap, then
checking to see if the reference falls within this region. We decided not to use
this approach because of potential interactions between the garbage collector
and the code in the no-heap real-time thread that checks if the reference falls
within the heap. Specifically, using this scheme would force the garbage collector
to always maintain the invariant that the current heap address region include
all previous heap address regions. We were unwilling to impose this restriction
on the collector.

We then considered a variety of other schemes, but eventually settled on the
(relatively simple) approach of setting the low bit of all heap references. The
generated code masks off this bit before dereferencing the pointer to access the
object. With this approach, no-heap real-time threads can simply check the low
bit of each reference to check if the reference points into the heap or not.

Our current system uses the memory area field in the object header to obtain
information about objects allocated in scoped memories and immortal memory.
The basic assumption is that the objects allocated in these kinds of memory
areas will never move or have their memory area field temporarily corrupted or
invalidated.



Figure 2 presents the code that the compiler emits for each heap check;
Figure 3 presents the code that determines if the current thread is a no-heap
real-time thread. Note that the emitted code first checks to see if the reference is
a heap reference — our expectation is that most Real-Time Java programs will
manipulate relatively few references to heap-allocated objects. This expectation
holds for our benchmark programs (see Section 6).

READ WRITE CALL

use of *refExp in exp *refExp = exp; refExp = call(args);

becomes: becomes: becomes:

heapRef = *refExp; heapRef = *refExp; heapRef = call(args);

if (heapRef&1) if (heapRef&1) if (heapRef&1)

heapCheck(heapRef); heapCheck(heapRef); heapCheck(heapRef);

[*heapRef/*refExp] exp refExp = exp; refExp = heapRef;

NATIVECALL METHOD

refExp = nativecall(args); method(args) { body }

becomes: becomes:

heapRef = nativecall(args); method(args) {
if (heapRef&1) for arg in args:

heapCheck(heapRef); if (arg&1)

refExp = heapRef; heapCheck(arg);

body }

Fig. 2. Emitted Code For Heap Checks

4.2 Access Check Implementation

The access checks must be able to determine if the lifetime of a scoped memory
area A is included in the lifetime of another scoped memory area B. The imple-
mentation searches the thread’s stack of memory areas to perform this check. It
first searches for the occurrence of A closest to the start of the stack (recall that
A may occur multiple times on the stack). It then searches to check if there is
an occurrence of B between that occurrence of A and the start of the stack. If
so, the access check succeeds; otherwise, it fails.

The current implementation optimizes this check by first checking to see if A
and B are the same scoped memory area. Figure 4 presents the emitted code for
the access checks, while Figure 5 presents some of the run-time code that this
emitted code invokes.



#ifdef DEBUG

void heapCheck(unwrapped_jobject* heapRef, const int source_line,

const char* source_fileName, const char* operation) {

#else /* operation = READ, WRITE, CALL, NATIVECALL, or METHOD */

void heapCheck(unwrapped_jobject* heapRef) {

#endif

JNIEnv* env = FNI_GetJNIEnv();

/* determine if in a NoHeapRealtimeThread */

if (((struct FNI_Thread_State*)env)->noheap) {

/* optionally print helpful debugging info */

/* throw exception */

}

}

Fig. 3. The heapCheck function

New Object (or Array):

obj = new foo(); (or obj = new foo()[1][2][3];)

becomes:

ma = RealtimeThread.currentRealtimeThread().getMemoryArea();

obj = new foo(); (or obj = new foo()[1][2][3];)

obj.memoryArea = ma;

Access check:

obj.foo = bar;

becomes:

ma = MemoryArea.getMemoryArea(obj); /* or ma = ImmortalMemory.instance(),

ma.checkAccess(bar); if a static field) */

obj.foo = bar;

Fig. 4. Emitted Code for Access Checks



In MemoryArea:

public void checkAccess(Object obj) {

if ((obj != null) && (obj.memoryArea != null) && obj.memoryArea.scoped) {

/* Helpful native method prints out all debugging info. */

throwIllegalAssignmentError(obj, obj.memoryArea);

}

}

Overridden in ScopedMemory:

public void checkAccess(Object obj) {

if (obj != null) {

MemoryArea target = getMemoryArea(obj);

if ((this != target) && target.scoped &&

(!RealtimeThread.currentRealtimeThread()

.checkAccess(this, target))) {

throwIllegalAssignmentError(obj, target);

}

}

}

In RealtimeThread:

boolean checkAccess(MemoryArea source, MemoryArea target) {

MemBlockStack sourceStack = (source == getMemoryArea()) ?

