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Abstract. This paper presents the semantic foundations of commuta-
tivity analysis, an analysis technique for automatically parallelizing pro-
grams written in a sequential, imperative programming language. Com-
mutativity analysis views the computation as composed of operations
on objects. It then analyzes the program at this granularity to discover
when operations commute (i.e. generate the same result regardless of the
order in which they execute). If all of the operations required to perform
a given computation commute, the compiler can automatically gener-
ate parallel code. This paper shows that the basic analysis technique is
sound. We have implemented a parallelizing compiler that uses commu-
tativity analysis as its basic analysis technique; this paper also presents
performance results from two automatically parallelized applications.

1 Introduction

Current parallelizing compilers preserve the semantics of the original serial pro-
gram by preserving the data dependences [1]. They analyze the program to iden-
tify independent pieces of computation (two pieces of computation are indepen-
dent if neither writes a piece of memory that the other accesses), then generate
code that executes independent pieces concurrently.

This paper presents the semantic foundations of a new analysis technique
called commutativity analysis. Instead of preserving the relative order of indi-
vidual reads and writes to single words of memory, commutativity analysis views
the computation as composed of operations on objects. It then analyzes the com-
putation at this granularity to discover when pieces of the computation commute
(i.e. generate the same result regardless of the order in which they execute). If
all of the operations required to perform a given computation commute, the
compiler can automatically generate parallel code. While the resulting parallel
program may violate the data dependences of the original serial program, it is
still guaranteed to generate the same result.

We expect commutativity analysis to eliminate many of the limitations of
existing approaches. Compilers that use commutativity analysis will be able
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to automatically generate parallel code for many applications that periodically
update shared data structures using commuting operations and/or manipulate
recursive, pointer-based data structures such as lists, trees and graphs. Com-
mutativity analysis allows compilers to automatically parallelize computations
even though they have no information about the global topology of the ma-
nipulated data structure. It may therefore be especially useful for parallelizing
computations that manipulate the persistent data in object-oriented databases.
In this context the code that originally created the data structure may be un-
available, negating any approach (including data-dependence based approaches)
that analyzes the code to verify or discover global properties of the data structure
topology.

The rest of the paper is structured as follows. In Section 2 we present an ex-
ample that illustrates how commutativity analysis can automatically parallelize
graph traversals. In Section 3 we describe the basic approach and informally
state the conditions that the compiler uses to recognize commuting operations.
In Section 4 we provide a formal model of computation and de�ne what it means
for two operations to commute in this model. This section contains a key theo-
rem establishing that if all of the operations in a computation commute, than all
parallel executions are equivalent to the serial execution. In Section 5 we state
that we have developed the analysis algorithms required for the practical appli-
cation of commutativity analysis and provide a reference to a technical report
that presents the analysis algorithms. In Section 6 we present experimental re-
sults for two complete scienti�c applications parallelized by a prototype compiler
that uses commutativity analysis as its basic analysis technique. In Section 7
we conclude.

2 An Example

In this section we present a simple example that shows how recognizing commut-
ing operations can enable the automatic generation of parallel code. The visit
method in Figure 1 serially traverses a graph. When the traversal completes,
each node's sum instance variable contains the sum of its original value and the
values of the val instance variables in all of the nodes that directly point to that
node. The example is written in C++.

The traversal generates one invocation of the visit method for each edge in
the graph. We call each method invocation an operation. The receiver of each
visit operation is the node to traverse. Each visit operation takes as a pa-
rameter p the value of the instance variable val of the node that points to the
receiver. The visit operation �rst adds p into the running sum stored in the
receiver's sum instance variable. It then checks the receiver's mark instance vari-
able to see if the traversal has already visited the receiver. If not, the operation
marks the receiver, then recursively invokes the visit method for all of the
nodes that the receiver points to.

