
Deciding Boolean Algebra with Presburger Arithmetic

Viktor Kuncak1, Huu Hai Nguyen2, and Martin Rinard 1,2

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
2 Singapore-MIT Alliance

Abstract. We describe an algorithm for deciding the first-order multisorted theory
BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA)
and 2) Presburger arithmetic operations (PA). BAPA can express the relationship
between integer variables and cardinalities of unbounded finite sets, and supports
arbitrary quantification over sets and integers.

Our original motivation for BAPA is deciding verification conditions that arise in
the static analysis of data structure consistency properties. Data structures often use
an integer variable to keep track of the number of elements they store; an invariant
of such a data structure is that the value of the integer variable is equal to the
number of elements stored in the data structure. When the data structure content
is represented by a set, the resulting constraints can be captured in BAPA. BAPA
formulas with quantifier alternations arise when verifying programs with annotations
containing quantifiers, or when proving simulation relation conditions for refinement
and equivalence of program fragments. Furthermore, BAPA constraints can be used
for proving the termination of programs that manipulate data structures, as well as
in constraint database query evaluation and loop invariant inference.

We give a formal description of an algorithm for deciding BAPA. We analyze our
algorithm and show that it has optimal alternating time complexity, and that the
complexity of BAPA matches the complexity of PA. Because it works by a reduction
to PA, our algorithm yields the decidability of a combination of sets of uninterpreted
elements with any decidable extension of PA. When restricted to BA formulas, the
algorithm can be used to decide BA in optimal alternating time. Furthermore, the
algorithm can eliminate individual quantifiers from a formula with free variables and
therefore perform projection onto a desirable set of variables.

We have implemented our algorithm and used it to discharge verification condi-
tions in the Jahob system for data structure consistency checking of Java programs;
our experience suggest that a straightforward implementation of the algorithm is
effective on non-trivial formulas as long as the number of set variables is small. We
also report on a new algorithm for solving the quantifier-free fragment of BAPA.

Keywords: Boolean algebra, Presburger arithmetic, decision procedure, quantifier
elimination, complexity, program verification

1. Introduction

Program analysis and verification tools can greatly contribute to
software reliability, especially when used throughout the software devel-
opment process. Such tools are even more valuable if their behavior is
predictable, if they can be applied to partial programs, and if they allow
the developer to communicate the design information in the form of

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 12/07/2006; 11:49; p.1

2 Kuncak, Nguyen, Rinard

specifications. Combining the basic idea of (Hoare, 1969) with decidable
logics leads to analysis tools that have these desirable properties. Such
analyses are precise (because formulas represent loop-free code pre-
cisely) and predictable (because the checking of verification conditions
terminates either with a counterexample or with a proof that there are
no counterexamples).

A key challenge in this approach to program analysis and verification
is to identify a logic that captures an interesting class of program
properties, but is nevertheless decidable. In (Lam et al., 2005) we
identify the first-order theory of Boolean algebras (BA) as a useful
language for reasoning about dynamically allocated objects: BA allows
expressing generalized typestate properties and reasoning about data
structures as dynamically changing sets of objects. Here we are inter-
ested in BA of all subsets of some set; this theory was shown decidable
already in (Loewenheim, 1915; Skolem, 1919), see (Kozen, 1980) for the
decidability and the complexity of all models of BA axioms.

The motivation for this paper is the fact that we often need to reason
not only about the content of a data structure, but also about the size of
a data structure. For example, we may want to express the fact that the
number of elements stored in a data structure is equal to the value of an
integer variable that is used to cache the data structure size, or we may
want to introduce a decreasing integer measure on the data structure
to show program termination. These considerations lead to a natural
generalization of the first-order theory of BA of sets, a generalization
that allows integer variables in addition to set variables, and allows
stating relations of the form |A| = k meaning that the cardinality
of the set A is equal to the value of the integer variable k. Once we
have integer variables, a natural question arises: which relations and
operations on integers should we allow? It turns out that, using only
the BA operations and the cardinality operator, we can already define
all operations of PA. This leads to the structure BAPA, which properly
generalizes both BA and PA.

As we explain in Section 2, a version of BAPA was shown decidable
already in (Feferman and Vaught, 1959). Recently, a decision procedure
for a fragment of BAPA without quantification over sets was presented
in (Zarba, 2004c), cast as a multi-sorted theory. Starting from (Lam
et al., 2005) as our motivation, we used quantifier elimination in (Kun-
cak and Rinard, 2004) to show the decidability of the full BAPA, which
was initially stated as an open question in (Zarba, 2004c). A quantifier-
elimination algorithm for a single-sorted version of BAPA was presented
independently in (Revesz, 2004) as a way of evaluating queries in con-
straint databases; (Revesz, 2004) leaves open the complexity of the
decision problem.

main.tex; 12/07/2006; 11:49; p.2

3

Our paper gives the first formal description of a decision procedure
for the full first-order theory of BAPA. Furthermore, we analyze our
decision procedure and show that it yields optimal computational com-
plexity for BAPA, identical to the complexity of PA (Berman, 1980).
This solves the question of the computational complexity of BAPA. 1 We
have also implemented our decision procedure; we report on our initial
experience in using the decision procedure in a system for automatic
verification of imperative data structures.

1.1. Contributions

We summarize the contributions of our paper as follows.

1. As a motivation for BAPA, we show in Section 3 that BAPA

constraints can be used for program analysis and verification by
expressing 1) data structure invariants and the correctness of
procedures with respect to their specifications,2 3) simulation re-
lations between program fragments, 4) termination conditions for
programs that manipulate data structures, and 5) projection of
formulas onto a desired set of variables, with applications in static
analysis, model checking, automated abstraction, and relational
query evaluation.

2. We present an algorithm α (Section 4) that translates BAPA sen-
tences into PA sentences by translating set quantifiers into integer
quantifiers and show how it can be used to decide the truth value
of PA formulas and to eliminate individual quantifiers (Section 6).

3. We analyze our algorithm α and show that its complexity matches
the lower bound for PA and is therefore optimal (Section 5). This
result solves the question of the complexity of the decision problem
for BAPA and is the main technical contribution of this paper. Our
analysis includes showing an alternating time upper bound for PA,
parameterized by the number of quantifier alternations.

4. We discuss our initial experience in using our implementation of
BAPA to discharge verification conditions generated in the Jahob
verification system (Kuncak and Rinard, 2006).

5. We observe the following additional results:

1 In (Kuncak et al., 2005) we have obtained only the corresponding space up-
per bound on BAPA; we thank Dexter Kozen for suggesting to use an alternating
complexity class of (Berman, 1980) to establish the optimal bound.

2 This motivation was presented first in (Kuncak and Rinard, 2004) and was
subsequently used in (Zarba, 2005).

main.tex; 12/07/2006; 11:49; p.3

4 Kuncak, Nguyen, Rinard

a) PA sentences generated by translating BA sentences without
cardinalities can be decided in optimal alternating time for BA

(Section 5.4), which gives an alternative proof of upper bound

for BA of sets;

b) Our algorithm extends to countable sets with a predicate
distinguishing finite and infinite sets (Section 8);

c) In contrast to the undecidability of monadic second-order logic
over strings (MSOL) when extended with equicardinality oper-
ator, we identify a decidable combination of MSOL with BA

(Section 8).

d) We outline recent results on solving quantifier-free fragment
of BAPA using a technique that, for the first time, avoids ex-
plicitly constructing an exponentially large system of integer
constraints. Our technique yields a polynomial space upper
bound on quantifier-free fragment of BAPA.

A preliminary version of our results, including the algorithm and com-
plexity analysis appear in (Kuncak and Rinard, 2004; Kuncak et al.,
2005) along with additional details on quantifier elimination. The recent
results on quantifier-free fragment of BAPA are described in (Marnette
et al., 2005, Section 3).

2. The First-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Presburger Arith-
metic (BAPA), which is the focus of this paper. We next present some
justification for the operations in Figure 3. Our initial motivation for
BAPA was the use of BA to reason about data structures in terms of sets
(Lam et al., 2004). Our language for BA (Figure 1) allows cardinality
constraints of the form |A| = K where K is a constant integer. Such
constant cardinality constraints are useful and enable quantifier elim-
ination for the resulting language (Skolem, 1919; Loewenheim, 1915).
However, they do not allow stating constraints such as |A| = |B| for
two sets A and B, and cannot represent constraints on relationships
between sizes of sets and integer variables. Consider therefore the
equicardinality relation A ∼ B that holds iff |A| = |B|, and con-
sider BA extended with relation A ∼ B. Define the ternary relation
plus(A,B,C) ⇐⇒ (|A|+ |B| = |C|) by the formula ∃x1. ∃x2. x1∩x2 =
∅ ∧ A ∼ x1 ∧ B ∼ x2 ∧ x1 ∪ x2 = C. The relation plus(A,B,C)
allows us to express addition using arbitrary sets as representatives
for natural numbers; ∅ can represent the natural number zero, and
any singleton set can represent the natural number one. (The property

main.tex; 12/07/2006; 11:49; p.4

5

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F

A ::= B1 = B2 | B1 ⊆ B2 | |B| = K | |B| ≥ K

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

K ::= 0 | 1 | 2 | . . .

