Parallel Synchronization-Free Approximate
Data Structure Construction

Martin Rinard, MIT CSAIL

Abstract

We present approximate data structures with construc-
tion algorithms that execute without synchronization.
The data races present in these algorithms may cause
them to drop inserted or appended elements. Neverthe-
less, the algorithms 1) do not crash and 2) may pro-
duce a data structure that is accurate enough for its
clients to use successfully. We advocate an approach
in which the approximate data structures are composed
of basic tree and array building blocks with associated
synchronization-free construction algorithms. This ap-
proach enables developers to reuse the construction al-
gorithms, which have been engineered to execute suc-
cessfully in parallel contexts despite the presence of
data races, without having to understand the details of
why they execute successfully.

We evaluate the end-to-end accuracy and perfor-
mance consequences of our approach by building a
space-subdivision tree for the Barnes-Hut /N-body sim-
ulation out of our presented tree and array building
blocks. The resulting approximate data structure con-
struction algorithm eliminates synchronization over-
head and anomalies such as excessive serialization and
deadlock. The algorithm exhibits good performance
(running 14 times faster on 16 cores than the sequen-
tial version) and good accuracy (the accuracy loss is
four orders of magnitude less than the accuracy gain as-
sociated with increasing the accuracy of the Barnes-Hut
center of mass approximation by 20%).

1. Introduction

Many computations (for example, many video and im-
age processing computations, modern internet search
and information retrieval, and many scientific compu-
tations) exhibit the flexibility to produce a range of ac-
ceptably accurate outputs. Researchers have exploited
this flexibility to develop techniques that profitably
trade off accuracy in return for increased performance,
reduced power consumption, or the ability to adapt to
changing conditions in the underlying computational
platform [4, 9, 13-16, 21, 22, 24, 28].

1.1 Approximate Data Structure Building Blocks

In this paper we shift the focus to the data struc-
tures that the computations manipulate — we present

synchronization-free parallel algorithms for building
approximate data structures. These algorithms work
with data structures composed of tree and array build-
ing blocks. Examples of such data structures include
search trees, array lists, hash tables, linked lists, and
space-subdivision trees. The algorithms insert elements
at the leaves of trees or append elements at the end of ar-
rays. Because they use only primitive reads and writes,
they execute without synchronization overhead or un-
desirable synchronization anomalies such as excessive
serialization or deadlock. Moreover, unlike much early
research in the field [12], the algorithms do not use
reads and writes to synthesize higher-level synchroniza-
tion constructs.

Approximation: Now, it may not be clear how to im-
plement correct data structure construction algorithms
without sychronization. Indeed, we do not attempt to do
so — the data races in our algorithms may drop inserted
elements and violate some of the natural data struc-
ture consistency properties. But these algorithms 1) do
not crash, 2) produce a data structure that is consistent
enough for its clients to use successfully, and 3) produce
a data structure that contains enough of the inserted el-
ements so that its clients can deliver acceptably accu-
rate outputs. In effect, we eliminate synchronization by
leveraging the end-to-end ability of the client to tolerate
some imprecision in the approximate data structure that
the algorithm produces.

Building Blocks: Our approximate data structure con-
struction algorithms have the advantage that they are,
essentially, standard sequential algorithms that have
been engineered to execute successfully without syn-
chronization in parallel contexts despite the presence
of data races. The reasons for this successful execu-
tion can be quite involved. We therefore advocate the
development of reusable data structure building blocks
with associated approximate construction algorithms.
Because these building blocks encapsulate the reason-
ing required to obtain successful synchronization-free
construction algorithms, developers can build their data
structures out of these building blocks and reuse the
construction algorithms without needing to understand
the details of why the algorithms operate successfully
without synchronization despite the presence of data
races.

1.2 Advantages and Disadvantages

Our unsynchronized approximate data structures are
standard, familiar sequential implementations that ex-
ecute successfully in parallel contexts. They are com-
pletely free of the complex and potentially confusing
synchronization primitives (for example, mutual exclu-
sion locks, atomic transactions, and wait-free updates)
that complicate the development of synchronized par-
allel code. Our unsynchronized approach can therefore
offer the following advantages:

¢ Enhanced Correctness and Trustworthiness: There
is no exposure to coding errors in complex synchro-
nization primitives or in the complex, intellectually
challenging parallel data structure implementations
that use them.

