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Abstract. Pipa is a behavioral interface specification language (BISL)
tailored to AspectJ, an aspect-oriented programming language. Pipa is
a simple and practical extension to the Java Modeling Language (JML),
a BISL for Java. Pipa uses the same basic approach as JML to specify
AspectJ classes and interfaces, and extends JML, with just a few new
constructs, to specify AspectJ aspects. Pipa also supports aspect speci-
fication inheritance and crosscutting. This paper discusses the goals and
overall approach of Pipa. It also provides several examples of Pipa spec-
ifications and discusses how to transform an AspectJ program together
with its Pipa specification into a corresponding Java program and JML
specification. The goal is to facilitate the use of existing JML-based tools
to verify AspectJ programs.

1 Introduction

Aspect-oriented programming (AOP) has been proposed as a technique for im-
proving the separation of concerns in software design and implementation [2, 13,
17, 19]. AOP provides explicit mechanisms for capturing the structure of cross-
cutting aspects of the computation such as exception handling, synchronization,
performance optimizations, and resource sharing. Because these aspects cross-
cut the dominant problem decomposition, they are usually difficult to express
cleanly using standard languages and structuring techniques. AOP can eliminate
the code tangling often associated with the use of such standard languages and
techniques, making the program easier to develop, maintain, and evolve.

The field of AOP has, so far, focused primarily on problem analysis, language
design, and implementation. The specification and verification of aspect-oriented
programs has received comparatively little attention.

To formally verify aspect-oriented programs, we must have some means to
formally specify the properties of aspect-oriented programs. Note that, because
AOP introduces new concepts such as join points, advice, introduction, and
aspects, existing formal specification languages can not be directly applied to
??
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AOP languages. This motivates us to design a formal specification language
that is appropriate for specifying programs written in AOP languages.

Instead of designing a generic specification language for AOP, we choose in-
stead to design a behavioral interface specification language (BISL) tailored to
AspectJ, an aspect-oriented extension to Java [14]. A behavioral interface spec-
ification describes both the details of a module’s interface with clients and its
behavior from the client’s point of view [16]. By using a BISL, we are able to
formally specify both the behavior and the exact interface of AspectJ programs’
modules, which is an essential step towards the formal verification of these mod-
ules.

Our BISL for AspectJ is called Pipa, which is a simple and practical extension
to Java Modeling Language (JML) [16], a widely accepted BISL for Java. Pipa
uses the same basic approach as JML to specify AspectJ classes and interfaces,
and extends JML, with just a few new constructs, to specify AspectJ aspects.
Pipa also supports aspect specification inheritance and crosscutting. Pipa pro-
vides annotations to specify AspectJ programs with pre- and postconditions,
class invariants, and aspect invariants. These annotations enable both dynamic
analysis in support of activities such as debugging and testing and static analysis
in support of the formal verification of properties of AspectJ programs. Static
analysis activities could verify that the code of advice of an aspect correctly im-
plements its specification, the specification of advice in an aspect is compatible
with the specification of the method in a class that the advice advises, and the
correctness of the aspect weaving process.

The key to the verification process is to develop a transformation tool that
automatically transforms an AspectJ program, together with its Pipa specifica-
tion, into a corresponding Java program and JML specification. By doing so,
some JML-based checking and verification tools [16, 6, 10] can be used directly
to check and verify AspectJ programs.

In this paper, we discuss the goals of Pipa and its overall specification ap-
proach. We also provide examples of how to use Pipa to specify AspectJ aspects,
and discuss how to transform an AspectJ program together with its Pipa spec-
ification into a corresponding Java program and JML specification, which is a
crucial step towards the utilization of existing JML-based tools to verify AspectJ
programs.

The rest of the paper is organized as follows. Section 2 presents the design
rationale for Pipa. Section 3 briefly introduces the Java Modeling Language.
Section 4 uses some examples to show how AspectJ aspects are specified in Pipa.
Section 5 discusses the issues about specification inheritance and crosscutting.
Section 6 discusses how to transform an AspectJ program together with its Pipa
specification into a standard Java program and JML specification. Section 7
discusses related work; we conclude in Section 8.