Figure 1. Formulas of Boolean Algebra (BA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃k.F | ∀k.F

A ::= T1 = T2 | T1 < T2 | K dvd T

T ::= K | T1 + T2 | K · T

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 2. Formulas of Presburger Arithmetic (PA)

of A being a singleton is definable using e.g. the first-order formula
A 6= ∅ ∧ ∀B.A ∩ B = B ⇒ (B = ∅ ∨ B = A).) Moreover, we can
represent integers as equivalence classes of pairs of natural numbers
under the equivalence relation (x, y) ≈ (u, v) ⇐⇒ x + v = u + y;
this construction also allows us to express the unary predicate of being
non-negative. The quantification over pairs of sets represents quantifi-
cation over integers, and quantification over integers with the addition
operation and the predicate “being non-negative” can express all PA

operations, presented in Figure 2. Therefore, a natural closure under
definable operations leads to our formulation of the language BAPA in
Figure 3, which contains both sets and integers.

The argument above also explains why we attribute the decidability
of BAPA to (Feferman and Vaught, 1959, Section 8), which showed the
decidability of BA over sets extended with the equicardinality relation
∼, using the decidability of the first-order theory of the addition of
cardinal numbers.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F | ∃k.F | ∀k.F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvd T

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 3. Formulas of Boolean Algebra with Presburger Arithmetic (BAPA)

main.tex; 12/07/2006; 11:49; p.5

6 Kuncak, Nguyen, Rinard

The language BAPA has two kinds of quantifiers: quantifiers over
integers and quantifiers over sets; we distinguish between these two
kinds by denoting integer variables with symbols such as k, l and set
variables with symbols such as x, y. We use the shorthand ∃+k.F (k) to
denote ∃k.k ≥ 0∧F (k) and, similarly ∀+k.F (k) to denote ∀k.k ≥ 0 ⇒
F (k). In summary, the language of BAPA in Figure 3 subsumes the
language of PA in Figure 2, subsumes the language of BA in Figure 1,
and contains non-trivial combination of these two languages in the form
of using the cardinality of a set expression as an integer value.

The semantics of operations in Figure 3 is the expected one. We
interpret integer terms as integers, and interpret set terms as elements
of the powerset of a finite set. The MAXC constant denotes the size
of the finite universe U , so we require MAXC = |U| in all models. Our
results generalize to the Boolean algebra of powersets of a countable
set, see Section 8.

3. Applications of BAPA

This section illustrates the importance of BAPA constraints. Section 3.1
shows the uses of BAPA constraints to express and verify data struc-
ture invariants as well as procedure preconditions and postconditions.
Section 3.2 shows how a class of simulation relation conditions can be
proved automatically using a decision procedure for BAPA. Section 3.3
shows how BAPA can be used to express and prove termination condi-
tions for a class of programs. Section 3.4 discusses the applications of
quantifier elimination, which is relevant to BAPA because our decision
procedure is based on quantifier elimination.

3.1. Verifying Data Structure Consistency

Figure 4 presents a procedure insert in a language that directly ma-
nipulates sets. Such languages can either be directly executed (Dewar,
1979) or can arise as abstractions of programs in standard languages
(Lam et al., 2005). The program in Figure 4 manipulates a global set
of objects content and an integer field size. The program maintains an
invariant I that the size of the set content is equal to the value of the
variable size. The insert procedure inserts an element e into the set and
correspondingly updates the integer variable. The requires clause (pre-
condition) of the insert procedure is that the parameter e is a non-null
reference to an object that is not stored in the set content. The ensures
clause (postcondition) of the procedure is that the size variable after the
insertion is positive. Note that we represent references to objects (such

main.tex; 12/07/2006; 11:49; p.6

7

var content : set;
var size : integer;
invariant I ⇐⇒ (size = |content|);

procedure insert(e : element)
maintains I

requires |e| = 1 ∧ |e ∩ content| = 0
ensures size′ > 0
{

content := content ∪ e;
size := size + 1;

}

Figure 4. An Example Procedure

n

|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content|
o

content := content ∪ e; size := size + 1;
n

size′ > 0 ∧ size′ = |content′|
o

Figure 5. Hoare Triple for insert Procedure

as the procedure parameter e) as sets with at most one element. An
empty set represents a null reference; a singleton set {o} represents a
reference to object o. The value of a variable after procedure execution
is indicated by marking the variable name with a prime.

The insert procedure maintains an invariant, I, which captures the
relationship between the size of the set content and the integer variable
size. The invariant I is implicitly conjoined with the requires and the
ensures clauses of the procedure. The Hoare triple in Figure 5 sum-
marizes the resulting correctness condition for the insert procedure.
Figure 6 presents a verification condition corresponding to the Hoare
triple in Figure 5. Note that the verification condition contains both
set and integer variables, contains quantification over these variables,
and relates the sizes of sets to the values of integer variables. Our small
example leads to a formula without quantifier alternations; in general,
formulas that arise in verification may contain alternations of existen-
tial and universal variables over both integers and sets. This paper

∀e. ∀content. ∀content′. ∀size. ∀size′.

(|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content| ∧
content′ = content ∪ e ∧ size′ = size + 1) ⇒

size′ > 0 ∧ size′ = |content′|

Figure 6. Verification Condition for Figure 5

main.tex; 12/07/2006; 11:49; p.7

8 Kuncak, Nguyen, Rinard

shows the decidability of such formulas and presents the complexity of
the decision procedure.

3.2. Proving Simulation Relation Conditions

BAPA constraints are also useful when proving that a given binary
relation on states is a simulation relation between two program frag-
ments. Figure 7 shows one such example. The concrete procedure start1

manipulates two sets: a set of running processes and a set of suspended
processes in a process scheduler. The procedure start1 inserts a new pro-
cess x into the set of running processes R, unless there are already too
many running processes. The procedure start2 is a version of the proce-
dure that operates in a more abstract state space: it maintains only the
union P of all processes and the number k of running processes. Figure 7
shows a forward simulation relation r between the transition relations
for start1 and start2. The standard simulation relation diagram condi-
tion is ∀s1.∀s′1.∀s2.(t1(s1, s

′

1) ∧ r(s1, s2)) ⇒ ∃s′2. (t2(s2, s
′

2) ∧ r(s′1, s
′

2)).
In the presence of preconditions, t1(s1, s

′

1) = (pre1(s1) ⇒ post1(s1, s
′

1))
and t2(s2, s

′

2) = (pre2(s2) ⇒ post2(s2, s
′

2)), and sufficient conditions for
simulation relation are:

1. ∀s1.∀s2.r(s1, s2) ∧ pre2(s2) ⇒ pre1(s1)
2. ∀s1.∀s′1.∀s2.∃s′2. r(s1, s2) ∧ post1(s1, s

′

1) ∧ pre2(s2)
⇒ post2(s2, s

′

2) ∧ r(s′1, s
′

2)

Figure 7 shows BAPA formulas that correspond to the simulation rela-
tion conditions in this example. Note that the second BAPA formula has
a quantifier alternation, which illustrates the relevance of quantifiers in
BAPA.

3.3. Proving Program Termination

We next show that BAPA is useful for proving program termination. A
standard technique for proving termination of a loop is to introduce a
ranking function f that maps program states to non-negative integers,
then prove that the value of the function decreases at each loop itera-
tion. In other words, if t(s, s′) denotes the relationship between the state
at the beginning and the state at the end of each loop iteration, then
the condition ∀s.∀s′.t(s, s′) ⇒ f(s) > f(s′) holds. Figure 8 shows an
example program that processes each element of the initial value of set
iter; this program can be viewed as manipulating an iterator over a data
structure that implements a set. Using the the ability to take cardinality
of a set allows us to define a natural ranking function for this program.
Figure 9 shows the termination proof based on such ranking function.
The resulting termination condition can be expressed as a formula that

main.tex; 12/07/2006; 11:49; p.8

9

var R : set;
var S : set;

procedure start1(x)
requires x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR

ensures R′ = R ∪ x ∧ S′ = S

{
R := R ∪ x;

}

var P : set;
var k : integer;

procedure start2(x)
requires x 6⊆ P ∧ |x| = 1 ∧ k < MAXR

ensures P′ = P ∪ x ∧ k′ = k + 1
{

P := P ∪ x;
k := k + 1;

}

Simulation relation r:
r((R, S), (P, k)) = (P = R ∪ S ∧ k = |R|)

Simulation relation conditions in BAPA:
1. ∀x, R,S, P, k.(P = R ∪ S ∧ k = |R|) ∧ (x 6⊆ P ∧ |x| = 1 ∧ k < MAXR) ⇒

(x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR)
2. ∀x, R,S, R′, S′, P, k.∃P′, k′.((P = R ∪ S ∧ k = |R|) ∧ (R′ = R ∪ x ∧ S′ = S) ∧

(x 6⊆ P ∧ |x| = 1 ∧ k < MAXR)) ⇒
(P′ = P ∪ x ∧ k′ = k + 1) ∧ (P′ = R′ ∪ S′ ∧ k′ = |R′|)

Figure 7. Proving simulation relation in BAPA

var iter : set;

procedure iterate()
{

while iter 6= ∅ do

var e : set;
e := choose iter;
iter := iter \ e;
process(e);

done

}

Figure 8. Terminating program

belongs to BAPA, and can be discharged using our decision procedure.
In general, we can reduce the termination problem of programs that
manipulate both sets and integers to showing a simulation relation
with a fragment of a terminating program that manipulates only inte-
gers, which can be proved terminating using techniques (Podelski and
Rybalchenko, 2005). The simulation relation condition can be proved
correct using our BAPA decision procedure whenever the simulation
relation is expressible with a BAPA formula. While one could, in prin-
ciple, use finite sets directly to describe certain ranking functions, the

main.tex; 12/07/2006; 11:49; p.9

10 Kuncak, Nguyen, Rinard

Ranking function:
f (s) = |s|

Transition relation:
t(iter, iter′) = (∃e. |e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

Termination condition in BAPA:
∀iter.∀iter′. (∃e.|e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

⇒ |iter′| < |iter|

Figure 9. Termination proof for Figure 8

∃e. |e| = 1 ∧ content′ = content ∪ e

⇓

content ⊆ content′ ∧ |content′ \ content| ≤ 1 ∧ |content′| ≥ 1

Figure 10. Eliminating a local variable from a transition relation

ability to abstract sets into integers allows us to use existing tools and
techniques developed for integer ranking functions.