¢ Enhanced Portability: There is no reliance on spe-
cialized synchronization primitives that may not be
widely implemented across platforms.

¢ Simplicity and Ease of Development: There is no
need to learn, use, or rely on complex synchroniza-
tion primitives — our unsynchronized data struc-
tures use only standard read and write operations.

As a result, we anticipate that the simplicity, famil-
iarity, and transparency of our approach may make
synchronization-free approximate data structures easier
for developers to understand, trust, and use than their
complex, intimidating synchronized counterparts.

A potential disadvantage is that developers have been
repeatedly told that unsynchronized concurrent accesses
to shared data are dangerous. If developers internalize
this rigid, incomplete, but currently widespread percep-
tion, they may find unsynchronized data structures emo-
tionally difficult to accept even when they are the supe-
rior alternative for the task at hand.

1.3 Case Study

In general, we expect the acceptability of the approx-
imate data structures to depend on end-to-end effects
such as 1) how frequently the application’s data struc-
ture construction workload elicits interactions that drop
elements and 2) the effect that any dropped elements
have on the accuracy of the result that the applica-
tion produces. We evaluate the performance and accu-
racy consequences of using our building blocks for the
space-subdivision tree in the Barnes-Hut N-body com-
putation [1, 25]. This computation simulates a system
of N interacting bodies (such as molecules, stars, or
galaxies). At each step of the simulation, the computa-
tion computes the forces acting on each body, then uses
these forces to update the positions, velocities, and ac-
celerations of the bodies.

Instead of computing the force acting on each body
with the straightforward pairwise N2 algorithm, Barnes-

Hut instead inserts the IV bodies into a space-subdivision
tree, computes the center of mass at each node of the
tree, then uses the tree to compute the force acting on
each body. It approximates the combined forces from
multiple distant bodies as the force from the center of
mass of the distant bodies as stored in the root of the
subtree that includes these distant bodies. This approx-
imation reduces the complexity of the force computa-
tion algorithm from N? to N log N. We implement the
space-subdivision tree itself as a hybrid data structure
whose leaves use an array to store multiple inserted
bodies.

1.4 Evaluation Methodology

Approximate data structures are acceptable only if they
enable the client to operate acceptably. We therefore
propose a methodology that evaluates approximate data
structures in the context of a complete application. We
evaluate their acceptability by comparing their effects
with those of other approximate computing techniques
(such as changing application-specific accuracy param-
eters) that increase the accuracy. If the accuracy de-
creases from the approximate data structures are neg-
ligible in comparison with the obtained accuracy in-
creases, the approximate data structures are acceptable
in the context of the application.

1.5 Experimental Results

Because the approximate space-subdivision tree con-
struction algorithm is unsynchronized, it may produce
a tree that does not contain some of the inserted bodies.
The net effect is that the force computation algorithm
operates as if those bodies did not exist at that step. Our
results show that, in practice, less than 0.0003% of the
inserted bodies are dropped. The effect of these dropped
bodies on the overall accuracy of the computation is
negligible. Specifically, the effect on the computed body
positions is four orders of magnitude less than the effect
of increasing the accuracy of the center of mass approx-
imation in the force calcuation phase by 20%.

The unsynchronized algorithm exhibits good paral-
lel performance (on 16 cores, it runs over 14 times faster
than the sequential tree construction algorithm) and runs
over an order of magnitude faster than a version that
uses standard tree locking to eliminate dropped bodies.
It also runs 5% and 10% faster than sophisticated par-
allel implementations that use either fine-grained mu-
tual exclusion locks or compare and swap operations, in
combination with strategically placed retry operations,
to eliminate dropped bodies.

1.6 Scope

There are deep conceptual connections between approx-
imate data structures and techniques such as task skip-
ping [21], loop perforation [9, 16, 24], early phase ter-

mination [22], infinite loop exit [3, 11], reduction sam-
pling [28], and approximate parallel compilation [13,
17]. All of these techniques remove parts of the com-
putation to produce a perforated computation — i.e., a
computation with pieces missing. In the case of approx-
imate data structures, there is a cascade effect — remov-
ing synchronization drops inserted bodies from the tree,
which, in turn, has the effect of eliminating the dropped
bodies from the force computation.

