
Eliminating Synchronization Bottlenecks in Object-Based Programs Using
Adaptive Replication

Martin Rinard Pedro Diniz
Massachusetts Institute of Technology University of Southern California

Laboratory for Computer Science Information Sciences Institute
rinard@lcs.mit.edu pedro@isi.edu

Abstract

This paper presents a technique, adaptive replication, for automati-
cally eliminating synchronization bottlenecks in multithreaded pro-
grams that perform atomic operations on objects. Synchronization
bottlenecks occur when multiple threads attempt to concurrently
update the same object. It is often possible to eliminate synchro-
nization bottlenecks by replicating objects. Each thread can then
update its own local replica without synchronization and without
interacting with other threads. When the computation needs to ac-
cess the original object, it combines the replicas to produce the
correct values in the original object. One potential problem is that
eagerly replicating all objects may lead to performance degradation
and excessive memory consumption.

Adaptive replication eliminates unnecessary replication by dy-
namically measuring the amount of contention at each object to
detect and replicate only those objects that would otherwise cause
synchronization bottlenecks. We have implemented adaptive repli-
cation in the context of a parallelizing compiler for a subset of C++.
Given an unannotated sequential program written in C++, the com-
piler automatically extracts the concurrency, determines when it
is legal to apply adaptive replication, and generates parallel code
that uses adaptive replication to efficiently eliminate synchroniza-
tion bottlenecks. Our experimental results show that for our set of
benchmark programs, adaptive replication can improve the over-
all performance by up to a factor of three over versions that use
no replication, and can reduce the memory consumption by up to
a factor of four over versions that fully replicate updated objects.
Furthermore, adaptive replication never significantly harms the per-
formance and never increases the memory usage without a corre-
sponding increase in the performance.

1 Introduction

Multithreading is a key structuring technique for programs that
manipulate information in modern distributed computing environ-
ments. Important examples of multithreaded software include user
interface systems [12, 22] and multithreaded servers [19]. Pro-
grammers also use multithreaded software to exploit the capabili-
ties of small-scale shared-memory multiprocessors, a major source

of computational power for scientific, engineering and information-
intensive computing.

Unfortunately, problems such as nondeterministic behavior and
deadlock complicate the development of multithreaded software.
Programmers have responded to these problems by adopting a struc-
tured programming methodology (inspired by concepts from object-
oriented programming) in which each thread is structured as a se-
quence of atomic operations on objects. The advantages of this
model have led to its adoption in programming languages such as
Mesa and Java [14, 1].

The research presented in this paper attacks a performance prob-
lem, synchronization bottlenecks, that arises in this context. Syn-
chronization bottlenecks occur when multiple threads attempt to
concurrently update the same object. The mutual exclusion syn-
chronization required to make the updates execute atomically se-
rializes the execution of the threads performing the updates. This
serialization can harm the performance by limiting the amount of
exploitable concurrency. It can also lead to system-level anomalies
such as lock convoys and priority inversions [14, 25].

In many programs it is possible to eliminate synchronization
bottlenecks by replicating frequently accessed objects that cause
synchronization bottlenecks. Each thread that updates such an ob-
ject creates its own local replica and performs all updates locally on
that replica with no synchronization and no interaction with other
threads. When the computation needs to access the final value of
the object, it combines the values stored in the replicas to generate
the final value.

We have developed a program analysis algorithm (which deter-
mines when it is legal to replicate objects), a compiler transforma-
tion, and a run-time system that, together, automatically transform
a program so that it replicates data to eliminate synchronization
bottlenecks. A key problem that this system must solve is deter-
mining which objects to replicate. If the system eagerly replicates
all objects, the resulting memory and computation overheads can
degrade the performance. But as described above, failing to repli-
cate objects that cause synchronization bottlenecks can also cause
serious performance problems.

Our technique usesadaptive replicationto determine which ob-
jects to replicate. As the automatically transformed program per-
forms atomic operations on objects, it measures the amount of time
it spends waiting to acquire exclusive access to each object. The
program uses this measurement to dynamically detect and replicate
objects that would otherwise cause synchronization bottlenecks. In
effect, the program dynamically adapts its replication policy so that
it performs well for the specific dynamic access pattern of each ex-
ecution.

We have implemented adaptive replication in the context of a
parallelizing compiler for object-based languages [24]. Given a se-

rial program written in a subset of C++, the compiler automatically
generates parallel code that uses adaptive replication to efficiently
eliminate synchronization bottlenecks. This paper presents exper-
imental results that characterize the impact of adaptive replication
on the performance of several benchmark applications. All of these
programs perform computations that are of interest in the field of
scientific and engineering computation. Our experimental results
show that, for our set of benchmark programs, adaptive replica-
tion can improve the overall performance by up to a factor of three
over versions that use no replication, and can reduce the memory
consumption by up to a factor of four over versions that fully repli-
cate updated objects. Furthermore, adaptive replication never sig-
nificantly harms the performance and never increases the memory
usage without a corresponding increase in the performance.

This paper makes the following contributions:

� It presents a static program analysis algorithm that deter-
mines when it is legal to replicate objects to eliminate syn-
chronization bottlenecks.

� It presents a program transformation algorithm that enables
the generated code to correctly replicate objects.

� It presents a adaptive replication algorithm, which dynam-
ically adapts to the access pattern of each execution of the
program to choose which objects to replicate.

� It presents experimental results that characterize the perfor-
mance impact of adaptive replication on three benchmark ap-
plications. These results show that adaptive replication can
significantly improve the overall performance while avoiding
unnecessary replication.