The way to parallelize the traversal is to execute the two recursive visit op-
erations concurrently. But this parallelization may violate the data dependences.



class graph {

boolean mark;

int val, sum;

graph *left; graph *right;

};

graph::visit(int p) {

graph *l = left;

graph *r = right;

int v = val;

sum = sum + p;

if (!mark) {

mark = TRUE;

if (l != NULL) l->visit(v);

if (r != NULL) r->visit(v);

}

}

class graph {

lock mutex;

boolean mark;

int val, sum;

graph *left; graph *right;

};

graph::visit(int s) {

this->parallel_visit(s);

wait();

}

graph::parallel_visit(int p) {

mutex.acquire();

graph *l = left;

graph *r = right;

int v = val;

sum = sum + p;

if (!mark) {

mark = TRUE;

mutex.release();

if (l != NULL)

spawn(l->parallel_visit(v));

if (r != NULL)

spawn(r->parallel_visit(v));

} else {

mutex.release();

}

}

Fig. 1. Serial Graph Traversal Fig. 2. Parallel Graph Traversal

The serial computation executes all of the accesses generated by the left traversal
before all of the accesses generated by the right traversal. If the two traversals
visit the same node, in the parallel execution the right traversal may visit the
node before the left traversal, changing the order of reads and writes to that
node. This violation of the data dependences may generate cascading changes
in the overall execution of the computation. Because of the marking algorithm,
a node only executes the recursive calls the �rst time it is visited. If the right
traversal reaches a node before the left traversal, the parallel execution may also
change the order in which the overall traversal is generated.

In fact, none of these changes a�ects the overall result of the computation. It
is possible to automatically parallelize the computation even though the resulting
parallel program may generate computations that di�er substantially from the
original serial computation. The key property that enables the parallelization is
that the parallel computation generates the same set of visit operations as the
serial computation and the generated visit operations can execute in any order
without a�ecting the overall behavior of the traversal.



Given this commutativity information, the compiler can automatically gen-
erate the parallel visit method in Figure 2. The top level visit method �rst
invokes the parallel visit method, then invokes the wait construct, which
blocks until the entire parallel computation completes. The parallel visit

method executes the recursive calls concurrently using the spawn construct,
which creates a new task for the execution of each method invocation. The
compiler also augments the graph data structure with a mutual exclusion lock
mutex. The parallel visit method uses this lock to ensure that all of its in-
vocations execute atomically.

3 The Basic Approach

Commutativity analysis is designed for programs written using a pure object-
based paradigm. Such programs structure the computation as a sequence of
operations on objects. Each operation consists of a receiver object, an operation
name and several parameters. Each operation name identi�es a method that
de�nes the behavior of the operation; when the operation executes, it executes
the code in that method. Each object implements its state using a set of instance
variables. When an operation executes it can recursively invoke other operations
and/or use primitive operators (such as addition and multiplication) to perform
computations involving the parameters and the instance variables of the receiver.

Commutativity analysis is designed to work with separable methods, or meth-
ods whose execution can be decomposed into an object section and an invocation
section. The object section performs all accesses to the receiver. The invocation
section invokes other operations and does not access the receiver. It is of course
possible for local variables to carry values computed in the object section into
the invocation section, and both sections can access the parameters. Separability
imposes no expressibility limitations | although the current compiler does not
do so, it is possible to automatically convert any method into a collection of
separable methods via the introduction of auxiliary methods.

The following conditions, which the compiler can use to test if two operations
A and B commute, form the foundation of commutativity analysis.

1. (Instance Variables) The new value of each instance variable of the re-
ceiver objects of A and B must be the same after the execution of the object
section of A followed by the object section of B as after the execution of the
object section of B followed by the object section of A.

2. (Invoked Operations) The multiset of operations directly invoked by ei-
ther A or B under the execution order A followed by B must be the same
as the multiset of operations directly invoked by either A or B under the
execution order B followed by A. 1

Note that these conditions do not deal with the entire recursively invoked com-
putation that each operation generates | they only deal with the object and

1 Two operations are the same if they execute the same method and have the same
parameters.



invocation sections of the two operations. Furthermore, they are not designed to
test that the entire computations of the two operations commute. They only test
that the object sections of the two operations commute and that the operations
together invoke the same multiset of operations regardless of the order in which
they execute. As we argue below, if all pairs of operations in the computation
satisfy the conditions, then all parallel executions generate the same result as
the serial execution.