Many successful perforations target computations
that combine multiple items to obtain a composite re-
sult — adding up numbers to obtain a sum, inserting el-
ements to obtain a space-subdivision tree. One potential
explanation for why applications tolerate perforation is
that the perforations exploit a redundancy inherent in
the multiple contributions. In effect, the original com-
putations were overengineered, perhaps because devel-
opers try to manage the cognitive complexity of devel-
oping complex software by conservatively producing
computations that they can easily see will produce a
(potentially overaccurate) result.

Tolerating some inaccuracy is a prerequisite for
the use of approximate data structures. Computations
that are already inherently approximate are therefore
promising candidates for approximate data structures.
Note that this is a broad and growing class — any
computation that processes noisy data from real-world
sensors, employs standard approximations such as dis-
cretization, or is designed to please a subjective hu-
man consumer (for example, search, entertainment, or
gaming applications), falls into this class. Applications
such as video or dynamic web page construction may
be especially promising — the results are immediately
consumed and the effect of any approximations move
quickly into the past and are forgotten. Traditional com-
putations such as relational databases or compilers, with
their hard notions of correctness, may be less promising
candidates.

In our experience, many developers view banking as
an application domain that does not tolerate impreci-
sion and is therefore not appropriate for approximate
data structures or algorithms. In practice, the integrity
of the banking system depends on periodic reconcili-
ations, which examine transactions, balance accounts,
and catch and correct any errors. Other operations can,
and do, exhibit errors. Approximations that occur infre-
quently (as is the case for the approximate data struc-
tures in this paper) and preserve the integrity of the rec-
onciliation process can therefore be completely appro-
priate in some banking operations. As this example il-
lustrates, approximate computing may be applicable in
a broader range of application domains than many re-
searchers and developers currently envision.

2. Data Structures

Approximate Tree: Our tree construction algorithm
works with trees that contain internal nodes and external
(leaf) nodes. Internal nodes reference other tree nodes;
external nodes reference one or more inserted elements.
To insert an element, the algorithm traverses the tree
from the root to find or create the external node into
which to insert the element. If the external node is full,
it creates a new internal node to take the place of the ex-
ternal node. It then divides the elements in the external
node into the new internal node and links the new inter-
nal node into the tree. Figure 1 presents a C++ template
that implements the insertion algorithm. Our Barnes-
Hut implementation uses instances of the internal
template to represent internal tree nodes and instances
of the 1ist template to represent external nodes (each
of which may reference up to M bodies).

There are many ways for parallel insertions to inter-
fere in ways that drop elements. For example, multiple
threads may encounter a NULL child, then start paral-
lel computations to build new external nodes to hold
the elements inserted in that location in the tree. As the
computations finish and link the external nodes into the
tree, they may overwrite references to previously linked
external nodes (dropping all of the elements in those
nodes).

Approximate Array List: Figure 2 presents a C++
template that implements an array list append algorithm.
We note that there are multiple opportunities for parallel
executions of the append operation to interfere in ways
that drop elements. For example, parallel executions of
lines 7 and 8 in Figure 2 may overwrite references to
concurrently appended elements.

Final Check: We view the tree insertion and array
append algorithms as composed of fine-grained updates,
each of which first performs a check to determine which
action to perform, next (in general) executes a sequence
of instructions that construct a new part of the data
structure, then executes one or more write instructions
to commit the update. We call the time between the
check and the commit the window of vulnerability —
during this time, state changes may interfere with the
atomicity of the check and the update.

We use a technique, final check, to shrink (but not
eliminate) the window of vulnerability. Just before the
commit, the final check performs part or all of the check
again to determine if it should still perform the update.
If not, the algorithm discards the action and retries the
insert or append. Redoing the null check at line 11 of
Figure 1 immediately before linking in the new node
at line 13 (and retrying the insert if another thread has
already linked another node) can reduce the number of
dropped nodes [18].