The remainder of the paper is structured as follows. Section 2
presents an example that illustrates the issues associated with adap-
tive replication. Section 3 presents the replication analysis and code
generation algorithms. Section 4 presents experimental results that
characterize the impact of adaptive replication on the performance
and memory consumption. We discuss related work in Section 5
and conclude in Section 6.

2 An Example

We next provide an example that illustrates the issues associated
with adaptive replication. The program in Figure 1 implements
a serial graph traversal. Thevisit operation traverses a single
node. It first adds the parameterp into the running sum stored in
thesum instance variable, then recursively invokes the operations
required to complete the traversal. The way to parallelize this com-
putation is to execute the two recursive invocations in parallel. Our
compiler is able to use commutativity analysis to statically detect
this source of concurrency [24]. Because the data structure may
be a graph, the parallel traversal may visit the same node multi-
ple times. The generated code must therefore contain synchroniza-
tion constructs that make eachvisit operation execute atomically
with respect to all other operations that access the same object.

Figure 2 presents the code that the compiler generates when
it does not use adaptive replication. The compiler augments each
node object with a mutual exclusion lockmutex. The automati-
cally generatedparallel visit operation, which performs the
parallel traversal, uses this lock to ensure that it executes atomi-
cally. It acquires the lock before it updates thesum instance vari-
able, then releases the lock after the update. The lock synchroniza-
tion makes multiple updates to the same object execute sequen-
tially.

class node f
private:

int value, sum;
node *left, *right;

public:
void visit(int);

g;
void node::visit(int p) f

sum = sum + p;
if (left != NULL) left->visit(value);
if (right != NULL) right->visit(value);

g

Figure 1: Serial Graph Traversal

The transitions from serial to parallel execution and from paral-
lel back to serial execution take place inside thevisit operation.
This operation first invokes theparallel visit operation, then
invokes thewait construct, which blocks until all parallel tasks cre-
ated by the current task or its descendant tasks finishes. Thepar-
allel visit operation executes the recursive calls concurrently
using thespawn construct, which creates a new task for each op-
eration. A straightforward application of lazy task creation can in-
crease the granularity of the resulting parallel computation [18].

class node f
private:

lock mutex;
int value, sum;
node *left, *right;

public:
void visit(int);
void parallel visit(int);

g;
void node::visit(int p) f

this->parallel visit(p);
wait();

g
void node::parallel visit(int p) f

mutex.acquire();
sum = sum + p;
mutex.release();
if (left != NULL)

spawn(left->parallel visit(value));
if (right != NULL)

spawn(right->parallel visit(value));
g

Figure 2: Parallel Traversal Without Adaptive Replication

A problem with the code in Figure 2 is that it may suffer from
synchronization bottlenecks if many of the nodes in the graph all
point to the same node. Figure 3 presents such a graph.1 Be-
cause all of the updates use an operator (the+ operator)2 that is
associative, commutative, and has a zero, it is possible to elimi-

1This specific example is intended primarily for the purpose of presenting the tech-
nique. Section 4 describes several applications whose performance benefits from the
use of adaptive replication.

2There may be some confusion between the two termsoperator and operation.
An operator is a binary function such as+ that is used to combine two values. An
operation is a piece of code associated with a class that executes on objects of that
class. An example of an operation is thevisit operation in Figure 1.

nate the synchronization bottlenecks by having each thread allocate
its own local replica of each node that caused a bottleneck. Each
thread would then update its own replica without synchronization
and without interacting with other threads. At the end of the parallel
phase, the program would compute the total sum of the partial sums
stored in the replicas, and store this total sum back into the original
object. It would then deallocate the replicas. Figure 4 presents a
high level version of the code that the compiler generates when it
uses this approach.

Figure 3: Example Graph

There are several issues associated with the automatic applica-
tion of adaptive replication. Our approach deals with each of these
issues as follows:

� Determining Which Objects To Replicate: It is important
to replicate only those objects that would otherwise cause
synchronization bottlenecks. The program recognizes these
objects using a construct, thetry acquire construct, that at-
tempts to acquire a lock. The construct returns false if it is
unable to immediately acquire the lock (this happens if an-
other thread already holds the lock), and true if it did acquire
the lock. If a thread is unable to acquire an object’s lock, it
assumes that the object may cause a synchronization bottle-
neck. It obtains a local replica of the object and performs the
update locally on the replica. The replication policy therefore
adapts to the dynamic characteristics of each program execu-
tion — the program uses thetry acquire construct to dy-
namically detect and replicate only those objects that would
otherwise cause synchronization bottlenecks.

� Limiting Memory Consumption: If a program replicates
objects without limit, it may consume an unacceptable amount
of memory. Our compiler generates code that records the
amount of memory devoted to object replicas. Before it repli-
cates an object, it checks that the amount of memory con-
sumed by replicas does not exceed a predefined limit. If the
allocation of a replica would exceed this limit, the code does
not allocate the replica and instead forces the operation to
wait until it can acquire the lock and execute on the original
object. For clarity, the example code in Figure 4 eliminates
this check.

� Retrieving Replicas: Each thread has its own local hash ta-
ble in which it stores references to its object replicas. Each
replica is indexed under the reference to the corresponding
original object. Theinsert construct inserts a mapping
from the original object to a replica, and, given a reference
to an original object, thelookup construct retrieves the
replica.