memBlockStack : memBlockStack.first(source);

return (sourceStack != null) && (sourceStack.first(target) != null);

}

Fig. 5. Code for performing access checks



4.3 Operations on Memory Areas

The implementation needs to perform three basic operations on scoped and
immortal memory areas: allocate an object in the area, deallocate all objects in
the area, and provide the garbage collector with the set of all heap references
stored in the memory area. Note a potential interaction between the garbage
collector and no-heap real-time threads. The garbage collector may be in the
process of retrieving the heap references stored in a memory area when a no-
heap real-time thread (operating concurrently with or interrupting the garbage
collector) allocates objects in that memory area. The garbage collector must
operate correctly in the face of the resulting changes to the underlying memory
area data structures. The system design also cannot involve locks shared between
the no-heap real-time thread and the garbage collector (the garbage collector is
not allowed to block a no-heap real-time thread). But the garbage collector may
assume that the actions of the no-heap real-time thread do not change the set
of heap references stored in the memory area.

Each memory area may have its own object allocation algorithm. Because
the same code may execute in different memory areas at different times, our
implementation is set up to dynamically determine the allocation algorithm to
use based on the current memory area. Whenever a thread allocates an object,
it looks up a data structure associated with the memory area. A field in this
structure contains a pointer to the allocation function to invoke. This structure
also contains a pointer to a function that retrieves all of the heap references from
the area, and a function that deallocates all of the objects allocated in the area.

4.4 Memory Area Reference Counts

As described in the Real-Time Java Specification, each memory area maintains
a count of the number of threads currently operating within that region. These
counts are (atomically) updated when threads enter or exit the region. When
the count becomes zero, the implementation deallocates all objects in the area.

Consider the following situation. A thread exits a memory area, causing its
reference count to become zero, at which point the implementation starts to
invoke finalizers on the objects in the memory area as part of the deallocation
process. While the finalizers are running, a no-heap real-time thread enters the
memory area. According to the Real-Time Java specification, the no-heap real-
time thread blocks until the finalizers finish running. There is no mention of the
priority with which the finalizers run, raising the potential issue that the no-
heap real-time thread may be arbitrarily delayed. A final problem occurs if the
no-heap real-time thread first acquires a lock, a finalizer running in the memory
area then attempts to acquire the lock (blocking because the no-heap real-time
thread holds the lock), then the no-heap real-time thread attempts to enter the
memory area. The result is deadlock — the no-heap real-time thread waits for
the finalizer to finish, but the finalizer waits for the no-heap real-time thread to
release the lock.



4.5 Memory Allocation Algorithms

We have implemented two simple allocators for scoped memory areas: a stack
allocator and a malloc-based allocator. The current implementation uses the
stack allocator for instances of LTMemory, which guarantee linear-time allocation,
and the malloc-based allocator for instances of VTMemory, which provide no time
guarantees.

The stack allocator starts with a fixed amount of available free memory. It
maintains a pointer to the next free address. To allocate a block of memory, it
increments the pointer by the size of the block, then returns the old value of the
pointer as a reference to the newly allocated block. Our current implementation
uses this allocation strategy for instances of the LTMemory class, which guarantees
a linear time allocation strategy.

There is a complication associated with this implementation. Note that mul-
tiple threads can attempt to concurrently allocate memory from the same stack
allocator. The implementation must therefore use some mechanism to ensure
that the allocations take place atomically. Note that the use of lock synchroniza-
tion could cause an unfortunate coupling between real-time threads, no-heap
real-time threads, and the garbage collector. Consider the following scenario. A
real-time thread starts to allocate memory, acquires the lock, is suspended by
the garbage collector, which is then suspended by a no-heap real-time thread
that also attempts to allocate memory from the same allocator. Unless the im-
plementation does something clever, it could either deadlock or force the no-heap
real-time thread to wait until the garbage collector releases the real-time thread
to complete its memory allocation.

Our current implementation avoids this problem by using a lock-free, non-
blocking atomic exchange-and-add instruction to perform the pointer updates.
Note that on an multiprocessor in the presence of contention from multiple
threads attempting to concurrently allocate from the same memory allocator,
this approach could cause the allocation time to depend on the precise timing
behavior of the atomic instructions. We would expect some machines to provide
no guarantee at all about the termination time of these instructions.

The malloc-based allocator simply calls the standard malloc routine to allo-
cate memory. Our implementation uses this strategy for instances of LTMemory.
To provide the garbage collector with a list of heap references, our implementa-
tion keeps a linked list of the allocated memory blocks and can scan these blocks
on demand to locate references into the heap.