1: template <typename E, class T,
2: class I, int N, class X, typename P>
3:class internal : public T {

4: public: T *children[N];

5: void insert(E e, P p) {

6 int i;

7 T *t;

8 X *x;

9 i = index(e);

10: t = children[i];

11: if (t == NULL) {

12: x = new (p) X((I *) this, i, e, p);
13: children[i] = x;

14: 3} else if (t—>isInternal()) {

15: ((I *) t)->insert(e, p);

16: } else {
17: x = (X %) t;
18: if (!x->insert(e, p)) {

19: I *c = new (p) I((I *) this, i, p);
20: x->divide(c, p);

21: children[i] = (T *) c;

22: insert(e, p);

23: }

24: }

25: }

26: bool isInternal() { return true; }
27: virtual int index(E e) = 0;

28: ...

29:%};

30:template <typename E, class T,

31: class I, int N, class X, typename P>
32:class external : public T {

33: public:

34: bool isInternal() { return false; }
35: virtual void divide(I *t, P p) = 0;
36: virtual bool insert(E e, P p) = 0;
37 .

38:};

Figure 1. Internal Tree Template and Insert Algorithm

1:template <typename E, int M>
2:class list {

3: public: int next; E elements([M];
4: virtual bool append(E e) {

5 int i = next;

6: if (M <= i) return false;

7: elements[i] = e;

8: next = i + 1;

9: return true;
10: 3}

11: ...

12:};

Figure 2. Array List Template and Append Algorithm

Key Concepts: A strength of our approximate data
structures is that they are essentially standard sequential
data structures that have been engineered to avoid pit-
falls associated with closely related data structures that
are correct in sequential contexts but crash when exe-
cuted without synchronization in parallel contexts. Two
key structuring principles underly this engineering:

e Link At End: Some data structure updates link a
new leaf or subtree into the tree. Because our algo-
rithms link the new leaf or subtree into place only
after they fully initialize and construct it, parallel
threads only encounter fully constructed leaves or
subtrees that they can access without crashing.
Local Read, Check, and Index: One natural way
to code the append operation (Figure 2) reads next
(which references the next available array element)
three times: first to check if the array is full (line 6,
Figure 2), next to determine where to insert the item
(line 7, Figure 2), then again to increment next (line
8, Figure 2). If coded this way, the resulting data
races can cause out of bounds accesses that crash the
computation.

The append operation in Figure 2 avoids such data
races by reading next into a local variable at the start
of the operation (line 5, Figure 2), then using this lo-
cal variable for all checks, indexing, and update op-
erations. This technique eliminates out of bounds ac-
cesses even in the presence of data races associated
with unsynchronized parallel executions.

Applying the above structuring principles delivers
acceptable parallel implementations of other standard
building block data structures such as extensible ar-
rays [18]. The resulting templates are designed to work
together as components of hybrid data structures (such
as hash tables [18] and space subdivision trees [18]).

2.1 Acceptability Argument

Even though our approximate data structures may drop
inserted elements, they never crash and correctly pre-
serve key data structure consistency properties required
for clients to correctly traverse and retrieve elements
from the data structure. It is possible to formalize these
consistency properties and show that the data structures
satisfy them in all parallel executions [18]. We consider
each property in turn and provide an argument that each
update that may affect the property preserves the prop-
erty. Conceptually, the argument proceeds by induction
— we assume that the tree constructed to date satisfies
all the consistency properties, then argue that each tree
update preserves these properties.

In addition to these hard logical consistency proper-
ties, the tree must also contain enough body objects so
that the force computation produces a sufficiently accu-
rate result. We do not attempt to establish this property

by reasoning about all possible executions. Indeed, this
approach would fail, because some of the possible exe-
cutions violate this property.

We instead reason empirically by observing execu-
tions of the program. Specifically, we compare the re-
sults that the program produces when it uses our unsyn-
chronized data structures with results that we know to be
accurate, then use this comparison to evaluate the end-
to-end acceptability of the data structures in the context
of the Barnes-Hut computation.

2.2 Memory Consistency Models

When we reason about parallel executions, we assume
the executions take place on a parallel machine that
implements individual reads and writes atomically. We
also assume that writes become visible to other cores in
the order in which they are performed. The computa-
tional platform on which we run our experiments (Intel
Xeon E7340) implements a memory consistency model
that satisfies these constraints.