� Initializing Replicas: The updated instance variables in ob-
ject replicas are initialized to the zero for the operator used to
compute the updated value. In many cases objects also con-
tain instance variables that are not updated during the course
of the parallel computation. Because operations that execute

class node f
private:

lock mutex;
int value, sum;
node *left, *right;

public:
void visit(int);
void parallel visit(int);
void replica visit(int);
node *replicate();
friend void combine node replicas();

g;
void node::visit(int p) f

this->parallel visit(p);
wait();
combine node replicas();

g
void node::parallel visit(int p) f

node *replica = lookup(this);
if (replica == NULL) f

if (mutex.try acquire()) f
sum = sum + p;
mutex.release();
if (left != NULL)

spawn(left->parallel visit(value));
if (right != NULL)

spawn(right->parallel visit(value));
return;

g else f
replica = this->replicate();

g
g
replica->replica visit(p);

g
void node::replica visit(int p) f

sum = sum + p;
if (left != NULL)

spawn(left->parallel visit(value));
if (right != NULL)

spawn(right->parallel visit(value));
g
node *node::replicate() f

node *replica = new node;
replica->sum = 0;
replica->value = value;
replica->left = left;
replica->right = right;
insert(this, replica);
return(replica);

g
void combine node replicas() f

for all local hash tables h f
for all pairs <original, replica> in h f

remove(h,original,replica);
original->sum += replica->sum;
delete replica;

g
g

g

Figure 4: Parallel Traversal With Adaptive Replication

on replicas may access these variables, their values from the
original object are copied into the replica when it is created.

� Updating Replicas:All updates to replicas are performed by
synchronization-free versions of operations that the compiler
generates for that purpose. In the example in Figure 4, the
replica visit operation performs all updates to repli-
cated graph nodes.

� Combining Values: At the end of the parallel phase, the
generated code traverses the hash tables (recall that there is
one hash table per thread) to find all of the replicas. As it vis-
its each replica, it combines the updated values in the replica
into the instance variables in the original object. It also re-
moves the replica from the hash table and deallocates it.

The current version of the compiler generates code that per-
forms the hash table traversals in parallel. For clarity, the
code in Figure 4 performs the traversals serially.

A final issue is the order in which the generated code checks
for an existing replica or attempts to acquire the lock in the original
object. Our current compiler generates code that first checks for an
existing replica. If the replica exists, the update is performed on the
replica. If the replica does not exist, it attempts to acquire the lock
in the object. It creates a replica only if it is unable to acquire the
lock.

3 Replication Analysis And Code Generation

To generate code that uses adaptive replication, a compiler con-
tains areplication analysis algorithm, which determines when it is
legal to replicate objects, and acode generation algorithm, which
generates code that uses adaptive replication to eliminate synchro-
nization bottlenecks. We have implemented these algorithms in the
context of a parallelizing compiler for object-based programs. The
compiler uses commutativity analysis as its primary parallelization
technique [24]. Commutativity analysis is capable of paralleliz-
ing computations (such as marked graph traversals and computa-
tions that swap the values of instance variables) to which it is il-
legal to apply adaptive replication. We have therefore decoupled
the commutativity analysis and replication analysis algorithms in
the compiler. Replication analysis runs only after the commutativ-
ity analysis algorithm has successfully parallelized a phase of the
computation. Replication analysis is therefore designed to handle
a general class of parallel computations that perform atomic oper-
ations on objects and consist of an alternating sequence of parallel
and serial phases.

This section presents the replication analysis and code gener-
ation algorithms, starting with the model of computation for pro-
grams that the replication analysis algorithm is designed to analyze
and the program representation that the algorithms use.

3.1 Model of Computation

The replication analysis algorithm is designed to analyze pure object-
based programs. Such programs structure the computation as a set
of operations on objects. Each object implements its state using a
set of instance variables. An instance variable can be a nested ob-
ject, a pointer to an object, a primitive data item such as anint or a
double , or an array of any of the preceding types. Each operation
has a receiver object and several parameters. When an operation
executes, it can read and write the instance variables of the receiver
object, access the parameters, or invoke other operations. Well

structured object-based programs conform to this model of com-
putation; pure object-based languages such as Smalltalk enforce it
explicitly [8].

3.2 Program Representation

The commutativity analysis algorithm extracts some information
that the replication analysis and code generation algorithms use.
The algorithm executes on one phase of the program at a time. The
phase selection is driven by an algorithm in the compiler that tra-
verses the static call graph of the program to find subgraphs whose
execution it can parallelize. Each such subgraph corresponds to a
parallel phase of the program.

As part of the parallelization process, the commutativity analy-
sis algorithm produces the set of operations that the parallel phase
may invoke and the set of instance variables that the phase may
update [24]. It determines each of these sets by traversing the call
subgraph of the phase. The set of operations is simply the set of op-
erations in the call subgraph; the set of instance variables is simply
the union of the sets of instance variables that the invoked opera-
tions may update. For each operation, the compiler also produces
a set ofupdate expressionsthat represent how the operation up-
dates instance variables and a multiset ofinvocation expressions
that represent the multiset of operations that the operation may in-
voke. There is one update expression for each instance variable
that the operation modifies and one invocation expression for each
operation invocation site. Except where noted, the update and invo-
cation expressions contain only instance variables and parameters
— the algorithm uses symbolic execution to eliminate local vari-
ables from the update and invocation expressions [13, 24].