Our design makes adding a new allocator easy; the malloc-based allocator
required only 25 lines of C code and only 45 minutes of coding, debugging,
and testing time. Although the system is flexible enough to support multiple
dynamically-changing allocation routines, VTMemorys use the linked-list alloca-
tor, while LTMemorys use the stack-allocator.

4.6 Garbage Collector Interactions

References from heap objects can point both to other heap objects and to objects
allocated in immortal memory. The garbage collector must therefore recognize



references to immortal memory and treat objects allocated in immortal memory
differently than objects allocated in heap memory. In particular, the garbage
collector cannot change the objects in ways that that would interact with con-
currently executing no-heap real-time threads.

Our implementation handles this issue as follows. The garbage collector first
scans the immortal and scoped memories to extract all references from objects
allocated in these memories to heap allocated objects. This scan is coded to
operate correctly in the presence of concurrent updates from no-heap real-time
threads. The garbage collector uses the extracted heap references as part of its
root set.

During the collection phase, the collector does not trace references to objects
allocated in immortal memory. If the collector moves objects, it may need to up-
date references from objects allocated in immortal memory or scoped memories
to objects allocated in the heap. It performs these updates in such a way that it
does not interfere with the ability of no-heap real-time threads to recognize such
references as referring to objects allocated in the heap. Note that because no-
heap real-time threads may access heap references only to perform heap checks,
this property ensures that the garbage collector and no-heap real-time threads
do not inappropriately interfere.

5 Debugging Real-Time Java Programs

An additional design goal becomes extremely important when actually develop-
ing Real-Time Java programs: ease of debugging. During the development pro-
cess, facilitating debugging became a primary design goal. In fact, we found it
close to impossible to develop error-free Real-Time Java programs without some
sort of assistance (either a debugging system or static analysis) that helped us
locate the reason for our problems using the different kinds of memory areas.
Our debugging was especially complicated by the fact that the standard Java
libraries basically don’t work at all with no-heap real-time threads.

5.1 Incremental Debugging

During our development of Real-Time Java programs, we found the following
incremental debugging strategy to be useful. We first stubbed out all of the
Real-Time Java heap and access checks and special memory allocation strategies,
in effect running the Real-Time Java program as a standard Java program.
We used this version to debug the basic functionality of the program. We then
added the heap and access checks, and used this version to debug the memory
allocation strategy of the program. We were able to use this strategy to divide
the debugging process into stages, with a manageable amount of bugs found at
each stage.

It is also possible to use static analysis to verify the correct use of Real-Time
Java scoped memories [5]. We had access to such an analysis when we were
implementing our benchmark programs, and the analysis was very useful for



helping us debug our use of scoped memories. It also dramatically increased our
confidence in the correctness of the final program, and enabled a static check
elimination optimization that improved the performance of the program.

5.2 Additional Runtime Debugging Information

Heap and access checks can be used to help detect mistakes early in the develop-
ment process, but additional tools may be necessary to understand and fix those
mistakes in a timely fashion. We therefore augmented the memory area data
structure to produce a debugging system that helps programmers understand
the causes of object referencing errors.

When a debugging flag is enabled, the implementation attaches the original
Java source code file name and line number to each allocated object. Further-
more, with the use of macros, we also obtain allocation site information for native
methods. We store this allocation site information in a list associated with the
memory area in which the object is allocated. Given any arbitrary object refer-
ence, a debugging function can retrieve the debugging information for the object.
Combined with a stack trace at the point of an illegal assignment or reference,
the allocation site information from both the source and destination of an illegal
assignment or the location of an illegal reference can be instrumental in quickly
determining the exact cause of the error and the objects responsible. Allocation
site information can also be displayed at the time of allocation to provide a
program trace which can help determine control flow, putting the reference in a
context at the time of the error.

6 Results

We implemented the Real-Time Java memory extensions in the MIT Flex com-
piler infrastructure.1 Flex is an ahead-of-time compiler for Java that generates
both native code and C; it can use a variety of garbage collectors. For these
experiments, we generated C and used the Boehm-Demers-Weiser conservative
garbage collector.

We obtained several benchmark programs and used these programs to mea-
sure the overhead of the heap checks and access checks. Our benchmarks in-
clude Barnes, a hierarchical N-body solver, and Water, which simulates water
molecules in the liquid state. Initially these benchmarks allocated all objects in
the heap. We modified the benchmarks to use scoped memories whenever possi-
ble. We also present results for two synthetic benchmarks, Tree and Array, that
use object field assignment heavily. These benchmarks are designed to obtain
the maximum possible benefit from heap and access check elimination.