2 Design Rationale

Our purpose is to understand how to formally specify and verify aspect-oriented
programs. Several questions focus our investigation. First, what is an aspect



invariant, and how would we specify it? How would one specify aspects that
contain around advice which may alter the return value of a method in the
base code? What is the contract checking semantics between an aspect and
the base code? How would one verify that the behavior of an aspect does not
violate the desired functionality of the base code? How would one verify that
aspects whose advice affects the behavior of base code still provide an acceptable
semantics according to the specification of the base code? How would one verify
the correctness of a woven program after weaving the aspect and base code ?

Designing Pipa is therefore only a part of our proposed activities. We must
also develop techniques and tools to support the formal specification and verifica-
tion of AspectJ programs augmented with Pipa specifications. We have therefore
chosen to design Pipa as a compatible extension to JML to (1) facilitate its adop-
tion by current JML users, and (2) facilitate the adoption of existing JML-based
tools to check AspectJ programs. JML is an especially appropriate base for the
Pipa design for two reasons. First, AspectJ is a seamless extension to Java for
implementing crosscutting concerns, and JML is a BISL specially designed for
Java. By structuring Pipa as an extension to JML, we can focus our attention
on the new issues associated with the use of aspects. Second, (JML has efficient
tool support for both static and dynamic checking of Java programs) if we can
transform an AspectJ program together with its Pipa specification into a cor-
responding Java program and JML specification, we can use JML-based tools
directly to verify AspectJ programs. Based on these considerations, we keep the
following issues in mind to make Pipa as compatible with JML as possible.

• Each legal JML specification for Java should also be a legal Pipa specification
for AspectJ.
• Specifying AspectJ programs with Pipa should feel like a natural extension

of specifying Java programs with JML.
• It should be possible to extend existing JML-based tools (such as static

checking tools, run-time assertion checking tools, documentation tools, and
design tools) to support Pipa in a natural way.
• The Pipa specifications themselves should be strongly connected to the As-

pectJ code, as JML specifications are connected to Java code.

Like JML, Pipa specifications are also expressed as Javadoc-style comments
in AspectJ interface definitions, enclosed between /** and */. Pipa therefore
permits the specification to be embedded in regular AspectJ files.

To focus on the key ideas of Pipa, in this paper we do not consider the
specification of AspectJ classes and interfaces. These classes and interfaces can
be specified in Pipa in a similar way as JML [16]. Moreover, we only consider join
points related to method and constructor calls, and introductions that introduce
members such as methods and constructors.

3 The Java Modeling Language

The Java Modeling Language (JML) [16] is a formal BISL tailored to the Java
programming language [7]. JML allows assertions (pre- and postconditions and



class invariants) to be specified for Java classes and interfaces. JML adopted
the model-based approach of Larch [8] by supporting specification-only model
fields. These fields describe abstractly the value of objects and are used only
for specification purposes. The predicates in JML are written using regular Java
expressions extended with logical operators and universal and existential quan-
tifiers.

JML specifications are expressed as special comments in Java interface def-
initions, following //@ or enclosed between /*@ and */. JML also permits the
specification to be embedded in regular Java files. In addition, JML specifica-
tions can also be expressed as Javadoc-style comments, that is, enclosed between
/** and */.

JML supports specifying a class at both the method and the class level.
These two specifications together form the complete behavioral specification for
the class. For example, the following shows a simple method-level specification:

/**@ public normal_behavior
@ requires x >= MIN_X && x <= MAX_X;
@ ensures true; */

public void moveX(int x) { ... }

The specification states that if a precondition (represented by a requires
clause) x >= MIN_X && x <= MAX_X holds at the call of a public method, the
method terminates normally, i.e., does not throw an exception, and the post-
condition (represented by an ensures clause) true is satisfied at the end of the
method call. There is a variation for the normal_behavior specification, i.e., a
behavior specification, which can be used to specify the conditions under which
a method may, may not, or must throw an exception.

JML also provides class-level specifications with additional clauses such as
invariant, constraint, and model. A model clause allows the declaration of so-
called model variables which are variables that exist only within a specification.
Such variables are often used to refer to the internal state of an object. An
invariant clause in JML declares those properties that are true in all publicly
visible, reachable states of an object, i.e., for each state that is outside of a
public method’s execution. An invariant is supposed to be established by the
class constructors and to be preserved by each (public) method. A constraint
clause is used to specify how values may change between earlier and later states,
such as a method’s pre-state and its post-state.