Under the C++11 standard, if conflicting memory ac-
cesses are not ordered by synchronization operations or
explicitly identified atomic read or write instructions,
the program is undefined. When using a compiler that
implements this standard, we would identify the writes
on lines 13 and 21, Figure 1 and lines 7 and 8, Fig-
ure 2 as atomic writes. We would also identify the reads
on line 10, Figure 1 and line 5, Figure 2 (as well as
any reads to fields in shared objects perfomed in other
methods executed during the parallel tree construction,
the index method, for example) as atomic reads. When
instructed to compile the program using an appropri-
ate weak memory consistency model, an appropriately
competent C++11 compiler should generate substan-
tially the same instruction stream with substantially the
same performance as our current implementation for the
Intel Xeon E7340 platform.

3. Experimental Results

We present results from a parallel Barnes-Hut compu-
tation that uses the algorithms described in Section 2
to build its space-subdivision tree. We implement the
computation in C++ using the pthreads threads pack-
age. At each step of the simulation each thread inserts a
block of N/T bodies into the tree, where N is the num-
ber of bodies and 7 is the number of parallel threads.

3.1 Barnes-Hut Space-Subdivision Tree

Barnes-Hut works with a hierarchical space-subdivision
tree. This tree contains bodies (the N bodies in the sim-
ulation), cells (each of which corresponds to a spatial
region within the space-subdivision tree), and leaves
(each of which stores a set of bodies that are located
within the same leaf region of the tree).

The regions are nested — each cell is divided into
eight octants. Each cell therefore contains eight refer-
ences to either a hierarchically nested cell or leaf, each
of which corresponds to one of the octants in the parent
cell’s region. We have instantiated the data structures in
Figures 1 and 2 to obtain an approximate Barnes-Hut
space-subdivision tree [18]. For comparison purposes,
we implemented several versions:

e TL (Tree Locking): This version locks each node in
the tree before it accesses the node. As it descends
the tree, it releases the lock on the parent and ac-
quires the lock on the child. Tree locking is a stan-
dard way to synchronize tree updates.
CAS (Compare And Swap): This version uses
compare and swap (CAS) instructions to make in-
dividual data structure updates execute atomically.
In Figure 1, the CAS at line 13 checks that ele-
ment children[i] is still NULL. The CAS at line
21 checks that children[i] is still equal to t. In
Figure 2 the CAS at line 7 checks that elements [i]
is still NULL. If a CAS fails, the version retries the
insertion.
Although this version still contains data races, it does
not drop bodies and produces the same result as the
TL version (the analysis required to verify that this
is the case is nontrivial).
UL (Update Locking:) This version uses fine-
grained locks to make updates execute atomically.
The granularity and conditions checked are the same
as for the CAS version. Like the CAS version, this
version contains data races but produces the same
result as the TL version.
HA (Hyperaccurate): The Update Locking version
running with a smaller tol parameter (the origi-
nal tol parameter divided by 1.25). The tol pa-
rameter controls the center-of-mass approximation
in the force computation phase — the smaller the
tol parameter, the deeper the phase goes into the
space-subdivision tree before it approximates the ef-
fect of multiple distant bodies with their center of
mass. We use this version to evaluate the accuracy
consequences of dropping bodies from the space-
subdivision tree.
e FP (First Parallel): The synchronization-free ap-
proximate versions in Figures 1 and 2.
¢ FC (Final Check): The synchronization-free ap-
proximate versions augmented to use final checks.

We run all versions on a 16 core 2.4 GHz Intel Xeon
E7340 with 16 GB of RAM and Debian version 2.6.27.
We compile all versions with g++ -O4. We simulate 100
steps of a system with 256K bodies. We initialize the
positions and velocities of the bodies to psuedorandom
numbers and the masses of the bodies uniformly to 1.

3.2 Accuracy

We define the distance A;X between two versions X and

Y as:
AF = Y doXp))
0<i<N

Here b is the final position of the ith body at the end
of the simulation that uses version X of the tree con-
struction algorithm (and similarly for b)), d(b;X,bY")
is the Euclidean distance between the final positions of
corresponding bodies in the two simulations, and N is
the number of bodies.

We evaluate the accuracy of a given version X by
comparing its final body positions with those com-
puted by the Hyperaccurate (HA) version. The mini-
mum Afg“‘, over all versions X # HA, all executions,
and all number of cores, is 3041.48.