3.4. Quantifier Elimination

The fact that BAPA admits quantifier elimination enables applications
that involve hiding certain variables from a BAPA formula. Hiding a
variable x in a formula means existentially quantifying over x and then
eliminating the quantifier ∃x. This process can also be viewed as a
projection of a formula onto variables other than x. As an example,
Figure 10 shows the transition relation inspired by the procedure insert

in Figure 5. The transition relation mentions a variable e that is local
to the procedure and not meaningful outside it. In the public descrip-
tion of the transition relation the variable e is existentially quantified.
Our quantifier elimination algorithm (Section 4, Section 6) removes the
quantifier from the formula and obtains an equivalent formula without
quantifiers, such as the one shown in the lower part of Figure 10.

In general, variable hiding is useful in projecting state transitions
and invariants onto a desired set of variables, computing relational
composition of transition relations, and computing the image of a set
under a transition relation. Such symbolic computation of transition
relations, with appropriate widenings, can be used to generalize static
analyses such as (Lam et al., 2005) and model checking approaches such

main.tex; 12/07/2006; 11:49; p.10

11

as (Bultan et al., 1999). The quantifier elimination process here ensures
that the transition relation remains represented by a quantifier-free
formula throughout the analysis.

Quantifier elimination is also useful for query evaluation in con-
straint databases (Revesz, 2004), and loop invariant inference (Kapur,
2004).

4. Decision Procedure for BAPA

This section presents our algorithm, denoted α, which decides the va-
lidity of BAPA sentences. The algorithm reduces a BAPA sentence to
an equivalent PA sentence with the same number of quantifier alterna-
tions and an exponential increase in the total size of the formula. This
algorithm has several desirable properties:

1. Given an optimal algorithm for deciding PA sentences, the algo-
rithm α is optimal for deciding BAPA sentences and shows that the
complexity of BAPA is the same as the complexity of PA (Section 5).

2. The algorithm α does not eliminate integer variables, but instead
produces an equivalent quantified PA sentence. The resulting PA

sentence can therefore be decided using any decision procedure for
PA, including the decision procedures based on automata (Klarlund
et al., 2000; Boigelot et al., 2005).

3. The algorithm α can eliminate set quantifiers from any extension
of PA. We thus obtain a technique for adding a particular form of
set reasoning to every extension of PA, and the technique preserves
the decidability of the extension. One example of decidable theory
that extends PA is MSOL over strings, see Section 8.

4. For simplicity we present the algorithm α as a decision procedure
for formulas with no free variables, but the algorithm can be used to
transform and simplify formulas with free variables as well, because
it transforms one quantifier at a time starting from the innermost
one. We explore this version of our algorithm in Section 6.

We next describe the algorithm α for transforming a BAPA sentence
F0 into a PA sentence. As the first step of the algorithm, transform F0

into prenex form

Qpvp. . . . Q1v1. F (v1, . . . , vp)

main.tex; 12/07/2006; 11:49; p.11

12 Kuncak, Nguyen, Rinard

where F is quantifier-free, and each quantifier Qivi is of one the forms
∃k, ∀k, ∃y, ∀y where k denotes an integer variable and y denotes a set
variable.

The next step of the algorithm is to separate F into a BA part and a
PA part. To achieve this, replace each formula b1 = b2 where b1 and b2

are set expressions, with the conjunction b1 ⊆ b2 ∧ b2 ⊆ b1, and replace
each formula b1 ⊆ b2 with the equivalent formula |b1 ∩ bc

2| = 0. In the
resulting formula, each set variable x occurs in some term |t(x)|. Next,
use the same reasoning as when generating disjunctive normal form
for propositional logic to write each set expression t(x) as a union of
cubes (regions in the Venn diagram). The cubes have the form

⋂n
i=1 xαi

i

where xαi

i is either xi or xc
i ; there are m = 2n cubes s1, . . . , sm. Suppose

that t(x) = sj1 ∪ . . . ∪ sja; then replace the term |t(x)| with the term
∑a

i=1 |sji
|. In the resulting formula, each set x appears in an expression

of the form |si| where si is a cube. For each si introduce a new variable
li. The resulting formula is then equivalent to

Qpvp. . . .Q1v1.
∃+l1, . . . , lm.

∧m

i=1
|si| = li ∧ G1

(1)

where G1 is a PA formula. Formula (1) is the starting point of the main
phase of algorithm α. The main phase of the algorithm successively
eliminates quantifiers Q1v1, . . . , Qpvp while maintaining a formula of
the form

Qpvp . . . Qrvr.
∃+l1 . . . lq.

∧q

i=1
|si| = li ∧ Gr

(2)

where Gr is a PA formula, r grows from 1 to p + 1, and q = 2e where e
for 0 ≤ e ≤ n is the number of set variables among vp, . . . , vr. The list
s1, . . . , sq is the list of all 2e partitions formed from the set variables
among vp, . . . , vr.

We next show how to eliminate the innermost quantifier Qrvr from
the formula (2). During this process, the algorithm replaces the formula
Gr with a formula Gr+1 which has more integer quantifiers. If vr is an
integer variable then the number of sets q remains the same, and if vr

is a set variable, then q reduces from 2e to 2e−1. We next consider each
of the four possibilities ∃k, ∀k, ∃y, ∀y for the quantifier Qrvr.

Case ∃k: Consider first the case ∃k. Because k does not occur in
∧q

i=1 |si| = li, simply move the existential quantifier to Gr and let
Gr+1 = ∃k.Gr, which completes the step.

Case ∀k: For universal quantifiers, it suffices to let Gr+1 = ∀k.Gr,
again because k does not occur in

∧q
i=1 |si| = li.

main.tex; 12/07/2006; 11:49; p.12

13

Case ∃y: We next show how to eliminate an existential set quantifier
∃y from

∃y. ∃+l1 . . . lq.

q
∧

i=1

|si| = li ∧ Gr (3)

which is equivalent to ∃+l1 . . . lq. (∃y.
∧q

i=1 |si| = li) ∧ Gr. This is the
key step of the algorithm and relies on the following lemma.

LEMMA 1. Let b1, . . . , bn be finite disjoint sets, and
l1, . . . , ln, k1, . . . , kn be natural numbers. Then the following two
statements are equivalent:
1. There exists a finite set y such that

n
∧

i=1

|bi ∩ y| = ki ∧ |bi ∩ yc| = li (1)

2.

n
∧

i=1

|bi| = ki + li (2)

Proof. (⇒) Suppose that there exists a set y satisfying (1). Because
bi ∩ y and bi ∩ yc are disjoint, |bi| = |bi ∩ y| + |bi ∩ yc|, so |bi| = ki + li.

(⇐) Suppose that (2) holds, so |bi| = ki + li for each of the pairwise
disjoint sets b1, . . . , bn. For each bi choose a subset yi ⊆ bi such that
|yi| = ki. Because |bi| = ki + li, we have |bi ∩ yc

i | = li. Having chosen
y1, . . . , yn, let y =

⋃n
i=1 yi. For i 6= j we have bi∩yj = ∅ and bi∩yc

j = bi,
so bi ∩ y = yi and bi ∩ yc = bi ∩ yc

i . By the choice of yi, we conclude
that y is the desired set for which (1) holds.

In the quantifier elimination step, assume without loss of generality
that the set variables s1, . . . , sq are numbered such that s2i−1 ≡ s′i ∩ yc

and s2i ≡ s′i ∩ y for some cube s′i. Then apply Lemma 1 and replace
each pair of conjuncts

|s′i ∩ yc| = l2i−1 ∧ |s′i ∩ y| = l2i

with the conjunct |s′i| = l2i−1 + l2i, yielding the formula

∃+l1 . . . lq.

q′

∧

i=1

|s′i| = l2i−1 + l2i ∧ Gr (4)

for q′ = 2e−1. Finally, to obtain a formula of the form (2) for r + 1,
introduce fresh variables l′i constrained by l′i = l2i−1 + l2i, rewrite (4)
as

main.tex; 12/07/2006; 11:49; p.13

14 Kuncak, Nguyen, Rinard

∃+l′1 . . . l′q′ .

q′

∧

i=1

|s′i| = l′i ∧ (∃+l1 . . . lq.

q′

∧

i=1

l′i = l2i−1 + l2i ∧ Gr)

and let

Gr+1 ≡ ∃+l1 . . . lq.

q′
∧

i=1

l′i = l2i−1 + l2i ∧ Gr (∃-step)

This completes the description of the elimination of an existential set
quantifier ∃y.