In addition, a specification in JML may be composed of several cases sepa-
rated by the keyword also; which states that when the precondition of one case
holds, the rest of that case’s specification must be satisfied. JML also supports
specification inheritance. A subtype inherits the specifications from its super-
type’s public and protected members (i.e., fields and methods), as well as its
invariants and history constraints as additional specification cases.

4 Aspect Specifications

In AspectJ, an aspect is a modular unit for implementing crosscutting concerns.
Its definition is similar to a Java class, and can contain methods, fields, and



initializers. Pointcuts and advice support the implementation of crosscutting
aspects. Pipa can specify an aspect at both the module and the aspect level. Pipa
uses module-level specifications to specify the behavior of individual modules such
as advice, introduction, and methods in an aspect, and aspect-level specifications
to specify the global properties of the aspect as a whole. In this section, we show
how advice and introduction can be specified using Pipa; method specification in
Pipa is the same as in JML. Through this paper, we introduce the specification
approach of Pipa with the use of an example AspectJ program (taken from [1]
with slight modifications), which consists of two classes Point and Line (both
shown in Figure 1) and several aspects.

class Point { class Line {
int x, y; private Point p1, p2;
/**@ model instance int x_Mdl, y_Mdl; */ /**@ model instance Point p1_Mdl, p2_Mdl; */

/**@ depends x_Mdl <- x; */ /**@ private depends p1_Mdl <- p1; */
/**@ represents x_Mdl <- x; */ /**@ private represents p1_Mdl <- p1; */

/**@ depends y_Mdl <- y; */ /**@ private depends p2_Mdl <- p2; */
/**@ represents y_Mdl <- y; */ /**@ private represents p2_Mdl <- p2; */

/**@ public behavior /**@ public behavior
@ assignable x_Mdl; @ assignable p1_Mdl;
@ ensures x_Mdl == x; @ ensures p1_Mdl == p1;
@ signals (Exception z) false; */ @ signals (Exception z) false; */

public void setX(int x) { public void setP1(Point p1) {
this.x = x; this.p1 = p1;

} }
/**@ public behavior /**@ public behavior

@ assignable y_Mdl; @ assignable p2_Mdl;
@ ensures y_Mdl == y; @ ensures p2_Mdl == p2;
@ signals (Exception z) false; */ @ signals (Exception z) false; */

public void setY(int y) { public void setP2(Point p2) {
this.y = y; this.p2 = p2;

} }
} }

Fig.1. Two classes Point and Line with their Pipa specifications.

4.1 Advice Specifications

Advice defines pieces of code in an aspect that should be executed when a
pointcut is reached during the execution of a program. AspectJ provides three
kinds of advice, that is, before, after, and around advice [1]. The most significant
feature of advice is that it can dynamically change the behavior of a class it
advises, and therefore implements behavioral crosscutting.

In Pipa, the specification of a piece of advice is similar to that of a method in
JML: the advice is annotated with preconditions, postconditions, and frame con-
ditions; these are declared, respectively, with requires, ensures, and modifies
clauses. These preconditions, postconditions, and frame conditions together form
the specification of the advice, which can be used to verify the code of the advice.

In contrast to the pre- and postcondition of a method, which are associated
with method call and return, the pre- and postcondition of advice is defined
in terms of the principle of control flow transferring [5]. This is because each
piece of advice in AspectJ is automatically woven into the method(s) it advises
by a compiler (called ajc) during the aspect weaving process. Advice therefore



executes in response to certain program actions, instead of being directly invoked
like a method. From this viewpoint, the pre- and postcondition of a piece of
advice can be defined as follows:

• A precondition for a piece of advice is an assertion that states the properties
that must hold before the control flow is transferred into the advice.
• A postcondition for a piece of advice is an assertion that states the properties

that the advice must establish before the control flow returns to the advised
method.

Before Advice. Before advice executes when a join point is reached and before
the computation proceeds [1]. It may execute when computation reaches the
method call and before the actual method starts executing. In Pipa, the behavior
of before advice can be specified by a precondition, a postcondition, and a frame
condition.