3.3 Replication Conditions

The replication analysis algorithm is based on updates of the form
v = v � exp , where� is an associative and commutative op-
erator with a zero andexp does not depend on variables that are
updated during the parallel phase. We call such updatesreplicat-
able updates, because if all updates to a given instance variablev
are of this form and use the same operator, then the final value of
v is the same regardless of the order in which the individual con-
tributions (the values ofexp in the updates) are accumulated to
generate the final result. In particular, accumulating locally com-
puted contributions in local replicas, then combining the replicas
at the end of the parallel phase, yields the same final result as se-
rially accumulating the contributions into the original object. If all
accesses to a variablev take place in replicatable updates tov , and
all of the updates use the same operator, we callv a replicatable
variable.

The replication analysis algorithm builds on the concept of repli-
catable variables as follows. In the transformed program, updates
to replicated objects take place at the granularity of operations in
the original program. For the generated program to produce the
correct result, all operations that execute on replicated objects may
update only replicatable variables. To determine if it is legal for
an operation to execute on a replicated object, the analysis algo-
rithm checks that the operation satisfies two conditions. The first
condition is that the operation updates only replicatable variables.
The second condition is that if the operation may invoke (either di-
rectly or indirectly) another operation with a replica as the receiver,
then the invoked operation updates only replicatable variables.3 If

3The restrictions on replicatable variables and replicatable operations ensure that
pointers to replicated objects are never stored in application data — they are stored
only in the hash table that the generated program uses to look up replicas. The only
way for one operation executing on a replicated object to invoke another operation

an operation satisfies these two conditions, we call the operation a
replicatable operation. It is always legal to invoke a replicatable
operation on a replica.

3.4 The Replication Analysis Algorithm

Figure 5 presents the replication analysis algorithm. The presented
algorithm is simplified in the sense that it assumes that there is ex-
actly one commutative, associative operator� with a zero. The
algorithm generalizes in a straightforward way to handle compu-
tations that contain multiple such operators. The version imple-
mented in our prototype compiler can apply adaptive replication to
computations that contain multiple commutative, associative oper-
ators with a zero.

The algorithm takes as parameters the set of invoked operations,
the set of updated variables, a function updates(op), which returns
the set of update expressions that represent the updates that the op-
erationop performs, and a function invocations(op), which returns
the multiset of invocation expressions that represent the multiset of
operations that the operationop invokes. There is also an auxiliary
function called variables; variables(exp) returns the set of variables
in the symbolic expressionexp, variables(upd) returns the set of
free variables in the update expressionupd, and variables(inv) re-
turns the set of free variables in the invocation expressioninv.4

The algorithm produces a set of instance variables that may be
replicated and a set of operations that may execute on replicated
versions of objects.

The algorithm first identifies the set of replicatable variables. It
performs this computation by scanning all of the instance variable
updates, eliminating variables with updates that are not replicatable
updates.

The algorithm next scans the set of operations to identify the set
of replicatable operations. For each operation it tests if all of the
operation’s updates update replicatable variables and if the opera-
tion never invokes a non-replicatable operation on a replica. If the
operation passes both of these tests, it is classified as a replicatable
operation.

3.5 The Code Generation Algorithm

The generic code generation algorithm starts with the set of repli-
catable variables and replicatable operations. It generates two ver-
sions of each replicatable operation: the parallel version and the
replicated version.

The parallel version executes on original objects, not replicas.
If it may update the receiver, it first checks to see if a replica has
already been created. If so, it invokes the replicated version to per-
form the update on the replica. If not, it uses atry acquire con-
struct to attempt to acquire the lock in the receiver. If the lock is
acquired, the parallel version performs the updates as in the origi-
nal program, then releases the lock and completes its execution by
invoking the parallel version of each operation that it should in-
voke. If the lock is not acquired, the parallel version invokes the
replica creation operation to create a replica. If the replica creation
operation returns NULL, it was unable to create a replica because
of memory consumption constraints. In this case, the parallel ver-
sion waits until it acquires the lock in the original object, then per-
forms the update on the object. If the replication creation operation

on a replicated object is to use thethis keyword as the receiver expression at the
operation invocation site. Any other expression used to identify the receiver of an
invoked operation will never evaluate to a replica.

4The free variables of an update or invocation expression include all variables in
the expression except the induction variables in expressions that representfor loops.
In particular, the free variables in an update expression include the updated variable.

replicationAnalysis(invokedOperations;updatedVariables;
updates; invocations)

// Compute replicatable variables
replicatableVariables= updatedVariables;
for all op 2 invokedOperations

for all u 2 updates(op)
if (not isReplicatableUpdate(u; updatedVariables))

replicatableVariables= replicatableVariables�
fupdatedVariable(u)g;

for all i 2 invocations(op)
replicatableVariables= replicatableVariables� variables(i);

// Compute replicatable operations
replicatableOperations= invokedOperations;
for all op 2 invokedOperations

if (not isReplicatableOperation(op;updatedVariables))
replicatableOperations= replicatableOperations� fopg;

returnhreplicatableVariables; replicatableOperationsi;

isReplicatableUpdate(u; updatedVariables)
if (u is of the formv = v� exp and

variables(exp) \ updatedVariables= ;)
return true;

if (u is of the formv[exp0] = v[exp0]� exp and
(variables(exp) [variables(exp0)) \ updatedVariables= ;)

return true;
if (u is of the formif (exp) upd and

variables(exp) \ updatedVariables= ;)
returnisReplicatableUpdate(upd;updatedVariables);

if (u is of the formfor (i = exp
1
; i < exp

2
; i+ = exp

3
) upd

and81�j�3variables(expj) \ updatedVariables= ;)
returnisReplicatableUpdate(upd;updatedVariables);

return false;

isReplicatableOperation(op;updatedVariables)
for all u 2 updates(op)

if (not isReplicatableUpdate(u; updatedVariables))
return false;

for all i 2 invocations(op)
if (receiver(i) = this and

not isReplicatableOperation(operation(i)))
return false;

return true;

updatedVariable(u)
if (u is of the formv = exp) returnv ;
if (u is of the formv[exp0] = exp) returnv ;
if (u is of the formif (exp) upd)

returnupdatedVariable(upd);
if (u is of the formfor (i = exp

1
; i < exp

2
; i+ = exp

3
) upd)

returnupdatedVariable(upd);

Figure 5: Replication Analysis Algorithm

successfully created a replica, the parallel version invokes the repli-
cated version to perform the update on the replica.