Case ∀y: To eliminate a set quantifier ∀y, observe that

¬(∃+l1 . . . lq.

q
∧

i=1

|si| = li ∧ Gr)

is equivalent to ∃+l1 . . . lq.
∧q

i=1 |si| = li ∧ ¬Gr, because existential
quantifiers over li together with the conjuncts |si| = li act as definitions
for li, so we may first substitute all values li into Gr, then perform
the negation, and then extract back the definitions of all values li.
By expressing ∀y as ¬∃y¬, we can show that the elimination of ∀y is
analogous to elimination of ∃y: introduce fresh variables l′i = l2i−1 + l2i

and let

Gr+1 ≡ ∀+l1 . . . lq. (

q′
∧

i=1

l′i = l2i−1 + l2i) ⇒ Gr (∀-step)

Final step: After eliminating all quantifiers by repeatedly applying

the step of the algorithm, we obtain a formula of the form ∃+l. |1| =
l ∧ Gp+1(l). Namely, in the step when we have only one set variable y
and its negation yc, we can write |y| and |yc| as |1∩ y and |1∩ yc| and
apply the algorithm one more time. We then define the result of the
algorithm, denoted α(F0), to be the PA sentence Gp+1(MAXC).

We summarize the algorithm in Figure 11. We use f ; g to denote the
function composition g◦f , and we use f∗ to denote iterative application
of function f . The prenex function transforms a formula into the prenex
form, whereas the separate function transforms it into form (1). We
have argued above that each of the individual steps of the algorithm is
equivalence preserving, so we have the following lemma.

LEMMA 2. The transformations prenex, separate, α1, αF are all
equivalence preserving (with respect to the BAPA interepretation).

By induction we obtain the correctness of our algorithm.

main.tex; 12/07/2006; 11:49; p.14

15

α1 (∃y. ∃+l1 . . . l2q′ .
∧q′

i=1
|si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ Gr) =

∃+l′1 . . . l′q′ .
∧q′

i=1
|si| = l′i ∧ ∃+l1 . . . l2q′ .

∧q′

i=1
.l′i = l2i−1 + l2i ∧ Gr

α1 (∀y. ∃+l1 . . . l2q′ .
∧q′

i=1
|si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ Gr) =

∃+l′1 . . . l′q′ .
∧q′

i=1
|si| = l′i ∧ ∀+l1 . . . l2q′ .

∧q′

i=1
.l′i = l2i−1 + l2i ⇒ Gr

α1 (∃k. ∃+l1 . . . l2q′ .
∧q′

i=1
|si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ Gr) =

∃+l1 . . . l2q′ .
∧q′

i=1
|si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ ∃k.Gr

α1 (∀k. ∃+l1 . . . l2q′ .
∧q′

i=1
|si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ Gr) =

∃+l1 . . . l2q′ .
∧q′

i=1
|si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ ∀k.Gr

αF (G(|1|)) = G(MAXC)

α = prenex ; separate ; α∗

1 ; αF

Figure 11. Algorithm α for translating BAPA sentences to PA sentences

THEOREM 3. The algorithm α in Figure 11 maps each BAPA-
sentence F0 into an equivalent PA-sentence α(F0).

The validity of PA sentences is decidable (Presburger, 1929). In combi-
nation with a decision procedure for PA such as (Pugh, 1991; Boigelot
et al., 2005; Henriksen et al., 1995), the algorithm α is a decision
procedure for BAPA sentences.

4.1. Example Run of Algorithm α

As an illustration, we show the result of runing the algorithm α on the
BAPA formula in Figure 6. The result is the PA formula in Figure 12.
Note that the structure of the resulting formula mimics the structure
of the original formula: every set quantifier is replaced by the corre-
sponding block of quantifiers over non-negative integers constrained to
partition the previously introduced integer variables. Figure 13 presents
the correspondence between the set variables of the BAPA formula
and the integer variables of the translated PA formula. Note that the
relationship content′ = content∪e translates into the conjunction of the
constraints |content′∩(content∪e)c| = 0 ∧ |(content∪e)∩content′

c| = 0,
which reduces to the conjunction l100 = 0 ∧ l011 + l001 + l010 = 0 using
the translation of set expressions into the disjoint union of partitions,
and the correspondence in Figure 13.

main.tex; 12/07/2006; 11:49; p.15

16 Kuncak, Nguyen, Rinard

∀+l1.∀
+l0. MAXC = l1 + l0 ⇒

∀+l11.∀
+l01.∀

+l10.∀
+l00.

l1 = l11 + l01 ∧ l0 = l10 + l00 ⇒
∀+l111. ∀

+l011. ∀
+l101. ∀

+l001.

∀+l110. ∀
+l010. ∀

+l100. ∀
+l000.

l11 = l111 + l011 ∧ l01 = l101 + l001 ∧
l10 = l110 + l010 ∧ l00 = l100 + l000 ⇒

∀size.∀size ′.

(l111 + l011 + l101 + l001 = 1 ∧
l111 + l011 = 0 ∧
l111 + l011 + l110 + l010 = size ∧
l100 = 0 ∧
l011 + l001 + l010 = 0 ∧
size ′ = size + 1) ⇒

(0 < size ′ ∧
l111 + l101 + l110 + l100 = size ′)

Figure 12. The translation of the BAPA sentence from Figure 6 into a PA sentence

general relationship:

li1,...,ik
= |seti1

q ∩ set
i2
q+1 ∩ . . . ∩ set

ik

S |
q = S − (k − 1)

(S is number of set variables)

in this example:

set1 = content′

set2 = content

set3 = e

l000 = |content′
c
∩ contentc ∩ ec|

l001 = |content′
c
∩ contentc ∩ e|

l010 = |content′
c
∩ content ∩ ec|

l011 = |content′
c
∩ content ∩ e|

l100 = |content′ ∩ contentc ∩ ec|
l101 = |content′ ∩ contentc ∩ e|
l110 = |content′ ∩ content ∩ ec|
l111 = |content′ ∩ content ∩ e|

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(H)

Figure 13. The Correspondence, denoted H , between Integer Variables in Figure 12
and Set Variables in Figure 6

5. Complexity of BAPA

In this section we analyze the algorithm α from Section 4 and use
it to show that the computational complexity of BAPA is identical

to the complexity of PA, which is STA(∗, 22nO(1)

, n) (Berman, 1980),

main.tex; 12/07/2006; 11:49; p.16

17

that is, alternating doubly exponential time with a linear number of
alternations.

An alternating Turing machine (Chandra et al., 1981) is a generaliza-
tion of a non-deterministic Turing machine that, in addition to making
non-deterministic (existential) choices, can make universal choices. A
universal choice step succeeds iff the computation succeeds for all the
chosen values. We then have the following definition.

DEFINITION 4. (Berman, 1980). STA(s(n), t(n), a(n)) denotes the
class of languages computable using an alternating Turing machine
that uses s(n) cells on its tape, runs in t(n) steps, and performs a(n)
alternations.

In the remainder of this section we first show the lower bound on the
complexity of BAPA. We then use the algorithm α in the previous sec-
tion and a parameterized upper bound on PA to establish the matching
upper bound on BAPA. We finally show that the algorithm α can also
decide BA formulas using optimal resources STA(∗, 2n, n), which is the
complexity established in (Kozen, 1980). Moreover, by construction,
our procedure reduces to the procedure for PA formulas if there are no
set quantifiers. Therefore, the algorithm α can be used as a component
for an optimal algorithm for BAPA but also for the special cases of BA

and PA.

5.1. Lower Bound on the Complexity of Deciding BAPA

The lower bound of PA follows by showing how to encode full integer
arithmetic in which quantifiers are bounded by 22n

using formulas of
size n (Kozen, 2006, Lecture 23).

FACT 1. (Berman, 1980, Page 75). The truth value of PA formulas of
size O(n) can encode the acceptance of an alternating Turing machine
with n alternations running in 22n

steps.

Because BAPA contains PA, the lower bound directly applies to BAPA.

LEMMA 5. The truth value of BAPA formulas of size O(n) can encode
the acceptance of an alternating Turing machine with n alternations
running in 22n

steps.

5.2. Parameterized Upper Bound on PA

As a step towards establishing the upper bound for BAPA, we show a
parameterized upper bound on PA. We use the following result.

main.tex; 12/07/2006; 11:49; p.17

18 Kuncak, Nguyen, Rinard

FACT 2. (Reddy and Loveland, 1978, Page 324). If F is a closed PA

formula (Q1x1) . . . (Qrxr)G(x1, . . . , xr) of size n > 4 with m quantifier
alternations, where Q1, . . . , Qr are quantifiers and G is quantifier-free,
then F is true iff the formula

(

Q1x1 ≤ 22(c+1)nm+3
)

. . .

(

Qrxr ≤ 22(c+r)nm+3
)

G(x1, . . . , xr)

with bounded quantifiers is true for some c > 0.

Fact 2 allows us to establish the following parameterized upper bound
on PA.

THEOREM 6. A PA sentence of size n with m quantifier alternations

can be decided in STA(∗, 2nO(m)
,m).

Proof. Analogous to the proof of the space upper bound in (Reddy and
Loveland, 1978, Page 325). To decide formulas with m quantifier alter-
nations, use an alternating Turing machine that does m alternations,
mimicking the quantifier alternations. The Turing machine guesses the
assignments to variables x1, . . . , xr in ranges given by Fact 2. This
requires guessing

2(c+1)nm+3
+ . . . + 2(c+r)nm+3

≤ 2c1nm+4

bits (because r ≤ n), and then evaluating the formula in time

proportional to n2c1nm+4
≤ 2c2nm+4

, which is in 2nO(m)
.

5.3. Upper Bound on the Complexity of Deciding BAPA

We next show that the algorithm in Section 4 transforms a BAPA

sentence F0 into a PA sentence whose size is at most exponential and
which has the same number of quantifier alternations. Theorem 6 will
then give us the upper bound on BAPA that matches the lower bound
of Lemma 5.

If F is a formula in prenex form, let size(F) denote the size of F ,
and let alts(F) denote the number of quantifier alternations in F .