As an example, consider the aspect PointBoundsPreCondition shown in
Figure 2 (a), which declares a piece of before advice that modifies the behav-
ior of the class Point’s setX method. The advice can be applied to each join
point where a target object of type Point receives a method call with signa-
ture void Point.setX(int). The args keyword denotes the argument of the
method call.

The specification of this before advice is associated with the advice code,
which contains two specification cases combined by a keyword also. For the
first case, a requires clause supplies a normal precondition, which must be
satisfied before control transfers to the advice from the method setX, and an
ensures clause provides a normal postcondition, which must hold before control
transfers to the advised method setX. The specification states that if the advice
is entered with x >= MIN_X and x <= MAX_X, control must flow to the advised
method setX. The implicit frame condition for this case means that no relevant
locations may be assigned when this precondition holds. The second specification
case states that if the advice is entered with x < MIN_X or x > MAX_X, the control
must return to the caller of the method setX by throwing a RuntimeException.

aspect PointBoundsPreCondition { aspect PointBoundsPostCondition {
/**@ public behavior /**@ public behavior

@ requires x >= MIN_X && x <= MAX_X; @ requires p.getX() == x;
@ ensures true; @ ensures true;
@ signals (Exception z) false; @ signals (Exception z) false;
@ also @ also
@ public behavior @ public behavior
@ requires x < MIN_X || x > MAX_X; @ requires p.getX() != x;
@ ensures false; @ ensures false;
@ signals (Exception z) @ signals (Exception z)
@ z instanceof RuntimeException; */ @ z instanceof RuntimeException; */

before(int x): call(void Point.setX(int)) after(Point p, int x): call(void Point.setX(int))
&& args(x) { && target(p) && args(x) {

if ( x < MIN_X || x > MAX_X ) if ( p.getX() != x )
throw new RuntimeException(); throw new RuntimeException();

} }
} }

(a) (b)

Fig.2. (a) A piece of before advice with its Pipa specification. (b) A piece of after

advice with its Pipa specification.



After Advice. After advice executes after the computation under the join
point terminates [1]. It may execute after the method body has executed, and
just before control is returned to the caller of the method. AspectJ supports
three kinds of after advice, that is, after, after-returning, and after-throwing
advice. After-returning advice executes just after each join point, but only when
the advised method returns normally. After-throwing advice executes just after
each join point, but only when the advised method throws an exception of type
Exception. after advice executes just after each join point, regardless of whether
the advised method returns normally or throws an exception. Like before advice
specifications, after advice specifications have a precondition, a postcondition,
and a frame condition.

As an example, consider the aspect PointBoundsPostCondition shown in
Figure 2 (b), which declares a piece of normal after advice that modifies the
behavior of class Point’s setX method. The after advice can be applied to each
join point where a target object of type Point receives a method call signa-
ture void Point.setX(int). The target and args keywords denote the target
object and the argument of the method call.

The Pipa specification for the after advice has two specification cases. The
first case states that if the advice is entered with p.getX() == x, the control
must flow to the advised method. The second case states that if the advice is
entered with p.getX() != x, control must return to the caller of the method
setX by throwing a RuntimeException.

Around Advice. Around advice executes when a join point is reached, and has
explicit control over whether the computation under the join point is allowed to
execute at all [1]. around advice differs from before advice and after advice in
the sense that it may execute code both before and after the method, and by
(optionally) executing the proceed call, which causes the original method under
the join point to execute. To specify around advice, Pipa borrows some ideas
from [5]. Pipa uses the proceeds predicate clause, taken from [5], to state that
when control flow proceeds to the original method body (or to any additional
advice if present), the around advice must make predicate hold. Pipa also uses
a keyword then, also taken from [5], to divide the specification of the around
advice into two parts: the before part, which is the portion of the specification
corresponding to the around advice before proceeding to the original method,
and the after part, which is the portion corresponding to the around advice after
returning from the original method but before returning to the original caller.
With these specification constructs, Pipa can specify around advice conveniently.