The replicated version executes on replicas, not original ob-
jects. It performs all of its updates to the replica without synchro-
nization. It invokes the parallel version of each operation that it
should invoke unless the receiver of the operation isthis (the
object that the replicated version executes on). If the receiver is
this , it invokes the replicated version of the invoked operation.
This invocation strategy reduces the overhead by eliminating the
trip through the parallel version for sequences of operations on the
same replicated object.

The code generation algorithm also produces a replica creation
operation. The receiver of this operation is the original object. The
operation first performs amemory consumption check: it checks
if allocating a replica would exceed the predefined limit on the
amount of memory consumed by replicas. If not, it allocates a
replica, initializes all of the replicatable variables in the object to
the zero for the operator used to accumulate contributions to the
variable, and initializes all of the other instance variables to the
values in the original object. It then inserts the replica in the hash
table, indexed under the original object, and returns the replica.

If the replica allocation would exceed the predefined limit, the
replica creation operation returns NULL. In this case, the parallel
version waits until it acquires the lock on the original object and
performs the operation on that object. In the example in Figure 4,
the replicate operation is the replica creation operation. For
clarity, we eliminate the memory consumption check.

Finally, the code generation algorithm produces a combine func-
tion that is invoked at the end of the parallel phase. This function
traverses the hash table to find all of the replicas, combines the val-
ues in the replicas to generate the correct final values in the original
objects, then clears the hash table and deallocates the replicas.

3.6 Interaction With Lock Coarsening

Our compiler contains an analysis algorithm and a sequence of
transformations that increase the granularity at which the computa-
tion locks objects [5, 21]. The default granularity is for each oper-
ation that updates a lock to acquire and release the lock in the up-
dated object. The analysis algorithm finds sequences of operations
that acquire and release the same lock. The transformed program
acquires the lock once, performs the operations without additional
synchronization, then releases the lock. The advantage is a reduc-
tion in the lock overhead (the amount of time spent acquiring and
releasing locks). The disadvantage is a potentially crippling de-
crease in the amount of available concurrency. To achieve good
performance for a range of applications, we have developed so-
phisticated dynamic feedback algorithms that adjust the amount of
coarsening to the dynamic characteristics of the computation [4].

There is a synergistic interaction between lock coarsening and
adaptive replication. Consider a maximally lock coarsened pro-
gram. If all of the operations that execute between a lock acquire
and release pair are replicatable operations, the compiler can apply
adaptive replication at the coarsened granularity. The compiler re-
places the lock acquire site with a code sequence that checks if a
local replica already exists. If so, the generated code executes the
corresponding sequence of replicated operations on the replica. If
not, it uses atry acquire construct to attempt to acquire the lock in
the original object. If the attempt succeeds, the program executes
the sequence of operations on the original object. If the attempt
fails, it creates a replica (subject, of course, to the memory con-
sumption limits) and executes the sequence of replicated operations
on the replica.

The resulting program combines the advantages of lock coars-

ening and adaptive replication. The lock coarsening transformation
reduces the frequency with which the program attempts to acquire
locks and look up replicas. The adaptive replication transformation
eliminates any serialization that the lock coarsening transformation
may have introduced. Our current compiler first applies the max-
imal lock coarsening transformation, then the adaptive replication
transformation. The result is an efficient program that maximizes
the amount of exposed concurrency while minimizing the overhead
of acquiring locks and looking up replicas.

4 Experimental Results

We next present experimental results that characterize the perfor-
mance and memory impact of using adaptive replication. We present
results for three automatically parallelized applications: Water [26],
which simulates water molecules in the liquid state, Barnes-Hut [2],
a hierarchical N-body solver, and String [11], which builds a veloc-
ity model of the geology between two oil wells.

4.1 Methodology

We implemented a prototype parallelizing compiler that uses com-
mutativity analysis as its basic analysis paradigm. The compiler
includes an analysis algorithm that determines when it is legal to
replicate updated objects. Flags determine the replication policy
that the generated code uses. We used the compiler to obtain the
following versions of each application:

� No Replication: There is no replication of updated objects.
There is one lock per object; the generated code acquires
the lock before it performs any updates to the object. For
each application we use the lock coarsening policy (see Sec-
tion 3.6) that performs best for that application. For String
and Water there is no lock coarsening. For Barnes-Hut the
generated code uses the maximal lock coarsening policy.

� Adaptive Replication: The generated code uses adaptive
replication applied to the version with the maximal lock coars-
ening policy.

� Full Replication: Whenever possible, the generated code
performs updates on replicas. For our set of applications, all
of the operations in parallel phases are replicatable opera-
tions. All of the updates are therefore performed on replicas.

We collected experimental results for the applications running
on an SGI Challenge XL multiprocessor with 24 100 MHz R4400
processors and 768 Mbytes of memory running IRIX version 6.2.