We next use the distance metric AsX to evaluate the
inaccuracy that the use of approximate data structures
introduces. Specifically, we compute AZA — AHA and
Agg — Agf as the additional inaccuracy metric for
the First Parallel and Final Check versions, respectively.
These differences quantify the additional inaccuracy
introduced by the use of approximate data structure
construction algorithms in these versions. We compare
these differences to AH#.

Table 1 presents the maximum (over the eight runs)
additional inaccuracy metric for the First Parallel and
Final Check versions as a function of the number of
cores executing the computation. These numbers show
that the accuracy loss introduced by the use of approxi-
mate data structures is four orders of magnitude smaller
than the accuracy gain obtained by increasing the accu-
racy of the center of mass approximation (0.26 in com-
parison with 3041.48). This fact supports the acceptabil-
ity of the approximate data structure construction algo-
rithms — in comparison with the Hyperaccurate ver-
sion, all other versions (including the approximate ver-
sions) compute results with essentially identical accu-
racy.

Final Check: Table 2 reports the maximum (over all
eight executions) of the sum (over all 100 simulation
steps) of the number of bodies that the First Paral-
lel and Final Check versions drop. Note that there are
256K*100 inserted bodies in total. These numbers show
that the number of dropped bodies is very small — even
running on 16 cores with no final check to reduce the
number of dropped bodies, in our eight runs the First
Parallel algorithm drops at most 730 of the bodies it
inserts. Other versions drop significantly fewer bodies.
These numbers also show that the final check is effective
in reducing the number of dropped bodies by a factor of
3 to 6 depending on the number of cores executing the
computation.

Number of Cores

Version 1 2 4 8 16
FP 0.00 005 0.57 026 -0.63
FC 0.00 0.02 0.03 009 -0.11

Table 1. Maximum additional inaccuracy metric for
First Parallel (AZA — AH#) and Final Check (AEZ —
AHAY versions. Compare with the minimum AH# =
3041.48.

Number of Cores

Version | 1 2 4 8 16
FP 0 62 80 202 730
FC 0 13 24 34 159

Table 2. Number of dropped bodies (out of 256K * 100
total inserted bodies) for First Parallel (FP) and Final
Check (FC) versions.

Number of Cores
Version 1 2 4 8 16
FC 1.00 188 341 732 14.15
FP 1.00 1.87 338 7.28 14.02
CAS 095 175 323 6.86 13.21
UL 090 1.67 3.02 651 1258
TL 0.83 0.87 0.58 040 0.39

Table 3. Speedup Numbers for Barnes-Hut Tree Con-
struction

Long Simulations: To better understand the effect of
the First Parallel and Final Check versions on the accu-
racy of the simulation as the number of steps increases,
we computed A%, Agp , and Agc after each of the
100 steps s of the simulation. Plotting these points re-
veals that they form curves characterized by the follow-
ing equations:

AFA(s) = 0.35% + 1.4s
AYL(s) = 0.0025% 4- 0.04s
AYE(s) = 0.0004s% + 0.008s

The difference between the Hyperaccurate and Update
Locking versions grows substantially faster than the dif-
ference between the Update Locking and First Paral-
lel/Final Check versions. The First Parallel/Final Check
versions will therefore remain as acceptably accurate as
the Update Locking version even for long simulations
with many steps.

3.3 Performance

Table 3 presents speedup numbers for the different ver-
sions. All of the numbers are calculated relative to the
sequential version, which executes without paralleliza-
tion overhead. The TL version exhibits poor parallel

performance (the performance decreases as the number
of cores increases), which we attribute to a combination
of synchronization overhead and bottlenecks associated
with locking the top cells in the tree. The remaining ver-
sions scale — the FP and FC versions run between 5%
to 10% faster than the synchronized versions. We at-
tribute the performance difference to the synchroniza-
tion overhead. Because the FP and FC versions have
no synchronization, their base sequential performance
is essentially identical to the sequential version.

4. Related Work

Parallel data structures relax the order in which opera-
tions such as queue insertions and removals can com-
plete [10, 23]. Our research differs in that it delivers
approximate data structures (which may drop inserted
or appended elements) as opposed to relaxed data struc-
tures (which may relax the order in which operations
execute but do not drop elements).