As an example, consider the aspect PointBoundsEnforcement shown in Fig-
ure 3, which declares a piece of around advice to modify the behavior of class
Point’s setX method. The around advice can be applied to each join point
where a target object of type Point receives a call to its method with signature
void Point.setX(int). The target and args keywords are used to assign the
name to the target object and the argument of the method call. The code of
around advice states that if x is greater than MIN_X and less than MAX_X, then



the statement proceed(p, x); causes control flow to transfer to the original
setX method body with the same arguments as the original invocation. Other-
wise, in the else clauses the advice calls the setX method on Point directly.

The specification of the around advice, which is associated with the ad-
vice code, has three specification cases combined using the keyword also. The
first case applies when x >= MIN_X and x <= MAX_X. The proceeds true clause
states that control flow can always proceed to the original method (setX) body.
The part following the then keyword states that after control flow transfers to
the original method (setX) body, it then returns to the original client.

The second case, following the first also keyword, concerns the case where
x < MIN_X. The proceeds false clause states that the control never proceeds
to the original method (setX) body. The part following the then keyword also
has a requires clause as a postcondition of the case. The assignable and
ensures clauses state that control may return to the original client with possible
mutation to p’s x_Mdl model field and with the given postcondition predicate
satisfied. The third case, following the second also keyword, which concerns the
case where x > MAX_X, can be explained similarly.

aspect PointBoundsEnforcement { @ public behavior
/**@ public behavior @ requires x > MAX_X;

@ requires x >= MIN_X && x <= MAX_X; @ proceeds false;
@ proceeds true; @ signals (Exception z) false;
@ signals (Exception z) false; @ then
@ then @ assignable p.x_Mdl;
@ ensures true; @ ensures p.x_Mdl == MAX_X;
@ signals (Exception z) false; @ signals (Exception z) false */
@ also void around(Point p, int x):
@ public behavior call(void Point.setX(int))
@ requires x < MIN_X; && target(p) && args(x) {
@ proceeds false if (x >= MIN_X && x <= MAX_X ) {
@ signals (Exception z) false; proceed(p, x);
@ then } else if (x < MIN_X) {
@ assignable p.x_Mdl; p.setX(MIN_X);
@ ensures p.x_Mdl == MIN_X; } else {
@ signals (Exception z) false p.setX(MAX_X);
@ also }

}

Fig.3. A piece of around advice with its Pipa specification.

4.2 Introduction Specifications

While a piece of advice can change the behavior of the classes it crosscuts, it can
not change the static type structure of the classes. AspectJ provides a form called
introduction that can operate over the static structure of type hierarchies [1]. An
aspect can use introduction to add new fields, constructors, or methods into given
classes or interfaces.

Pipa’s introduction specification mechanism is similar to its method specifica-
tion mechanism. Each piece of introduction may be annotated with preconditions
(declared by requires), postconditions (declared by ensures), and frame con-
ditions (declared by modifies). These preconditions, postconditions and frame
conditions together form the specification of the introduction, which can be used
to verify the code of the introduction.



As an example, consider the aspect Introduction shown in Figure 4, which
uses the new keyword to introduce a constructor into the Point and Line classes.
These two constructors have two int parameters and the same body. The Pipa
specification for the introduction is tailored to the code and states that if the
introduction is called with x >= 0, the call must return to the caller normally.

aspect Introduction {
/**@ public behavior

@ assignable x_Mdl;
@ requires x >= 0;
@ ensures x_Mdl == x;
@ signal (Exception z) false; */

public int (Point || Line).new(int x) {
this.x = x;

}
}

Fig.4. A piece of introduction with its Pipa specification.

4.3 Aspect Invariants

The previously discussed pre- and postconditions specify properties of individual
modules such as advice, introduction, and aspect methods. There is also a need,
however, to express global semantic or integrity properties for the aspect as
a whole. Aspect invariants express these kinds of properties. Such invariants
may involve only attributes, attributes and modules, or different modules in an
aspect. Informally, an invariant of an aspect is a set of assertions (i.e., invariant
clauses) that each instance of the aspect will satisfy at all times when the state
is observable. Pipa uses an invariant clause, borrowed from JML, to specify
aspect invariants.