4.2 Water

Table 1 presents the execution times for Water. The serial version
is a standard sequential C++ program that executes with no paral-
lelization or synchronization overhead.

Version Processors
1 4 8 16 24

Serial 164.26 - - - -
No Replication 174.65 52.43 29.80 25.62 29.25

Adaptive Replication 169.27 46.99 24.75 13.08 9.54
Full Replication 166.57 45.05 22.97 12.40 8.98

Table 1: Execution Times for Water (seconds)

Figure 6: Time Breakdowns for Water

|

0
|

8
|

16
|

24

|0

|1

|2

|3

 No Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

|

0
|

8
|

16
|

24

|0

|1

|2

|3

 Adaptive Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

|

0
|

8
|

16
|

24

|0

|1

|2

|3

 Full Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

Figure 7: Peak Memory Usage for Water

The performance of both the Adaptive Replication and Full
Replication versions scales well with the number of processors.
The performance of the No Replication version, on the other hand,
fails to scale beyond eight processors.

We used program counter sampling [9] to measure how much
time each version spends in different parts of the parallel computa-
tion. We break the execution time down into the following compo-
nents:

� Replication: Time spent because of replication. This com-
ponent includes time spent allocating and deallocating repli-
cas, initializing replicas, looking up replicas, and combining
the values in replicas back into the original objects at the end
of parallel phases.

� Synchronization: Time spent acquiring and releasing locks,
including time spent waiting to acquire locks held by other
threads. Synchronization bottlenecks show up as a large amount
of time spent in this component.

� Idle: Time spent idle. All but one processor is idle during
serial phases of the computation; processors may also be idle
during parallel phases if the program has poor load balanc-
ing. In all of our applications, idle time during serial phases
accounts for the vast majority of the total idle time.

� Compute: Time spent performing useful computation from
the application.

Figure 6 presents the time breakdowns for Water.5 These break-
downs clearly show that the No Replication version suffers from a

5For each component, the size of the part of the bar dedicated to that component
corresponds to the sum over all processors of the amount of time the processor spends
in that component. The total height of the bar divided by the number of processors is
therefore the running time of the application on that number of processors.

synchronization bottleneck, and that the bottleneck becomes more
severe as the number of processors increases. The time breakdowns
also show that replication completely eliminates the synchroniza-
tion bottleneck. The versions that use replication have negligible
synchronization overhead.

Figure 7 presents thepeak memory usagefor Water. The peak
memory usage measures the maximum amount of memory allo-
cated to original objects or replicas during the computation. The
peak memory usage for the No Replication version does not vary
with the number of processors. The peak memory usage increases
slightly with the number of processors for the Adaptive Replication
version. For the Full Replication version, the peak memory usage
increases significantly with the number of processors.

Adaptive replication works well for Water. It eliminates the
synchronization bottlenecks that degrade the performance of the
No Replication version. Its peak memory usage is also signifi-
cantly less than the Full Replication version, which indicates that
it is possible to eliminate the synchronization bottlenecks by repli-
cating only a small amount of data.

4.3 Barnes-Hut

Table 2 presents the execution times for Barnes-Hut. All applica-
tions exhibit close to identical performance. The time breakdowns
in Figure 8 illustrate why: there are no synchronization bottlenecks
in the No Replication version and very little replication overhead
in the Adaptive Replication and Full Replication versions. As the
number of processors increases, the primary limiting factor on the
performance is the idle time. One of the phases of the computation
(the tree construction phase) executes sequentially. As the number
of processors increases, this serial phase becomes a bottleneck.

Figure 9 shows that the Adaptive Replication version uses the

Figure 8: Time Breakdowns for Barnes-Hut

|

0
|

8
|

16
|

24

|0

|3

|6

|9

 No Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

|

0
|

8
|

16
|

24

|0

|3

|6

|9

 Adaptive Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

|

0
|

8
|

16
|

24

|0

|3

|6

|9

 Full Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

Figure 9: Peak Memory Usage for Barnes-Hut

same amount of memory as the No Replication version — for this
application, the Adaptive Replication version never replicates an
object.

Version Processors
1 4 8 16 24

Serial 136.33 - - - -
No Replication 139.78 37.63 20.79 12.47 9.67

Adaptive Replication 139.85 38.02 21.16 12.67 9.94
Full Replication 164.28 41.02 22.26 13.00 10.21

Table 2: Execution Times for Barnes-Hut (seconds)

4.4 String

Table 3 presents the execution times for String. The performance
for the No Replication version peaks at 16 processors, then rapidly
falls off. The Adaptive Replication and Full Replication versions,
on the other hand, perform well for all numbers of processors. The
time breakdowns in Figure 10 show that the No Replication version
suffers from a serious synchronization bottleneck at 24 processors.
Replication completely eliminates this bottleneck, at the cost of a
modest amount of replication overhead. The end result is that, with
replication, the computation performs very well for all numbers of
processors. The peak memory usage graphs in Figure 11 show that
both the Adaptive Replication and Full Replication versions sig-
nificantly increase the memory usage — both versions completely
replicate a large object. The overall memory usage is still accept-
able, however.