Wait-free data structures has been an active research
area for some years [7]. Our research differs in that 1)
our synchronization-free algorithms use only reads and
writes (wait-free data structures typically rely on com-
plex synchronization primitives such as compare and
swap or, more generally, transactional memory [8]); 2)
we do not aspire to provide a data structure that satis-
fies all of the standard correctness properties; and 3) our
algorithms are essentially clean, easily-understandable
sequential algorithms that have been engineered to exe-
cute in parallel without crashing. Wait-free implementa-
tions are typically significantly more complex than their
sequential counterparts.

The QuickStep parallelizing compiler generates ap-
proximate code with acceptable data races [13, 14];
the Dubstep compiler removes synchronization in par-
allelized code (creating acceptable data races) [17]. [20]
presents a simple unsynchronized accumulator and ex-
tensible array with a final check; [19] presents unsyn-
chronized parallel space-subdivision tree algorithms for
the Barnes-Hut simulation [19].

Chaotic relaxation runs iterative solvers without bar-
rier synchronization after each solver iteration [2, 5, 26].
Convergence theorems prove that the computation will
still converge even in the presence of data races. The
performance impact depends on the specific problem at
hand — some converge faster with chaotic relaxation,
others more slowly. Chaotic solvers typically operate on
arrays instead of linked data structures. Because chaotic
solvers come with a convergence test, they (in princi-
ple) impact only the performance and not the accuracy.
As used in the Barnes-Hut computation, approximate
data structures do not come with a convergence test or
any other run-time mechanism that checks the accuracy.
Approximate data structures may therefore impact both

the performance and the accuracy. For this reason we
introduce an evaluation metric that evaluates the accu-
racy impact of approximate data structures in compar-
ison with the accuracy impact of other approximation
mechanisms, in this case the center of mass approxima-
tion that is at the heart of the Barnes-Hut algorithm.

The race-and-repair project has developed an unsyn-
chronized parallel hash table insertion algorithm [27].
Like our parallel tree construction algorithm, this algo-
rithm may drop inserted entries. An envisioned higher
layer in the system recovers from any errors that the ab-
sence of inserted elements may cause.

This paper (and a previous technical report [19])
presents an algorithm that works with clients that sim-
ply use the tree as produced with no higher layer to
deal with dropped bodies (and no need for such a higher
layer). Because we evaluate the algorithm in the context
of a complete computation, we develop an end-to-end
accuracy measure and use that measure to evaluate the
overall end-to-end acceptability of the algorithm. This
measure enables us to determine that the approximate
semantics of the synchronization-free algorithm has ac-
ceptable accuracy consequences for this computation.

The Cilkchess parallel chess program uses concur-
rently accessed transposition tables [6]. Standard se-
mantics require synchronization to ensure that the ac-
cesses execute atomically. The developers of Cilkchess
determined, however, that the probability of losing a
match because of the synchronization overhead was
larger than the probability of losing a match because of
unsynchronized accesses corrupting the transposition
table. They therefore left the parallel accesses unsyn-
chronized (so that Cilkchess contains data races) [6].
Like Cilkchess, our parallel tree insertion algorithm im-
proves performance by purposefully eliminating syn-
chronization and therefore contains acceptable data
races.

5. Conclusion

The basic premise of this paper is that parallel algo-
rithms, to the extent that they need to contain any syn-
chronization at all, need contain only enough synchro-
nization to ensure that they execute correctly enough to
generate an acceptably accurate result.

We present general approximate tree and array build-
ing blocks (with associated approximate data structure
construction algorithms) that can be composed to ob-
tain approximate data structures. We use these build-
ing blocks to obtain an approximate synchronization-
free parallel space-subdivision tree construction algo-
rithm that 1) contains data races but 2) nevertheless pro-
duces trees that are consistent enough for the Barnes-
Hut N-body simulation to use successfully. Our experi-
mental results demonstrate the performance benefits and
acceptable accuracy consequences of this approach.

References

[1] J. Barnes and P. Hut. A hierarchical o(n log n) force-
calculation algorithm. Nature, 324(4):446-449, 1986.

[2] G. Baudet. Asynchronous iterative methods for multipro-
cessors. Journal of the ACM, 25:225-244, April 1998.