As an example, consider the Buffering aspect shown in Figure 5, which
implements a buffering function. The first aspect invariant states that the value
of the aspect’s field counter must be greater than or equal to zero. The second
states that the aspect’s field buff is not null and the array it refers to has exactly
BUFF_SIZE (256) elements.

public aspect Buffering pertarget(target(FileOutputStream)) {
/**@ public invariant counter >= 0;

@ public invariant buff =! null && buff.length == BUFF_SIZE; */
private static final int BUFF_SIZE = 256;
int counter = 0;
byte[] buff = new byte[BUFF_SIZE];

pointcut writeByte(byte[] bytes):
void around(byte[] bytes): throws IOException: writeBytes(bytes) { }

}

Fig.5. An aspect Buffering with aspect invariants.

5 Aspect Specification Inheritance and Crosscutting

We next discuss aspect specification inheritance and crosscutting in Pipa.

5.1 Specification Inheritance

The inheritance rules in AspectJ are (1) an aspect can only extend an abstract
aspect; it can not extend a concrete aspect, (2) an aspect can extend a class,



and (3) an aspect can implement any number of interfaces. According to these
inheritance rules, we design some specification inheritance rules for Pipa as fol-
lows.

• A subaspect inherits the specifications of its superaspect’s public and pro-
tected members (fields, methods, advice, introductions, and pointcuts), as
well as the public and protected aspect invariants.
• A subaspect inherits the specifications of its superclass’s public and protected

members (fields and methods), as well as the public and protected class
invariants.
• A subaspect inherits the specifications of its superinterface’s public and pro-

tected members (fields and methods), as well as the public and protected
interface invariants.

These aspect inheritances can be thought of as textually copying the pub-
lic and protected specifications of the advice, introduction, or methods of an
aspect’s superaspects and superclasses and all interfaces that an aspect imple-
ments into the aspect’s specification and combining the specifications using also
keyword. By the semantics of advice, introduction, or method combining using
also, in addition to any explicitly specified behaviors, these behaviors must all
be satisfied by the advice, introduction, or method.

5.2 Specification Crosscutting

AspectJ supports both structural crosscutting (by means of introduction) and
behavioral crosscutting (by means of advice) to modify the type structure and
the behavior of classes an aspect crosscuts. Pipa should also be able to specify
these structural and behavioral crosscutting issues at specification level. To make
these possible, in the following we design some specification crosscutting rules
for Pipa.

• The specification of an aspect’s advice crosscuts the specifications of those
classes’ methods that the advice crosscuts (behavioral crosscutting).
• The specification of an aspect’s introduction crosscuts the specifications of

those classes that the introduction crosscuts (structural crosscutting).

These crosscutting rules ensure that an aspect specifies the structural and
behavioral crosscutting of the one or more classes it crosscuts. This crosscutting
can be thought of as syntactically (1) weaving the specification of a piece of
advice in an aspect into the specification of each advised method in a class or
different classes, and (2) weaving the specification of a piece of introduction
in an aspect into the specification of one or more classes augmented by the
introduction.

As an example of behavioral crosscutting, consider the aspect DisplayUpdating
shown in Figure 6, which modifies the behavior of methods in classes Point
and Line shown in Figure 1. DisplayUpdating declares a piece of after advice
that can be applied to each join point where a target object of type Point



receives a call to the method with signature either void Point.setX(int) or
void Point.setY(int). Also this after advice can be applied to each join point
where a target object of type Line receives a call to the method with either
signature void Line.setP1(Point) or signature void Line.setP2(Point). In
this case, the after advice in DisplayUpdating can affect the behavior of these
methods in Point and Line. The specification of the after advice therefore should
crosscut the classes Point and Line. This crosscutting can be thought of as syn-
tactically weaving the specification of the after advice in DisplayUpdating into
the specification of each advised method setX, setY, setP1, or setP2.

aspect DisplayUpdating {
pointcut move():

call(void Line.setP1(Point)) || call(void Line.setP2(Point)) ||
call(void Point.setX(int)) || call(void Point.setY(int))

after(): move() {
Display.update();

}
}

Fig.6. A piece of after advice that crosscuts two classes Point and Line.