Version Processors
1 4 8 16 24

Serial 881.27 - - - -
No Replication 896.99 236.36 126.86 78.76 89.60

Adaptive Replication 892.70 224.45 113.78 60.38 45.06
Full Replication 897.98 223.73 113.89 60.61 44.91

Table 3: Execution Times for String (seconds)

4.5 Discussion

The results show that Adaptive Replication generates good perfor-
mance for all of our benchmark applications. It effectively elimi-
nates the synchronization bottlenecks that degrade the performance
of Water and String, it imposes little performance overhead, and it
minimizes the memory consumption by replicating only those ob-
jects that would otherwise cause synchronization bottlenecks. Fur-
thermore, it is a robust technique suitable for inclusion in a com-
piler — as Barnes-Hut illustrates, it imposes very little performance
overhead and no memory overhead if the application does not re-
quire replication for good performance.

We have also explored another approach for eliminating syn-
chronization bottlenecks: implementing atomic operations using
optimistic synchronization primitives such as load linked/store con-
ditional instead of mutual exclusion locks [23]. Our results show
optimistic synchronization can eliminate synchronization bottle-
necks in applications (such as String) that use a single lock to syn-
chronize concurrent updates to different instance variables of a large

Figure 10: Time Breakdowns for String

|

0
|

8
|

16
|

24

|0

|8

|16

|24

 No Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

|

0
|

8
|

16
|

24

|0

|8

|16

|24

 Adaptive Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

|

0
|

8
|

16
|

24

|0

|8

|16

|24

 Full Replication

 Processors

 M
em

or
y

U
sa

ge
 (

M
by

te
s)

Figure 11: Peak Memory Usage for String

object. But optimistic synchronization is incapable of eliminating
bottlenecks in applications (such as Water) that concurrently update
the same instance variable. By contrast, the experimental results
presented in this paper show that adaptive replication can eliminate
bottlenecks in both kinds of applications. And it works well for
applications that perform well without replication.

5 Related Work

In this section we discuss related work in the area of reduction anal-
ysis and replication for concurrent read access in shared memory
systems.

5.1 Reduction Analysis

Several existing compilers can recognize when a loop performs a
reduction of many values into a single value [7, 20, 3]. These com-
pilers recognize when the reduction primitive (typically addition) is
associative. They then exploit this algebraic property to eliminate
the data dependence associated with the serial accumulation of val-
ues into the result. The generated program computes the reduction
in parallel. Each processor has its own local replica of the variable
used to hold the result; at the end of the parallel loop the partial con-
tributions in the replicas are combined to produce the correct final
result. Researchers have recently generalized the basic reduction
recognition algorithms to recognize when a loop performs a reduc-
tion of an array instead of a scalar. The reported results indicate
that this optimization is crucial for obtaining good performance for
the measured set of applications [10].

The research presented in this paper applies a similar basic
idea, but in the much less structured context of irregular object-
based programs instead of regular loop nests in programs that ac-

cess dense matrices using affine access functions. The generality
of our target application set means that we must solve an additional
set of problems that do not arise in the more restricted contexts that
previous research in reduction analysis is designed to handle.

In previous research, the restricted model of computation al-
lows the compiler to statically recognize which variable or array
must be replicated — the dynamic trade off between additional
concurrency and replication overhead simply does not arise. But in
object-based programs, it may be necessary to replicate only a sub-
set of the objects — only those objects that would cause synchro-
nization bottlenecks. Adaptive replication solves this new problem
by dynamically measuring the contention at each object. It repli-
cates an object only if there is significant contention for the object.

In previous research, the compiler only has to replicate a stat-
ically allocated variable or array. The code generation algorithm
can therefore statically create an array of replicas, with each pro-
cessor using a different element of the array. But in object-based
programs, objects are allocated dynamically and accessed by navi-
gating through references stored in other objects. It may therefore
be necessary to replicate an unbounded number of dynamically al-
located objects for which there are no statically available names.
Adaptive replication solves this problem by dynamically creating
replicas in response to contention and storing the replicas in a hash
table.

Previous research has demonstrated that accumulating partial
contributions in replicated variables or arrays is often necessary
to achieve good performance for loop nests in programs that ac-
cess dense matrices using affine access functions. Our results show
that accumulating partial contributions in replicated objects enables
similar performance improvements in the more general context of
parallel object-based programs; our techniques effectively solve the
additional problems that arise in this more general context.

5.2 Replication In Shared Memory Systems

Many shared memory systems replicate data to enable concurrent
read access [15, 16]. This optimization is clearly required to achieve
any reasonable level of performance — in systems that do not im-
plicitly replicate data for concurrent read access, programmers ex-
plicitly replicate the data [17]. Our hardware platform, the SGI
Challenge XL multiprocessor, supports replication for concurrent
read access via its cache coherence protocol.

One perspective on our research is that it replicates data to en-
able concurrent write access. Conceptually, each replica is a local
proxy for the replicated object. The complications are that repli-
cation for concurrent write access may not always be legal (so our
compiler must analyze the program to identify situations in which
it is legal), it may not always improve performance (so our system
only replicates objects that would otherwise cause synchronization
bottlenecks), and there is a need to combine the partial contribu-
tions to generate the correct final result (so our compiler generates
code to perform the reduction at the end of the parallel phase). One
reasonable way to view our research is that it generalizes the con-
cept of replication for concurrent read access to provide, when legal
and appropriate, replication for concurrent write access.

6 Conclusion

Synchronization bottlenecks can significantly degrade the perfor-
mance of multithreaded programs that perform atomic operations
on objects. Our experimental results show that adaptive replication
can effectively eliminate synchronization bottlenecks while avoid-
ing unnecessary memory consumption.