The instance variables condition ensures that if the parallel execution invokes
the same multiset of operations as the serial execution, the values of the instance
variables will be the same at the end of the parallel execution as at the end of
the serial execution. The basic reasoning is that for each object, the parallel
execution will execute the object sections of the operations on that object in
some arbitrary order. The instance variables condition ensures that all orders
yield the same �nal result.

The invoked operations condition provides the foundation for the application
of the instance variables condition: it ensures that all parallel executions invoke
the same multiset of operations (and therefore execute the same object sections)
as the serial execution.

Both commutativity testing conditions are trivially satis�ed if the two oper-
ations have di�erent receivers | in this case their executions are independent
because they access disjoint pieces of data. We therefore focus on the case when
the two operations have the same receiver.

It is possible to determine if each of the receiver's instance variables has
the same new value in both execution orders by analyzing the invoked methods
to extract two symbolic expressions. One of the symbolic expressions denotes
the new value of the instance variable under the execution order A followed by
B. The other denotes the new value under the execution order B followed by A.
Given these two expressions, a compiler may be able to use algebraic reasoning to
discover that they denote the same value. The compiler uses a similar approach
to determine if A and B together invoke the same multiset of operations in both
execution orders.

To use the commutativity testing conditions, the compiler �rst computes a
conservative approximation to the set of methods invoked as a result of execut-
ing a given computation. The compiler then applies the commutativity testing
conditions to all pairs of potentially invoked methods that may have the same
receiver. If all of the pairs commute, the compiler can legally generate parallel
code.

4 Formal Treatment

We next provide a formal treatment of how commutativity enables parallel exe-
cution. We �rst present a formal model of computation for separable operations.
We de�ne parallel and serial execution in this model, and de�ne what it means
for two operations to commute. The key theorem establishes that if all of the



operations in the parallel executions commute, then all parallel executions are
equivalent to the serial execution.

4.1 The Model of Computation

We next describe a formal model of computation for separable programs. We
assume a set of objects r; o 2 O, a set of constants c2C� O, a set of instance
variable names v 2 IV and a set of operation names op 2 OP. The operational
semantics uses several functions. We model instance variable values with func-
tions i : I = IV ! O. We say that an object r is in state i if the value of
each instance variable v of r is i(v). We model object memories with functions
m : M = O ! I . We also have operations a 2 A = O � OP � O, and write
an element a in the form r->op(o). Each operation has a receiver r, an opera-
tion name op and a parameter o. To simplify the presentation we assume that
each operation takes only one parameter, but the framework generalizes in a
straightforward way to include operations with multiple parameters.

We next describe how we model computation. The execution of each invoked
operation �rst updates the receiver, then invokes several other operations. We
model the e�ect on the receiver with a receiver e�ect function R : A � I ! I .
R(r->op(o); i) is the new state of r when operation r->op(o) executes with the
receiver r in state i; it models the e�ect of the operation's object section on the
receiver.

We model the invoked operations using sequences s 2 S = seq(A) of the form
a1 � � � � � ak. � is the empty sequence, and � � s = s � � = s. We use an invoked
operation function N : A � I ! seq(A) to model the sequence of operations
invoked as a result of executing an operation. N(r->op(o); i) is the sequence of
operations directly invoked when r->op(o) executes with the receiver r in state
i; it models the multiset of operations invoked in the invocation section of the
operation.

The serial operational semantics of the program uses a transition function
! on serial states hm; si 2 M � seq(A), where m is the current object memory
and s is the sequence of operations left to invoke.! models the execution of the
next operation in s. As De�nition 1 shows,! updates the memory to reect the
new state of the receiver of the executed operation. It also removes the executed
operation from the current sequence of operations left to invoke and prepends
the multiset of operations that the executed operation invokes. The operations
therefore execute in the standard depth-�rst execution order. Strictly speaking,
! depends on R and N , but we do not represent this dependence explicitly as
the correct R and N are always obvious from context.