As an example of structural crosscutting, consider the aspect Introduction
shown in Figure 4, which publicly introduces two methods, one in class Point
and another in class Line. According to the specification crosscutting, the Pipa
specification for the introduction should be woven into the specification of both
class Point and class Line.

6 Transforming Pipa Specifications Back to JML

One important reason to design Pipa based on JML is that we hope to make
use of existing JML-based tools. To make this possible, we propose to develop
a tool to automatically transform an AspectJ program together with its Pipa
specification into a standard Java program and JML specification. To this end,
we propose to modify the AspectJ compiler (ajc) to retain the comments as-
sociated with advice and aspect introduction during the weaving process. ajc
supports Javadoc style and can retain comments of classes and interfaces dur-
ing the weaving process. But this process does not retain comments of advice
and introduction. By modifying the ajc, we can make it retain the comments of
advice and introduction as well, with the resulting woven program a standard
Java program with JML specifications. Therefore, after the transformation, all
JML-based tools can be applied to AspectJ programs. However, when perform-
ing such transformations, we must find a way to handle certain problems such
as those listed below.

The first problem is how to handle aspect invariants. A Pipa specification of a
piece of advice or introduction can be directly transformed to a JML specification
using a modified AspectJ weaver. However, the role of an aspect invariant in the
weaving process is less clear, since aspect invariants may crosscut many different
classes and should hold for all join points relevant to the advice. One conservative
solution to this problem is to weave the aspect invariant into the class invariant
of every class that the aspect crosscuts.



The second problem is how to handle the problem of specification weaving
when weaving the aspects into classes. Several cases that are related to specifica-
tion weaving must be considered because different advice may lead to different
weaving rules. For example, a piece of after-returning advice, which is only valid
for the case when the advised method returns normally, should not be woven
into the specification of the advised method when the method returns by throw-
ing an exception. Moreover, around advice that contains a proceed() construct
also requires similar handling. However, for before advice or normal after advice,
one can simply weave the specification into each method it advises with no ad-
ditional adjustment. A transformation tool must correctly handle these different
cases during the weaving process.

7 Related Work

Clifton and Leavens’ [5] work on modular aspect-oriented reasoning also requires
the specification of aspect advice. We see our work as differing from theirs in
several ways. First, Pipa has a different goal. While the purpose of the Clifton
and Leavens’ work is to support modular aspect-oriented reasoning by extending
AspectJ with new language constructs, Pipa is intended to allow the full specifi-
cation of AspectJ programs. Second, Pipa can specify the global properties of an
aspect using aspect invariants that are different from pre- and postconditions for
individual modules in the aspect. Third, Pipa supports aspect specification in-
heritance, and more importantly, Pipa supports aspect specification crosscutting,
either structurally or behaviorally. Clifton and Leavens [5] focus on specifying
advice in an aspect, not on issues about how to specify introduction, aspect
invariant, aspect specification inheritance and crosscutting.

There has been significant work in the field of generic specification languages
in general and BISLs in particular. Widely used generic specification languages
include Z [21], VDM [11], and Larch [8]. Several BISLs that are based on Larch
have been designed, each tailored to a specific programming language. Examples
include LCL (for C) [8], LM3 (for Modula-3) [8], and Larch/C++ [4].

In addition to the Larch family, Meyer’s work on the programming language
Eiffel has advanced the cause of applying formal methods to object-oriented
programs [18]. In Eiffel, unlike a Larch-style interface specification language, one
can use Boolean expressions to specify pre- and postconditions for operations on
abstract data types written in Eiffel, that is, program expressions can be used
in pre- and postconditions. In addition, in Eiffel one can use class invariants to
specify the global properties of instances of the class. On the other hand, several
projects have been carried out to support the principle of Design By Contract
(DBC), originally introduced by Meyer in Eiffel [18]. Examples include iContract
[15] and Jass [3].