LEMMA 7. For the algorithm α from Section 4 there is a constant
c > 0 such that size(α(F0)) ≤ 2c·size(F0) and alts(α(F0)) = alts(F0).
Moreover, the algorithm α runs in 2O(size(F0)) deterministic time.

Proof. To gain some intuition on the size of α(F0) compared to the size
of F0, compare first the formula in Figure 12 with the original formula
in Figure 6. Let n denote the size of the initial formula F0 and let

main.tex; 12/07/2006; 11:49; p.18

19

S be the number of set variables. Note that the following operations
are polynomially bounded in time and space: 1) transforming a formula
into prenex form, 2) transforming relations b1 = b2 and b1 ⊆ b2 into the
form |b| = 0. Introducing set variables for each partition and replacing
each |b| with a sum of integer variables yields formula G1 whose size is
bounded by O(n2SS) (the last S factor is because representing a vari-
able from the set of K variables requires space log K). The subsequent
transformations introduce the existing integer quantifiers, whose size is
bounded by n, and introduce additionally 2S−1 + . . . + 2 + 1 = 2S − 1
new integer variables along with the equations that define them. Note
that the defining equations always have the form l′i = l2i−1 + l2i and
have size bounded by S. We therefore conclude that the size of α(F0)
is O(nS(2S + 2S)) and therefore O(nS2S), which is in 2O(n). Note that
we have obtained a more precise bound O(nS2S) indicating that the
exponential explosion is caused only by set variables. Finally, the fact
that the number of quantifier alternations is the same in F0 and α(F0)
is immediate because the algorithm replaces one set quantifier with a
block of corresponding integer quantifiers.

Combining Lemma 7 with Theorem 6 we obtain the upper bound
for BAPA.

LEMMA 8. The validity of a BAPA sentence of size n and the number

of quantifier alternations m can be decided in STA(∗, 22O(mn)
,m).

Proof. The algorithm first applies the algorithm α and then applies the
algorithm from Theorem 6. Consider a BAPA formula of size n with
m quantifier alternations. By Lemma 7 applying α takes 2O(n) steps
and produces a formula of size 2O(n) with m quantifier alternations.

Theorem 6 then allows deciding such formula in STA(∗, 22(2O(n))O(m)

,m),

which is STA(∗, 22O(mn)
,m).

Summarizing Lemma 5 and Lemma 8, taking into account that

2O(mn) is in 2nO(1)
for m ≤ n, we establish the desired theorem.

THEOREM 9. The validity of BAPA formulas is STA(∗, 22nO(1)

, n)-
complete.

5.4. Deciding BA as a Special Case of BAPA

We next analyze the result of applying the algorithm α to a pure BA

sentence F0. By a pure BA sentence we mean a BA sentence without
cardinality constraints, containing only the standard operations ∩,∪, c

and the relations ⊆,=. At first, it might seem that the algorithm α

main.tex; 12/07/2006; 11:49; p.19

20 Kuncak, Nguyen, Rinard

is not a reasonable approach to deciding BA formulas given that the
complexity of PA is worse than the corresponding of BA. However,
we show that the sentences PABA = {α(F0) | F0 is in BA} generated by
applying α to pure BA sentences can be decided using resources optimal
for BA (Kozen, 1980). The key observation is that if a PA formula is
in PABA, then we can use the bounds for quantified variables that are
smaller than the bounds in Fact 2.

Let F0 be a pure BA formula and let S be the number of set variables
in F0 (the set variables are the only variables in F0). Let l1, . . . , lq be
the free variables of the formula Gr(l1, . . . , lq) in the algorithm α. Then
q = 2e for e = S+1−r. Let w1, . . . , wq be integers specifying the values
of l1, . . . , lq. We then have the following lemma.

LEMMA 10. For each r where 1 ≤ r ≤ S, formula Gr(w1, . . . , wq) is
equivalent to formula Gr(w̄1, . . . , w̄q) where w̄i = min(wi, 2

r−1).

Proof. We prove the claim by induction. For r = 1, observe that the
translation of a quantifier-free part of the pure BA formula yields a PA

formula F1 whose all atomic formulas are of the form li1 + . . .+ lik = 0,

which are equivalent to
∨k

j=1 lij = 0. Therefore, the truth-value of F1

depends only on whether the integer variables are zero or non-zero,
which means that we may restrict the variables to interval [0, 1].

For the inductive step, consider the elimination of a set variable,
and assume that the property holds for Gr and for all q-tuples of non-
negative integers w1, . . . , wq. Let q′ = q/2 and w′

1, . . . , w
′

q′ be a tuple

of non-negative integers. We show that Gr+1(w
′

1, . . . , w
′

q′) is equivalent

to Gr+1(w̄
′

1, . . . , w̄
′

q′). We consider the case when Gr+1 is obtained by
eliminating an existential set quantifier, so

Gr+1 ≡ ∃+l1 . . . lq.

q′

∧

i=1

l′i = l2i−1 + l2i ∧ Gr

The case for the universal quantifier can be obtained from the proof for
the existential one by expressing ∀ as ¬∃¬. We show both directions of
the equivalence.

Suppose first that Gr+1(w̄
′

1, . . . , w̄
′

q′) holds. Then for each w̄′

i there

are u2i−1 and u2i such that w̄′

i = u2i−1 + u2i and Gr(u1, . . . , uq). We
define the witnesses w1, . . . , wq for existential quantifiers as follows. If
w′

i ≤ 2r, then w̄′

i = w′

i, so we use the same witnesses, letting w2i−1 =
u2i−1 and w2i = u2i. Let w′

i > 2r, then w̄′

i = 2r. Because u2i−1 + u2i =
2r, we have u2i−1 ≥ 2r−1 or u2i ≥ 2r−1. Suppose, without loss of
generality, u2i ≥ 2r−1. Then let w2i−1 = u2i−1 and let w2i = w′

i−u2i−1.
Because w2i ≥ 2r−1 and u2i ≥ 2r−1, by induction hypothesis we have

Gr(. . . , w2i, . . .) ⇐⇒ Gr(. . . , u2i, . . .) ⇐⇒ Gr(. . . , 2
r−1, . . .)

main.tex; 12/07/2006; 11:49; p.20

21

For w1, . . . , wq chosen as above we therefore have w′

i = w2i−1 +
w2i and Gr(w1, . . . , wq), which by definition of Gr+1 means that
Gr+1(w

′

1, . . . , w
′

q′) holds.

Conversely, suppose that Gr+1(w
′

1, . . . , w
′

q′) holds. Then there are

w1, . . . , wq such that Gr(w1, . . . , wq) and w′

i = w2i−1 + w2i. If w2i−1 ≤
2r−1 and w2i ≤ 2r−1 then w′

i ≤ 2r so let u2i−1 = w2i−1 and u2i = w2i.
If w2i−1 > 2r−1 and w2i > 2r−1 then let u2i−1 = 2r−1 and u2i = 2r−1;
we have u2i−1 + u2i = 2r = w̄′

i because w′

i > 2r. If w2i−1 > 2r−1 and
w2i ≤ 2r−1 then let u2i−1 = 2r − w2i and u2i = w2i. By induction
hypothesis we have Gr(u1, . . . , uq) ⇐⇒ Gr(w1, . . . , wq). Furthermore,
u2i−1 + u2i = w̄′

i, so Gr+1(w̄
′

1, . . . , w̄
′

q′) by definition of Gr+1.

THEOREM 11. The decision problem for PABA is in STA(∗, 2O(n), n).

Proof. Consider a formula F0 of size n with S variables. Then α(F0) =
GS+1. By Lemma 7, size(α(F0)) is in 2O(n) and α(F0) has at most
S quantifier alternations. By Lemma 10, it suffices for the outermost
quantified variable of α(F0) to range over the integer interval [0, 2S],
and the range of subsequent variables is even smaller. Therefore, the
value of each of the 2O(S) variables is given by O(S) bits. The values
of all bound variables in α(F0) can therefore be guessed in alternating
time 2O(S) using S alternations. The truth value of a PA formula for
given values of variables can be evaluated in time polynomial in the
size of the formula, so deciding α(F0) can be done in STA(∗, 2O(n), S),
which is bounded by STA(∗, 2O(n), n).

6. Eliminating Individual Variables from a Formula

Section 4 described an algorithm for BAPA that reduces all set quanti-
fiers in a BAPA sentence to integer quantifiers. The advantage of such
an algorithm is that it can be applied to combinations of BA with
extensions of PA that need not support quantifier elimination (see Sec-
tion 8.2). Moreover, this version of the algorithm made the complexity
analysis in Section 5 easier. However, as we discussed in Section 3.4,
there are uses for an algorithm that eliminates a quantified variable
from a formula with free variables, yielding an equivalent quantifier-
free formula. In this section we explain that the individual step α1 of
the algorithm α can be used for this purpose.

Quantifier elimination based on our algorithm is possible because
PA itself admits quantifier elimination. Therefore, after transforming a
set quantifier into an integer quantifier, we can remove the resulting

main.tex; 12/07/2006; 11:49; p.21

22 Kuncak, Nguyen, Rinard

integer quantifier and substitute back the variables constrained by li =
|si|. Denote this elimination of integer quantifiers by PAelim. Then the
algorithm α′, given by

separate ; α1 ; PAelim

eliminates one set or integer quantifier from a BAPA formula Qv.F ,
even if F contains free variables (see also (Kuncak and Rinard, 2004)
for details). Lemma 2 again implies the correctness of this approach.