De�nition 1. ! is the function on M � seq(A) de�ned by:

m0 = m[r 7! R(r->op(o);m(r))]; s0 = N(r->op(o);m(r)) � s

hm; r->op(o) � si ! hm0; s0i

The states hm; pi in the parallel operational semantics are similar to the
states in the serial operational semantics, but have a multiset p, rather than a



sequence s, of operations left to invoke. Such multisets p 2 mst(A) are of the form
fa1g]� � �]fakg. We use the sequence to multiset function s2p : seq(A) ! mst(A)
de�ned by s2p(a1 � � � � � ak) = fa1g ] � � � ] fakg to map sequences of operations
into the corresponding multisets.

We model parallel execution by generating all possible interleavings of the
execution of the operations. In the parallel execution any of the current op-
erations may execute next, with each operation taking the current state to a
potentially di�erent state than the other operations. The parallel operational
semantics therefore models execution using a transition relation ) rather than
a transition function. As the following de�nition illustrates, ) relates a state
to all of the states reachable via the execution of any of the current multiset of
operations left to invoke. The de�nition of) completes the semantic framework
required to precisely state when two operations commute.

De�nition 2. ) is the smallest relation 2 onM�mst(A) satisfying the following
condition:

hm; r->op(o)i ! hm0; s0i; p0 = s2p(s0) ] p

hm; fr->op(o)g ] pi ) hm0; p0i

For two operations to commute, they must leave their receivers in identical
states and invoke the same multiset of operations regardless of the order in which
they execute.

De�nition 3. r1->op1(o1) and r2->op2(o2) commute in m if
hm; fr1->op1(o1)gi ) hm1; p1i and hm1; fr2->op2(o2)gi ) hm12; p12i and
hm; fr2->op2(o2)gi ) hm2; p2i and hm2; fr1->op1(o1)gi ) hm21; p21i
implies m12 = m21 and p1 ] p12 = p2 ] p21

De�nition 4. r1->op1(o1) and r2->op2(o2) commute if 8m : r1->op1(o1) and
r2->op2(o2) commute in m.

Theorem5. If r1 6= r2 then r1->op1(o1) and r2->op2(o2) commute.

Proof Sketch: Intuitively, if the receivers are di�erent, the operations are in-
dependent because they access disjoint pieces of data.

4.2 Correspondence Between Parallel and Serial Semantics

We next present several lemmas that characterize the relationship between the
parallel and serial operational semantics. Lemma 6 says that for each partial
serial execution, there exists a partial parallel execution that generates an equiv-
alent state.

Lemma6.
If hm; r->op(o)i ! � � � ! hm0; si then hm; fr->op(o)gi ) � � � ) hm0; s2p(s)i.

2 Under the subset ordering on relations considered as sets of pairs de�ned as follows.
Consider two relations )1;)2� (M �mst(A))� (M �mst(A)).)1 is less than)2

if )1�)2.



Proof Sketch: At each step the parallel execution may execute the same oper-
ation as the serial execution.

We next establish the impact that commutativity has on the di�erent par-
allel executions. Lemma 8 states that if all of the invoked operations in given
computation commute and one of the parallel executions terminates, then all
parallel executions terminate with the same memory. This lemma uses the func-
tion gen :M �A! 2A, which tells which operations can be invoked as a result
of invoking a given operation.

De�nition 7. gen(m; r->op(o)) = [fp : hm; fr->op(o)gi ) � � � ) hm0; pig

Lemma8. If 8r1->op1(o1); r2->op2(o2) 2 gen(m; r->op(o)) : r1->op1(o1) and
r2->op2(o2) commute, then hm; fr->op(o)gi ) � � � ) hm1; ;i implies

{ not hm; fr->op(o)gi ) � � � (i.e. there is no in�nite parallel execution),
and

{ hm; fr->op(o)gi ) � � � ) hm2; ;i implies m1 = m2

Proof Sketch: If all of the invoked operations commute then the transition
system is conuent, which guarantees deterministic execution [3].