Table 1 presents the number of objects we were able to allocate in each of
the different kinds of memory areas. The goal is to allocate as many objects as
possible in scoped memory areas; the results show that we were able to modify
1 Available at www.flexc.lcs.mit.edu



Table 1. Number of Objects Allocated In Different Memory Areas

Benchmark Heap Scoped Immortal Total

Array 13 4 0 17
Tree 13 65,534 0 65,547

Water 406,895 3,345,711 0 3,752,606
Barnes 16,058 4,681,708 0 4,697,766

Table 2. Number of Arrays Allocated In Different Memory Areas

Benchmark Heap Scoped Immortal Total

Array 36 4 0 40
Tree 36 0 0 36

Water 405,943 13,160,641 0 13,566,584
Barnes 14,871 4,530,765 0 4,545,636

the programs to allocate the vast majority of their objects in scoped memories.
Java programs also allocate arrays; Table 2 presents the number of arrays that
we were able to allocate in scoped memories. As for objects, we were able to
allocate the vast majority of arrays in scoped memories.

Table 3 presents the number and type of access checks for each benchmark.
Recall that there is a check every time the program stores a reference. The
different columns of the table break down the checks into categories depending
on the target of the store and the memory area that the stored reference refers
to. For example, the Scoped to Heap column counts the number of times the
program stored a reference to heap memory into an object or array allocated in
a scoped memory.

Table 3. Access Check Counts

Heap Heap Scoped Scoped Scoped Immortal Immortal
Benchmark to to to to to to to

Heap Immortal Heap Scoped Immortal Heap Immortal

Array 14 8 0 400,040,000 0 0 0
Tree 14 8 0 65,597,532 65,601,536 0 0

Water 409,907 0 17,836 9,890,211 844 3 1
Barnes 90,856 80,448 9,742 4,596,716 1328 0 0

Table 4 presents the running times of the benchmarks. We report results for
six different versions of the program. The first three versions all have both heap



Table 4. Execution Times of Benchmark Programs

With Checks Without Checks
Benchmark Heap VT LT Heap VT LT

Array 28.1 43.2 43.1 7.8 7.7 8.0
Tree 13.2 16.6 16.6 6.9 6.9 6.9
Water 58.2 47.4 37.8 52.3 40.2 30.2
Barnes 38.3 22.3 17.2 34.7 19.5 14.4

and access checks, and vary in the memory area they use for objects that we were
able to allocate in scoped memory. The Heap version allocates all objects in the
heap. The VT version allocates scoped-memory objects in instances of VTMemory
(which use malloc-based allocation); the LT version allocates scoped-memory
objects in instances of LTMemory (which use stack-based allocation). The next
three versions use the same allocation strategy, but the compiler generates code
that omits all of the checks. For our benchmarks, our static analysis is able to
verify that none of the checks will fail, enabling the compiler to eliminate all of
these checks [5].

These results show that checks add significant overhead for all benchmarks.
But the use of scoped memories produces significant performance gains for
Barnes and Water. In the end, the use of scoped memories without checks sig-
nificantly increases the overall performance of the program. To investigate the
causes of the performance differences, we instrumented the run-time system to
measure the garbage collection pause times. Based on these measurements, we
attribute most of the performance differences between the versions of Water
and Barnes with and without scoped memories to garbage collection overheads.
Specifically, the use of scoped memories improved every aspect of the garbage
collector: it reduced the total garbage collection overhead, increased the time be-
tween collections, and significantly reduced the pause times for each collection.

For Array and Tree, there is almost no garbage collection for any of the ver-
sions and the versions without checks all exhibit basically the same performance.
With checks, the versions that allocate all objects in the heap run faster than
the versions that allocate objects in scoped memories. We attribute this per-
formance difference to the fact that heap to heap access checks are faster than
scope to scope access checks.

7 Related Work

Christiansen and Velschow suggested a region-based approach to memory man-
agement in Java; they called their system RegJava[4]. They found that fixed-
size regions have better performance than variable-sized regions and that region
allocation has more predictable and often better performance than garbage col-
lection. Static analysis can be used to detect where region annotations should



be placed, but the annotations often need to be manually modified for perfor-
mance reasons. Compiling a subset of Java which did not include threads or
exceptions to C++, the RegJava system does not allow regions to coexist with
garbage collection. Finally, the RegJava system permits the creation of dangling
references.