Example. We illustrate the algorithm α′ on the example in Figure 10.
We use the naming convention given by the formula H for cardinalities
of Venn regions from Figure 13. After applying separate we obtain the
formula

∃e. ∃+l000, . . . , l111. H ∧
l111 + l011 + l101 + l001 = 1 ∧
l100 = 0 ∧ l011 + l001 + l010 = 0

After applying α1 we obtain the formula

∃l00, l01, l10, l11. l00 = |content′c ∩ contentc| ∧ l01 = |content′c ∩ content| ∧
l10 = |content′ ∩ contentc| ∧ l11 = |content′ ∩ content| ∧ G

where G is the PA formula

∃+l000, . . . , l111. l00 = l000 + l001 ∧ l01 = l010 + l011 ∧
l10 = l100 + l101 ∧ l11 = l110 + l111 ∧
l111 + l011 + l101 + l001 = 1 ∧
l100 = 0 ∧ l011 + l001 + l010 = 0

Applying quantifier elimination for PA and simplifications of the
quantifier-free formula, we reduce G to

l01 = 0 ∧ l10 ≤ 1 ∧ l11 + l10 ≥ 1

After substituting back the definitions of l00, . . . , l11 we obtain

|content′c ∩ content| = 0 ∧ |content′ ∩ contentc| ≤ 1 ∧

|content′ ∩ content| + |content′ ∩ contentc| ≥ 1

which can indeed be simplified to the result in Figure 10.

6.1. Reducing the Number of Integer Variables

The approaches for deciding BAPA described so far always introduce 2S

integer variables where S is the number of set variables in the formula.
We next describe observations that, although not an improvement in
the worst case, may be helpful for certain classes of formulas.

main.tex; 12/07/2006; 11:49; p.22

23

First, as pointed out in (Ohlbach and Koehler, 1998), if the in-
put formula entails any BA identities (which can be represented as
|b| = 0), then the number of non-empty Venn regions decreases, which
reduces the number of integer variables in the resulting PA formula,
and eliminates such atomic formulas b from further considerations.

Second, when eliminating a particular variable y, we can avoid
considering Venn regions with respect to all variables of the formula,
and only consider those variables x for which there exists an expres-
sion bi(x, y) where both x and y occur. This requires using a version
separate0 of separation that introduces integer variables only for those
terms |b| that occur in the BAPA formula that results from reducing any
remaining BA atomic formulas to the form |b| = 0. Like the form (1)
obtained by separate in Section 4, the result of separate0 contains a
conjunction of formulas |bi| = li with a PA formula, with two important
differences 1) in the case of separate0 the resulting formula is polynomial
in the original size and 2) bi are arbitrary BA expressions as opposed
to Venn regions. Let a1(y), . . . , aq(y) be those terms bi that contain
y, and let x1, . . . , xS1 be the free variables in a1(y), . . . , aq(y). When
eliminating quantifier Qy, it suffices to introduce 2S1 integer variables
corresponding to the the partitions with respect to x1, . . . , xS1 , which
may be an improvement because S1 ≤ S.

The final observation is useful if the number q of terms
a1(y), . . . , aq(y) satisfies the property 2q < S1, i.e. there is a large
number of variables, but a small number of BA terms containing them.
In this case, consider all Boolean combinations t1, . . . , tu of the 2q
expressions a1(0), a1(1), a2(0), a2(1), . . . , aq(0), aq(1). For each ai, we
have

ai(y) = (y ∩ ai(0)) ∪ (yc ∩ ai(1))

Each ai(0) and each ai(1) is a disjoint union of cubes over the BA

expressions t1, . . . , tu, so each ai(y) is a disjoint union of cubes over
the BA expressions y, t1, . . . , tu. It therefore suffices to introduce 22q

integer variables denoting all terms of the form y ∩ ti and yc ∩ ti, as
opposed to 2S1 integer variables.

7. Experience Using Our Decision Procedure for BAPA

Our initial experience with BAPA is in the context of the Jahob system
(Kuncak and Rinard, 2006) for verifying data structure consistency of
Java programs. Jahob parses Java source code annotated with formulas
in Isabelle syntax written in comments, generates verification condi-
tions, and uses decision procedures and theorem provers to discharge

main.tex; 12/07/2006; 11:49; p.23

24 Kuncak, Nguyen, Rinard

these verification conditions. Jahob contains interfaces to the interac-
tive theorem provers, first-order theorem provers, Nelson-Oppen style
theorem provers, as well as the Omega Calculator (Pugh, 1991) and
the LASH (Boigelot et al., 2005) decision procedures for PA.

Using Jahob, we generated verification conditions for several Java
program fragments that require reasoning about sets and their cardinal-
ities, for example, to prove the equality between the set representing
the number of elements in a list and the integer field size after they
have been updated, as well as several other examples from Section 3.
We found that the existing automated techniques were able to deal
with some of the formulas involving only sets or only integers, but not
with the formulas that relate cardinalities of operations on sets to the
cardinalities of the individual sets. These formulas can be proved in Is-
abelle, but require user interaction in terms of auxiliary lemmas. On the
other hand, our implementation of the decision procedure automatically
discharges these formulas.

Our initial experience indicates that a straightforward implemen-
tation of the algorithm α works fast as long as the number of set
variables is small; typical timings are fractions of a second for 4 or less
set variables and less than 10 seconds for 5 variables. More than 5 set
variables cause the PA decision procedure to run out of memory. (We
used the Omega Calculator to decide PA formulas because we found
that it outperforms LASH on the formulas generated from our exam-
ples.) On the other hand, the decision procedure is much less sensitive
to the number of integer variables in BAPA formulas, because they
translate into the same number of integer variables in the generated
PA formula.

Our current implementation makes use of certain formula transfor-
mations to reduce the size of the generated PA formula. We found
that eliminating set variables by substitution of equals for equals is an
effective optimization. We also observed that lifting quantifiers to the
top level noticeably improves the performance of the Omega Calculator.
These transformations extend the range of formulas that the current
implementation can handle. A possible alternative to the current ap-
proach is to interleave the elimination of integer variables with the
elimination of the set variables, and to perform formula simplifications
during this process. Finally, once we obtain a formula with only exis-
tential quantifiers, we can decide its satisfiability more efficiently using
the recent improvements for quantifier-free formulas (Section 8.3).

main.tex; 12/07/2006; 11:49; p.24

25

8. Further Observations

We next sketch some further observations about BAPA.

8.1. BAPA of Countably Infinite Sets

Note that our results also extend to the generalization of BAPA where
set variables range over subsets of an arbitrary (not necessarily finite)
set, which follows from the decidability of the first-order theory of the
addition of cardinals (Feferman and Vaught, 1959, Page 78); see (Zarba,
2005, Appendix A) for the complexity of the quantifier-free case. For
simplicity of formula semantics, we here consider only the case of all
subsets of a countable set, and argue that the complexity results we
have developed above for the finite sets still apply. We first generalize
the language of BAPA and the interpretation of BAPA operations, as
follows. Introduce a function inf(b) which returns 0 if b is a finite set
and 1 if b is an infinite set. Define |b| to be some arbitrary integer (for
concreteness, zero) if b is infinite, and the cardinality of b if b is finite.
A countable or a finite cardinal can therefore be represented in PA

using a pair (k, i) of an integer k and an infinity flag i, where we put
k = 0 when i = 1. The relation representing the addition of cardinals
(k1, i1) + (k2, i2) = (k3, i3) is then definable by formula

(i1 = 0∧ i2 = 0∧ i3 = 0∧k1 + k2 = k3) ∨ ((i1 = 1∨ i2 = 1)∧ i3 = 1∧k3 = 0)

Note that inf(x) = max(inf(x ∩ y), inf(x ∩ yc)), which allows the re-
duction of all occurrences of inf(b) expressions to occurrences where
b is a Venn region. Moreover, we have the following generalization of
Lemma 1.

LEMMA 12. Let b1, . . . , bn be disjoint sets, l1, . . . , ln, k1, . . . , kn be nat-
ural numbers, and p1, . . . , pn, q1, . . . , qn ∈ {0, 1} for 1 ≤ i ≤ n. Then
the following two statements are equivalent:

1. There exists a set y such that

n
∧

i=1

|bi ∩ y| = ki ∧ inf(bi ∩ y) = pi ∧ |bi ∩ yc| = li ∧ inf(bi ∩ yc) = qi

2.

n
∧

i=1

(pi = 0 ∧ qi = 0 ⇒ |bi| = ki + li) ∧
(inf(bi) = 0⇔(pi = 0 ∧ qi = 0)) ∧
(pi = 1 ⇒ ki = 0) ∧ (qi = 1 ⇒ li = 0)

main.tex; 12/07/2006; 11:49; p.25

26 Kuncak, Nguyen, Rinard

Proof. The case when pi = 0 and qi = 0 follows as in the proof of
Lemma 1. When pi = 1 or qi = 1 then bi contains an infinite set as a
subset, so it must be infinite. Conversely, an infinite set can always be
split into a set of the desired size and another infinite set, or into two
infinite sets.

The BAPA decision procedure for the case of countable set then
uses Lemma 12 and generalizes the algorithm α in a natural way. The
resulting PA formulas are at most polynomially larger than for the case
of finite sets, so we obtain a generalization of Theorem 9 to subsets of
a countable set.