Lemma 9 characterizes the situation when the computation may not ter-
minate. It says that if all of the operations invoked in the parallel executions
commute, then it is possible to take any two partial parallel executions and
extend them to identical states.

Lemma9. If 8r1->op1(o1); r2->op2(o2) 2 gen(m; r->op(o)) : r1->op1(o1) and
r2->op2(o2) commute, then hm; fr->op(o)gi ) � � � ) hm1; p1i and
hm; fr->op(o)gi ) � � � ) hm2; p2i implies
9m0 2M;p 2 mst(A) : hm1; p1i ) � � � ) hm0; pi and hm2; p2i ) � � � ) hm0; pi

Proof Sketch: If all of the invoked operations commute then the transition
system is conuent, which guarantees deterministic execution [3].

An immediate corollary of these two lemmas is that if the serial computation
terminates, then all parallel computations terminate with identical memories.
Conversely, if a parallel computation terminates, then the serial computation
also terminates with an identical memory.

5 Analysis

We have developed a formal semantics that, given a program, de�nes the receiver
e�ect and invoked operation functions for that program [6]. We have also devel-
oped a static analysis algorithm that analyzes pairs of methods to determine
if they meet the commutativity testing conditions in Section 3. The foundation
of this analysis algorithm is symbolic execution [4]. Symbolic execution simply
executes the methods, computing with expressions instead of values. It main-
tains a set of bindings that map variables to the expressions that denote their



values and updates the bindings as it executes the methods. To test if the ex-
ecutions of two methods commute, the compiler �rst uses symbolic execution
to extract expressions that denote the new values of the instance variables and
the multiset of invoked operations for both execution orders. It then simpli�es
the expressions and compares corresponding expressions for equality. If the ex-
pressions denote the same value, the operations commute. We have proved a
correspondence between the static analysis algorithm and the formal semantics,
and used the correspondence to prove that the algorithms used in the compiler
correctly identify parallelizable computations [6].

6 Experimental Results

We have implemented a prototype parallelizing compiler that uses commutativ-
ity analysis as its basic analysis technique. The compiler also uses several other
analysis techniques to extend the model of computation signi�cantly beyond the
basic model of computation presented in Section 3 [5].

We used the compiler to automatically parallelize two applications: the Barnes-
Hut hierarchical N-body code [2] and Water, which evaluates forces and poten-
tials in a system of water molecules in the liquid state. We briey present several
performance results; we provide a more complete description of the applications
and the experimental methodology elsewhere [5].

Figure 3 presents the speedup curve for the Barnes-Hut on two input data
sets; this graph plots the running time of the sequential version running with no
parallelization overhead divided by the running time of the automatically parallel
version as a function of the number of processors executing the parallel compu-
tation. The primary limiting factor on the speedup is the fact that the compiler
does not parallelize one of the phases of the computation; as the number of
processors grows that phase becomes the limiting factor on the performance [5].

Figure 4 presents the speedup curve forWater running on two input data sets.
The limiting factor on the speedup is contention for shared objects updated by
multiple operations [5].

7 Conclusion

Existing parallelizing compilers all preserve the data dependences of the origi-
nal serial program. We believe that this strategy is too conservative: compilers
must recognize and exploit commuting operations if they are to e�ectively par-
allelize a range of applications. This paper presents the semantic foundations of
commutativity analysis and shows that the basic analysis technique is sound. It
also presents experimental results from two complete scienti�c applications that
were successfully and automatically parallelized by a prototype compiler that
uses commutativity analysis as its basic analysis technique. Both applications
exhibit respectable parallel performance.
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Fig. 3. Speedup for Barnes-Hut
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