Gay and Aiken implemented a region-based extension of C called C@ which
used reference counting on regions to safely allocate and deallocate regions with a
minimum of overhead[1]. Using special region pointers and explicit deleteregion
calls, Gay and Aiken provide a means of explicitly manipulating region-allocated
memory. They found that region-based allocation often uses less memory and is
faster than traditional malloc/free-based memory management. Unfortunately,
counting escaping references in C@ can incur up to 16% overhead. Both Chris-
tiansen and Velschow and Gay and Aiken explore the implications of region
allocation for enhancing locality.

Gay and Aiken also produced RC [2], an explicit region allocation dialect
of C, and an improvement over C@. RC uses heirarchically structured regions
and sameregion, traditional, and parentptr pointer annotations to reduce
the reference counting overhead to at most 11% of execution time. Using static
analysis to reduce the number of safety checks, RC demonstrates up to a 58%
speedup in programs that use regions as opposed to garbage collection or the
typical malloc and free. RC uses 8KB aligned pages to allocate memory and
the runtime keeps a map of pages to regions to resolve regionof calls quickly.
Regions have a partial order to facilitate parentptr checks.

Region analysis seems to work best when the programmer is aware of the
analysis, indicating that explicitly defined regions which give the programmer
control over storage allocation may lead to more efficient programs. For exam-
ple, the Tofte/Talpin ML inference system required that the programmer be
aware of the analysis to guard against excessive memory leaks [6]. Programs
which use regions explicitly may be more hierarchically structured with respect
to memory usage by programmer design than programs intended for the tra-
ditional, garbage-collected heap. Therefore, Real-Time Java uses hierarchically-
structured, explicit, reference-counted regions that strictly prohibit the creation
of dangling references.

Our research is distinguished by the fact that Real-Time Java is a strict
superset of the Java language; any program written in ordinary Java can run in
our Real-Time Java system. Furthermore, a Real-Time Java thread which uses
region allocation and/or heap allocation can run concurrently with a thread
from any ordinary Java program, and we support several kinds of region-based
allocation and allocation in a garbage collected heap in the same system.

8 Conclusion

The Real-Time Java Specification promises to bring the benefits of Java to pro-
grammers building real-time systems. One of the key aspects of the specification
is extending the Java memory model to give the programmer more control over



the memory management. We have implemented these extensions. We found
that the primary implementation complication was ensuring a lack of interfer-
ence between the garbage collector and no-heap real-time threads, which execute
asynchronously with respect to the design. We also found debugging tools nec-
essary for the effective development of programs that use the Real-Time Java
memory management extensions. We used both a static analysis and a dynamic
debugging system to help locate the source of incorrect uses of these extensions.

Acknowledgements

This research was supported in part by DARPA/AFRL Contract F33615-00-
C-1692 as part of the Program Composition for Embedded Systems program.
The authors would like to acknowledge Scott Ananian for a large part of the de-
velopment of the MIT Flex compiler infrastructure and the Precise-C backend.
Karen Zee implemented stop and copy and mark and sweep garbage collectors,
which facilitated the development of no-heap real-time threads. Hans Boehm,
Alan Demers, and Mark Weiser implemented the conservative garbage collector
which was used for all of the listed benchmarks. Alex Salcianu tailored his es-
cape analysis to verify the correctness of our Real-Time Java benchmarks with
respect to scoped memory access violations. Brian Demsky implemented a user-
threads package for the Flex compiler which improved the performance of some
benchmarks.

References

1. Aiken, A., Gay, D.: Memory Management with Explicit Regions. Proceedings of the
ACM SIGPLAN ’98 Conference on Programming Language Design and Implemen-
tation. Montreal, Canada, June 1998.

2. Aiken, A., Gay, D.: Language Support for Regions. Proceedings of the ACM SIG-
PLAN ’01 Conference on Programming Language Design and Implementation.
Snowbird, Utah, June 2001.

3. Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling, J., Hardin, D., Turnbull, M.:
The Real-Time Specification for Java. Addison-Wesley, Reading, Massachusetts,
2000.

4. Christiansen, M., Velschow, P.: Region-Based Memory Management in Java. Mas-
ter’s thesis, Department of Computer Science (DIKU), University of Copenhagen,
May 1998.

5. Salcianu, A., Rinard, M.: Pointer and Escape Analysis for Multithreaded Programs.
Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. Snowbird, Utah, June 2001.

6. Tofte, M., Talpin, J.: Region-Based Memory Management. Information and Com-
putation, 132(2):109–176 (1997)