8.2. BAPA and MSOL over Strings

The weak monadic second-order logic (MSOL) over strings is a decid-
able logic (Thatcher and Wright, 1968; Henriksen et al., 1995) that can
encode Presburger arithmetic by encoding addition using one successor
symbol and quantification over sets of elements. There are two impor-
tant differences between MSOL over strings and BAPA: (1) BAPA can
express relationships of the form |A| = k where A is a set variable
and k is an integer variable; such relation is not definable in MSOL
over strings; (2) when MSOL over strings is used to represent PA

operations, the sets contain binary integer digits whereas in BAPA the
sets contain uninterpreted elements. Note also that MSOL extended
with a construct that takes a set of elements and returns an encoding
of the size of that set is undecidable, because it could express MSOL
with equicardinality, which is undecidable by a reduction from Post
correspondence problem. Despite this difference, the algorithm α gives
a way to combine MSOL over strings with BA yielding a decidable
theory. Namely, α does not impose any upper bound on the complexity
of the theory for reasoning about integers. Therefore, α can decide an
extension of BAPA where the constraints on cardinalities of sets are
expressed using relations on integers definable in MSOL over strings;
these relations go beyond PA (Thomas, 1997, Page 400), (Bruyére et al.,
1994).

8.3. Quantifier-Free Fragment of BAPA

The consequence of the quantifier elimination property of BAPA is that
the formulas in the quantifier-free fragment of BAPA, denoted QFBAPA,
define the same class of relations as BAPA formulas (even though
QFBAPA formulas may be substantially larger than the corresponding
quantified BAPA formulas). It is therefore interesting to consider the
complexity of the satisfiability problem for QFBAPA. Existing algo-

main.tex; 12/07/2006; 11:49; p.26

27

rithms for QFBAPA (Zarba, 2005; Ohlbach and Koehler, 1998) run
in non-deterministic exponential time. This is the same time bound
obtained by running our algorithm α to produce exponentially larger
quantifier-free PA formula, guessing the truth values of conjuncts and
then using a non-deterministic polynomial time algorithm to solve the
resulting integer linear programming problem (Papadimitriou, 1981).
(Quantifier-free PA formulas can be solved using implementations such
as CVC Lite (Barrett and Berezin, 2004) and UCLID (Lahiri and Se-
shia, 2004).) Therefore, the worst-case complexity of α is no worse than
that of previously known algorithms.

Is it possible to decide QFBAPA formulas in less than non-
deterministic exponential time? Recently, as part of an ongoing work,
the first author of the present paper has shown that QFBAPA is solvable
in polynomial space. A version of these results is described in (Marnette
et al., 2005, Section 3). The result proves the following small model
property implying that it suffices to consider cardinalities of sets that
are at most exponential in formula size.

THEOREM 13. Let F be a QFBAPA formula of size n. Then F has a
solution if and only if it has a solution where all sets are subsets of a

set of cardinality 2nO(1)
, and all integer variables are bounded by 2nO(1)

.

Theorem 13 allows us to reduce, in non-deterministic polynomial time,
the satisfiability of any QFBAPA formula to the satisfiability of the
conjunction of equations of the form

|b1| = K1 ∧ . . . ∧ |bn| = Kn

where b1, . . . , bn are Boolean algebra expressions, and K1, . . . ,Kn are
binary-encoded non-negative constants. We call such constraint CBAC
constraints (Conjunction of Boolean Algebra expressions with Cardi-
nalities). In (Marnette et al., 2005, Section 3) we present a polynomial-
space algorithm that checks the satisfiability of CBAC constraints
without ever simultaneously introducing integer variables for all regions
in the Venn diagram. This yields a polynomial-space algorithm for
QFBAPA. A polynomial space algorithm means the ability to use QBF
solvers (Zhang and Malik, 2002; Cadoli et al., 2002) to decide QFBAPA,
and can be a significant improvement over non-deterministic expo-
nential time algorithm. However, there is no indication that QFBAPA

is PSPACE-hard or even coNP-hard: our preliminary experiments on
studying the structure of solutions of randomly generated CBAC con-
straints suggest that satisfiable constraints have solutions where only
a small number q of Venn regions is non-empty. This suggests an algo-
rithm that selects a subset of q Venn region cardinalities and generates

main.tex; 12/07/2006; 11:49; p.27

28 Kuncak, Nguyen, Rinard

an integer linear programming problem where the remaining 2n − q
variables are assumed to be zero. A computable polynomial upper
bound on q would yield an NP algorithm for QFBAPA.

9. Related Work

Our paper is the first result that shows a complexity bound for the
first-order theory of BAPA. A preliminary version of this paper appears
in (Kuncak et al., 2005; Kuncak and Rinard, 2004). The decidability for
BAPA, presented as BA with equicardinality constraints was shown in
(Feferman and Vaught, 1959), see Section 2. A decision procedure for a
special case of BAPA was presented in (Zarba, 2004c), which allows only
quantification over elements but not over sets of elements. (Ohlbach
and Koehler, 1998) also examine quantifier-free formulas and show how
to combine quantifier-free BA constraints with additional constraints
using “bridging functions”. Bridging functions satisfy homomorphism-
like properties and generalize the cardinality operator; we expect that
the quantifier-elimination techniques of our paper can be generalized in
this direction as well. (Revesz, 2004) presents quantifier elimination and
the decidability of a single-sorted version of BAPA that only contains
the set sort. Note that bound integer variables can be simulated using
bound set variables, but there are notational and clear efficiency reasons
to allow integer variables in BAPA.

Presburger arithmetic. The original result on decidability of PA is
(Presburger, 1929). The space bound for PA was shown in (Ferrante
and Rackoff, 1979). The matching lower and upper bounds for PA

were shown in (Berman, 1980), see also (Kozen, 1980, Lecture 24).
An analysis parameterized by the number of quantifier alternations is
presented in (Reddy and Loveland, 1978). Our implementation uses
quantifer-elimination based Omega test (Pugh, 1991). Among the de-
cision procedures for full PA, (Chaieb and Nipkow, 2003) is the only
proof-generating version, and is based on (Cooper, 1972). Decidable
fragments of arithmetic that go beyond PA are described in (Bozga
and Iosif, 2005; Bruyére et al., 1994).

Reasoning about Sets. The first results on decidability of BA of sets
are from (Loewenheim, 1915), (Ackermann, 1954, Chapter 4) and use
quantifier elimination, from which one can derive small model property.
(Kozen, 1980) gives the complexity of the satisfiability problem for
arbitrary BA. (Martin and Nipkow, 1989) study unification in Boolean
rings. The quantifier-free fragment of BA is shown NP-complete in
(Marriott and Odersky, 1994); see (Kuncak and Rinard, 2005) for a
generalization of this result using the parameterized complexity of the

main.tex; 12/07/2006; 11:49; p.28

29

Bernays-Schönfinkel-Ramsey class of first-order logic (Börger et al.,
1997, Page 258). (Cantone et al., 2001) gives an overview of several
fragments of set theory including theories with quantifiers but no car-
dinality constraints and theories with cardinality constraints but no
quantification over sets. The decision procedure for quantifier-free frag-
ment with cardinalities in (Cantone et al., 2001, Chapter 11) introduces
exponentially many integer variables to reduce the problem to PA.
Among the systems for interactively reasoning about richer theories
of sets are Isabelle (Nipkow et al., 2002), HOL (Gordon and Melham,
1993), PVS (Owre et al., 1992). First-order frameworks such as Athena
(Arkoudas et al., 2004) can use axiomatizations of sets along with
calls to resolution-based theorem provers (Voronkov, 1995; Weidenbach,
2001) to reason about sets.

Combinations of Decidable Theories. The techniques for com-
bining quantifier-free theories (Nelson and Oppen, 1979; Ruess and
Shankar, 2001) and their generalizations such as (Tinelli and Zarba,
2004; Zarba, 2004a; Zarba, 2005; Zarba, 2004b; Tiwari, 2000) are of
great importance for program verification. The present paper focuses on
quantified formulas, which add additional expressive power in writing
concise specifications. Among the general results for quantified formulas
are the Feferman-Vaught theorem for products (Feferman and Vaught,
1959) and term powers (Kuncak and Rinard, 2003a; Kuncak and Ri-
nard, 2003b). Description logics (Baader et al., 2003) also support sets
with cardinalities as well as relations, but do not support quantification
over sets. While we have found quantifier elimination to be useful, many
problems can be encoded in quantifier-free formulas, which motivates
the ongoing work in Section 8.3.

Analyses of Linked Data Structures. In addition to the new
technical results, one of the contributions of our paper is to identify
the uses of our decision procedure for verifying data structure consis-
tency. We have shown how BAPA enables the verification tools to reason
about sets and their sizes. This capability is particularly important for
analyses that handle dynamically allocated data structures where the
number of objects is statically unbounded (Møller and Schwartzbach,
2001; Yorsh et al., 2004; Sagiv et al., 2002). Recently, these approaches
were extended to handle the combinations of the constraints repre-
senting data structure contents and constraints representing numerical
properties of data structures (Rugina, 2004; Chin et al., 2003). Our
result provides a systematic mechanism for building precise and pre-
dictable versions of such analyses. Among other constraints used for
data structure analysis, BAPA is unique in being a complete algorithm
for an expressive theory that supports arbitrary quantifiers.

main.tex; 12/07/2006; 11:49; p.29

30 Kuncak, Nguyen, Rinard

10. Conclusion

Motivated by static analysis and verification of relations between data
structure content and size, we have presented an algorithm for deciding
the first-order theory of Boolean algebra with Presburger arithmetic
(BAPA), established the precise complexity of BAPA, showing that it
is identical to the complexity of PA, implemented the algorithm and
applied it to discharge verification conditions. Our experience indi-
cates that the algorithm is useful as a component of a data structure
verification system. Furthermore, we expect that the future study of
quantifier-free fragments of BAPA and its variations with non-integer
measures of sets might be of broader interest in the context of constraint
solving and complexity.