[3] Michael Carbin, Sasa Misailovic, Michael Kling, and
Martin C. Rinard. Detecting and escaping infinite loops
with jolt. In ECOOP, pages 609-633, 2011.

[4] S. Chaudhuri, S. Gulwani, R. Lublinerman, and
S. Navidpour. Proving Programs Robust. FSE, 2011.

[5] D. Chazan and W. Mirankar. Chaotic relaxation. Linear
Algebra and its Applications, 2:119-222, April 1969.

[6] Don Dailey and Charles E. Leiserson. Using Cilk to
write multiprocessor chess programs. The Journal of the
International Computer Chess Association, 2002.

[7] Maurice Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1), 1991.

[8] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: Architectural support for lock-free data struc-
tures. In Proceedings of the 20th Annual International
Symposium on Computer Architecture. May 1993.

[9] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou,
Anant Agarwal, and Martin Rinard. Using Code Per-
foration to Improve Performance, Reduce Energy Con-
sumption, and Respond to Failures . Technical Report
MIT-CSAIL-TR-2009-042, MIT, September 2009.

[10] Christoph M. Kirsch and Hannes Payer. Incorrect sys-
tems: it’s not the problem, it’s the solution. In DAC, 2012.

[11] Michael Kling, Sasa Misailovic, Michael Carbin, and
Martin C. Rinard. Bolt: on-demand infinite loop escape
in unmodified binaries. In OOPSLA, 2012.

[12] Leslie Lamport. A new solution of dijkstra’s concurrent
programming problem. Communications of the ACM,
17(8):453-455, 1974.

[13] S. Misailovic, D. Kim, and M. Rinard. Parallelizing se-
quential programs with statistical accuracy tests. ACM
Transactions on Embedded Computing Systems. ”’to ap-
pear”.

[14] S. Misailovic, D. Kim, and M. Rinard. Parallelizing se-
quential programs with statistical accuracy tests. Tech-
nical Report MIT-CSAIL-TR-2010-038, MIT, August
2010.

[15] Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard.
Probabilistically accurate program transformations. In
SAS, pages 316-333, 2011.

[16] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann,
and Martin C. Rinard. Quality of service profiling. In
ICSE (1), pages 25-34, 2010.

[17] Sasa Misailovic, Stelios Sidiroglou, and Martin Rinard.
Dancing with uncertainty. RACES Workshop, 2012.

[18] Martin Rinard. Parallel synchronization-free ap-
proximate data structure construction (full version).
http://people.csail.mit.edu/rinard/paper/

hotpar13.full.pdf.
[19] Martin Rinard. A lossy, synchronization-free, race-full,

but still acceptably accurate parallel space-subdivision
tree construction algorithm. Technical Report MIT-
CSAIL-TR-2012-005, MIT, February 2012.

[20] Martin Rinard. Unsynchronized techniques for approxi-
mate parallel computing. RACES Workshop, 2012.

[21] Martin C. Rinard. Probabilistic accuracy bounds for
fault-tolerant computations that discard tasks. In ICS,
pages 324-334, 2006.

[22] Martin C. Rinard. Using early phase termination to elim-
inate load imbalances at barrier synchronization points.
In OOPSLA, pages 369-386, 2007.

[23] Nir Shavit. Data structures in the multicore age. CACM,
54(3), 2011.

[24] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry
Hoffmann, and Martin C. Rinard. Managing perfor-
mance vs. accuracy trade-offs with loop perforation. In
SIGSOFT FSE, pages 124-134, 2011.

[25] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop
Gupta, and John L. Hennessy. Load balancing and data
locality in adaptive hierarchical n-body methods: Barnes-
hut, fast multipole, and radiosity. Journal Of Parallel and
Distributed Computing, 27:118-141, 1995.

[26] J. Strikwerda. A convergence theorem for chaotic asyn-
chronous relaxation. Linear Algebra and its Applica-
tions, 253:15-24, March 1997.

[27] D. Ungar. Presentation at OOPSLA 2011, November
2011.

[28] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner,
and Martin C. Rinard. Randomized accuracy-aware pro-
gram transformations for efficient approximate computa-
tions. In POPL, pages 441-454, 2012.