Recently, the emergence of Java as a popular object-oriented programming
language has led to several BISLs designed for Java. Examples include JML
[16], ESC/Java [6], and AAL [12]. JML allows assertions to be specified for
Java classes and interfaces, and provide very expressive power to specify Java
modules (classes and interfaces). ESC/Java is a static checking tool for Java. It



can statically check for various errors in a Java program without executing the
program. The annotation language in ESC/Java is a subset of JML that can
be used to annotate Java code in various ways. AAL is an annotation language
designed for annotating and checking Java programs. Like JML, AAL supports
run-time assertion checking. AAL also supports full static checking for Java
programs similar to ESC/Java. AAL translates annotated Java programs into
Alloy [9], a simple first-order logic with relational operators, and uses Alloy’s
SAT solver-based automatic analysis technique to check Java programs. LOOP
[10] is a project dedicated to verify JavaCard programs. LOOP adopts JML as
its BISL for annotating Java modules and transforms annotated Java programs
into a theorem-prover, PVS [20], to formally verify JavaCard programs.

Although the languages mentioned above can be used to specify programs
written in various programming languages, they are not designed to specify
programs written in AOP languages such as AspectJ. In summary, Pipa is the
first BISL tailored to AspectJ that can be used to specify AspectJ programs. Pipa
is also unique in its use of aspect invariants to specify the whole properties of an
aspect, and in its supporting of aspect specification inheritance and crosscutting.

8 Concluding Remarks

In this paper we presented Pipa, a BISL tailored to AspectJ and discussed the
goals of Pipa and the overall specification approach. Pipa is a simple and prac-
tical extension to JML. Pipa uses extends JML, with just a few new constructs,
to specify AspectJ aspects. Pipa also supports aspect specification inheritance
and crosscutting. We present several examples of Pipa specifications, and discuss
how an AspectJ program together with its Pipa specification can be transformed
into a corresponding Java program and JML specification, which is a crucial step
towards the utilization of existing JML-based tools to verify AspectJ programs.

As future work, we would like to augment Pipa to support more kinds of
join points, for example joint points at field accesses and dynamic join points
such as cflow and cflowbelow. We also would like to refine our specification
framework for AspectJ and to implement a tool to automatically transform an
AspectJ program with Pipa specification into a corresponding Java program and
JML specification.
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Appendix: AspectJ

AspectJ [14] is a seamless aspect-oriented extension to Java by adding some
new concepts and associated constructs to Java. These concepts and associated
constructs are called join point, pointcut, advice, introduction, and aspect. We
briefly introduce them in the following.

Aspect is modular unit of crosscutting implementation in AspectJ. Each as-
pect encapsulates functionality that crosscuts other classes in a program. An
aspect is defined by aspect declaration, which has a similar form of class decla-
ration in Java. Similar to a class, an aspect can be instantiated and can contain
state and methods, and also may be specialized in its sub-aspects. An aspect
is then combined with the classes it crosscuts according to specifications given
within the aspect. An aspect can introduce methods, attributes, and interface
implementation declarations into types by using the introduction construct. In-
troduced members may be made visible to all classes and aspects (public intro-
duction) or only within the aspect (private introduction), allowing one to avoid
name conflicts by using pre-existing members. In addition to introduction, the
essential mechanism provided for composing an aspect with other classes is called
a join point. A join point is a well-defined point in the execution of a program,
such as a call to a method, an access to an attribute, an object initialization,
exception handler, etc. Sets of join points may be represented by pointcuts, im-
plying that such sets may crosscut the system. Pointcuts can be composed and
new pointcut designators can be defined according to these combinations. An as-
pect can specify advice that is used to define some code that should be executed
when a pointcut is reached. Advice is a method-like mechanism which consists
of code that is executed before, after, or around a pointcut. around advice exe-
cutes in place of the indicated pointcut, allowing a method to be replaced. As
a class, an aspect can also be declared as abstract, that means it can not be
instantiated. By default, a concrete aspect has only one instance exists for the
program execution. Also named pointcuts can be declared abstract within an
abstract aspect, allowing them to be given concrete definitions within concrete
sub-aspects, much as abstract methods are used.

An AspectJ program can be divided into two parts: base code part which
includes classes, interfaces, and other language constructs, and aspect code part
which includes aspects for modeling crosscutting concerns in the program. More-
over, any implementation of AspectJ is to ensure that the base and aspect code
run together in a properly coordinated fashion. Such a process is called aspect
weaving and involves making sure that applicable advice runs at the appropriate
join points. For detailed information about AspectJ, one can refer to [1].