To take a broader perspective, we view adaptive replication as
part of a general trend towards adaptive computing. In the future
we expect the complexity and heterogeneity of systems to increase,
and we expect that this increase will be matched by an increase
in the analysis and transformational capabilities of compilers. In
such computing environments it will become increasingly impor-
tant to develop flexible techniques that adapt to the dynamic char-
acteristics of different program executions in a range of execution
environments. Our experimental results clearly demonstrate the ad-
vantages of an adaptive approach to replication. In the future we
expect researchers to develop effective adaptive techniques for a
wide range of other problems.

References

[1] K. Arnold and J. Gosling. The Java Programming Language.
Addison-Wesley, Reading, Mass., 1996.

[2] J. Barnes and P. Hut. A hierarchical O(NlogN) force calculation algo-
rithm. Nature, 324(4):446–449, December 1986.

[3] D. Callahan. Recognizing and parallelizing bounded recurrences. In
Proceedings of the Fourth Workshop on Languages and Compilers for
Parallel Computing, pages 169–184, Santa Clara, CA, August 1991.
Springer-Verlag.

[4] P. Diniz and M. Rinard. Dynamic feedback: An effective technique for
adaptive computing. InProceedings of the SIGPLAN ’97 Conference
on Program Language Design and Implementation, Las Vegas, NV,
June 1997.

[5] P. Diniz and M. Rinard. Synchronization transformations for paral-
lel computing. InProceedings of the 24th Annual ACM Symposium
on the Principles of Programming Languages, pages 187–200, Paris,
France, January 1997. ACM, New York.

[6] A. Fisher and A. Ghuloum. Parallelizing complex scans and reduc-
tions. In Proceedings of the SIGPLAN ’94 Conference on Program
Language Design and Implementation, pages 135–144, Orlando, FL,
June 1994. ACM, New York.

[7] A. Ghuloum and A. Fisher. Flattening and parallelizing irregular, re-
current loop nests. InProceedings of the 5th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages
58–67, Santa Barbara, CA, July 1995. ACM, New York.

[8] A. Goldberg and D. Robson.Smalltalk-80: the language and its im-
plementation. Addison-Wesley, Reading, Mass., 1983.

[9] S. Graham, P. Kessler, and M. McKusick. gprof: a call graph exe-
cution profiler. InProceedings of the SIGPLAN ’82 Symposium on
Compiler Construction, Boston, MA, June 1982. ACM, New York.

[10] M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao, and M.S. Lam.
Detecting coarse-grain parallelism using an interprocedural paralleliz-
ing compiler. InProceedings of Supercomputing ’95, San Diego, CA,
December 1995. IEEE Computer Society Press, Los Alamitos, Calif.

[11] J. Harris, S. Lazaratos, and R. Michelena. Tomographic string inver-
sion. InProceedings of the 60th Annual International Meeting, Soci-
ety of Exploration and Geophysics, Extended Abstracts, pages 82–85,
1990.

[12] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and M. Weiser. Using
threads in interactive systems: A case study. InProceedings of the
Fourteenth Symposium on Operating Systems Principles, Asheville,
NC, December 1993.

[13] J. King. Symbolic execution and program testing.Commun. ACM,
19(7):385–394, July 1976.

[14] Butler W. Lampson and David D. Redell. Experience with processes
and monitors in Mesa.Communications of the ACM, 23(2):105–117,
February 1980.

[15] D. Lenoski.The Design and Analysis of DASH: A Scalable Directory-
Based Multiprocessor. PhD thesis, Dept. of Electrical Engineering,
Stanford Univ., Stanford, Calif., February 1992.

[16] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors.
PhD thesis, Dept. of Computer Science, Yale Univ., New Haven,
Conn., September 1986.

[17] S. Lumetta, L. Murphy, X. Li, D. Culler, and I. Khalil. Decentralized
optimal power pricing: the development of a parallel program.IEEE
Parallel and Distributed Technology, 1(4):23–31, November 1993.

[18] E. Mohr, D. Kranz, and R. Halstead. Lazy task creation: A technique
for increasing the granularity of parallel programs. InProceedings
of the 1990 ACM Conference on Lisp and Functional Programming,
pages 185–197. ACM, New York, June 1990.

[19] T. Pham and P. Garg.Multithreaded Programming with Windows NT.
Prentice-Hall, Englewood Cliffs, N.J., 1995.

[20] S. Pinter and R. Pinter. Program optimization and parallelization using
idioms. InProceedings of the 18th Annual ACM Symposium on the
Principles of Programming Languages, pages 79–92, Orlando, FL,
January 1991. ACM, New York.

[21] J. Plevyak, X. Zhang, and A. Chien. Obtaining sequential efficiency
for concurrent object-oriented languages. InProceedings of the 22nd
Annual ACM Symposium on the Principles of Programming Lan-
guages. ACM, January 1995.

[22] J. Reppy.Higher–order Concurrency. PhD thesis, Dept. of Computer
Science, Cornell Univ., Ithaca, N.Y., June 1992.

[23] M. Rinard. Effective fine-grain synchronization for automatically par-
allelized programs using optimistic synchronization primitives. In
Proceedings of the 6th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 112–123, Las Vegas, NV,
June 1997. ACM, New York.

[24] M. Rinard and P. Diniz. Commutativity analysis: A new framework
for parallelizing compilers. InProceedings of the SIGPLAN ’96 Con-
ference on Program Language Design and Implementation, pages 54–
67, Philadelphia, PA, May 1996. ACM, New York.

[25] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization.IEEE Transactions
on Computers, 39(9):1175–1185, September 1990.

[26] J. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel appli-
cations for shared memory.Comput. Arch. News, 20(1):5–44, March
1992.