Acknowledgements

After writing (Kuncak and Rinard, 2004), we have received substantial
useful feedback: we thank Alexis Bes, who pointed out that (Feferman
and Vaught, 1959) establishes the decidability of BAPA; Dexter Kozen,
who pointed out that (Berman, 1980) proves the precise complexity
of PA that can be potentially applied to BAPA, thus improving the
space bound we established in (Kuncak et al., 2005; Kuncak and Ri-
nard, 2004); Peter Revesz, who pointed us out to his description of
the quantifier-elimination process (Revesz, 2004); and Viorica Sofronie-
Stokkermans, who pointed us to (Ohlbach and Koehler, 1998). We also
thank Chin Wei-Ngan, Andreas Podelski, Bruno Courcelle, as well as
the reviewers of CADE-20 and JAR for useful feedback.

References

Ackermann, W.: 1954, Solvable Cases of the Decision Problem. North Holland.
Arkoudas, K., K. Zee, V. Kuncak, and M. Rinard: 2004, ‘Verifying a File System

Implementation’. In: Sixth International Conference on Formal Engineering
Methods (ICFEM’04), Vol. 3308 of LNCS. Seattle.

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider
(eds.): 2003, The Description Logic Handbook: Theory, Implementation and
Applications. CUP.

Barrett, C. and S. Berezin: 2004, ‘CVC Lite: A New Implementation of the Coop-
erating Validity Checker’. In: R. Alur and D. A. Peled (eds.): Proceedings of the
16th International Conference on Computer Aided Verification (CAV ’04), Vol.
3114 of Lecture Notes in Computer Science. pp. 515–518. Boston, Massachusetts.

Berman, L.: 1980, ‘The Complexity of Logical Theories’. Theoretical Computer
Science 11(1), 71–77.

main.tex; 12/07/2006; 11:49; p.30

31

Boigelot, B., S. Jodogne, and P. Wolper: 2005, ‘An Effective Decision Procedure for
Linear Arithmetic Over the Integers and Reals’. ACM Trans. Comput. Logic
6(3), 614–633.

Börger, E., E. Grädel, and Y. Gurevich: 1997, The Classical Decision Problem.
Springer-Verlag.

Bozga, M. and R. Iosif: 2005, ‘On Decidability within the Arithmetic of Addition
and Divisibility’. In: FOSSACS’05.

Bruyére, V., G. Hansel, C. Michaux, and R. Villemaire: 1994, ‘Logic and p-
recognizable sets of integers’. Bull. Belg. Math. Soc. Simon Stevin 1, 191–238.

Bultan, T., R. Gerber, and W. Pugh: 1999, ‘Model-Checking Concurrent Systems
with Unbounded Integer Variables: symbolic representations, approximations,
and experimental results’. ACM Trans. Program. Lang. Syst. 21(4), 747–789.

Cadoli, M., M. Schaerf, A. Giovanardi, and M. Giovanardi: 2002, ‘An Algorithm
to Evaluate Quantified Boolean Formulae and Its Experimental Evaluation.’. J.
Autom. Reasoning 28(2), 101–142.

Cantone, D., E. Omodeo, and A. Policriti: 2001, Set Theory for Computing. Springer.
Chaieb, A. and T. Nipkow: 2003, ‘Generic proof synthesis for Presburger arithmetic’.

Technical report, Technische Universität München.
Chandra, A. K., D. C. Kozen, and L. J. Stockmeyer: 1981, ‘Alternation’. J. ACM

28(1), 114–133.
Chin, W.-N., S.-C. Khoo, and D. N. Xu: 2003, ‘Extending Sized Types with with

Collection Analysis’. In: ACM PEPM’03.
Cooper, D. C.: 1972, ‘Theorem Proving in Arithmetic without Multiplication’. In: B.

Meltzer and D. Michie (eds.): Machine Intelligence, Vol. 7. Edinburgh University
Press, pp. 91–100.

Dewar, R. K.: 1979, ‘Programming by Refinement, as Exemplified by the SETL
Representation Sublanguage’. ACM TOPLAS.

Feferman, S. and R. L. Vaught: 1959, ‘The First Order Properties of Products of
Algebraic Systems’. Fundamenta Mathematicae 47, 57–103.

Ferrante, J. and C. W. Rackoff: 1979, The Computational Complexity of Logical
Theories, Vol. 718 of Lecture Notes in Mathematics. Springer-Verlag.

Gordon, M. J. C. and T. F. Melham: 1993, Introduction to HOL, a theorem proving
environment for higher-order logic. Cambridge, England: Cambridge University
Press.

Henriksen, J., J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A.
Sandholm: 1995, ‘Mona: Monadic Second-order logic in practice’. In: TACAS
’95, LNCS 1019.

Hoare, C. A. R.: 1969, ‘An Axiomatic Basis for Computer Programming’. Commu-
nications of the ACM 12(10), 576–580.

Kapur, D.: 2004, ‘Automatically Generating Loop Invariants using Quantifier
Elimination’. In: IMACS Intl. Conf. on Applications of Computer Algebra.

Klarlund, N., A. Møller, and M. I. Schwartzbach: 2000, ‘MONA Implementation Se-
crets’. In: Proc. 5th International Conference on Implementation and Application
of Automata.

Kozen, D.: 1980, ‘Complexity of Boolean Algebras’. Theoretical Computer Science
10, 221–247.

Kozen, D.: 2006, Theory of Computation. Springer.
Kuncak, V., H. H. Nguyen, and M. Rinard: 2005, ‘An Algorithm for Deciding BAPA:

Boolean Algebra with Presburger Arithmetic’. In: 20th International Conference
on Automated Deduction, CADE-20. Tallinn, Estonia.

main.tex; 12/07/2006; 11:49; p.31

32 Kuncak, Nguyen, Rinard

Kuncak, V. and M. Rinard: 2003a, ‘On the Theory of Structural Subtyping’. Tech-
nical Report 879, Laboratory for Computer Science, Massachusetts Institute of
Technology.

Kuncak, V. and M. Rinard: 2003b, ‘Structural Subtyping of Non-Recursive Types
is Decidable’. In: Eighteenth Annual IEEE Symposium on Logic in Computer
Science.

Kuncak, V. and M. Rinard: 2004, ‘The First-Order Theory of Sets with Cardinality
Constraints is Decidable’. Technical Report 958, MIT CSAIL.

Kuncak, V. and M. Rinard: 2005, ‘Decision Procedures for Set-Valued Fields’. In: 1st
International Workshop on Abstract Interpretation of Object-Oriented Languages
(AIOOL 2005).

Kuncak, V. and M. Rinard: 2006, ‘An overview of the Jahob analysis system: Project
Goals and Current Status’. In: NSF Next Generation Software Workshop.

Lahiri, S. K. and S. A. Seshia: 2004, ‘The UCLID Decision Procedure’. In: CAV’04.
Lam, P., V. Kuncak, and M. Rinard: 2004, ‘Generalized Typestate Checking Using

Set Interfaces and Pluggable Analyses’. SIGPLAN Notices 39, 46–55.
Lam, P., V. Kuncak, and M. Rinard: 2005, ‘Generalized Typestate Checking for

Data Structure Consistency’. In: 6th International Conference on Verification,
Model Checking and Abstract Interpretation.

Loewenheim, L.: 1915, ‘Über Mögligkeiten im Relativkalkül’. Math. Annalen 76,
228–251.

Marnette, B., V. Kuncak, and M. Rinard: 2005, ‘On Algorithms and Complexity for
Sets with Cardinality Constraints’. Technical report, MIT CSAIL.

Marriott, K. and M. Odersky: 1994, ‘Negative Boolean Constraints’. Technical
Report 94/203, Monash University.

Martin, U. and T. Nipkow: 1989, ‘Boolean Unification: The Story So Far’. Journal
of Symbolic Computation 7(3), 275–293.

Møller, A. and M. I. Schwartzbach: 2001, ‘The Pointer Assertion Logic Engine’. In:
Programming Language Design and Implementation.

Nelson, G. and D. C. Oppen: 1979, ‘Simplification by Cooperating Decision
Procedures’. ACM TOPLAS 1(2), 245–257.

Nipkow, T., L. C. Paulson, and M. Wenzel: 2002, Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, Vol. 2283 of LNCS. Springer-Verlag.

Ohlbach, H. J. and J. Koehler: 1998, ‘How to Extend a Formal System with a
Boolean Algebra Component’. In: W. B. P.H. Schmidt (ed.): Automated De-
duction. A Basis for Applications, Vol. III. Kluwer Academic Publishers, pp.
57–75.

Owre, S., J. M. Rushby, and N. Shankar: 1992, ‘PVS: A Prototype Verification
System’. In: D. Kapur (ed.): 11th CADE, Vol. 607 of LNAI. pp. 748–752.

Papadimitriou, C. H.: 1981, ‘On the Complexity of Integer Programming’. J. ACM
28(4), 765–768.

Podelski, A. and A. Rybalchenko: 2005, ‘Transition Predicate Abstraction and Fair
Termination’. In: ACM POPL.

Presburger, M.: 1929, ‘Über die Vollständigkeit eines gewissen Systems der Aritme-
thik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt’.
In: Comptes Rendus du premier Congrès des Mathématiciens des Pays slaves,
Warsawa. pp. 92–101.

Pugh, W.: 1991, ‘The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis’. In: Supercomputing ’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing. pp. 4–13.

main.tex; 12/07/2006; 11:49; p.32

33

Reddy, C. R. and D. W. Loveland: 1978, ‘Presburger Arithmetic with Bounded
Quantifier Alternation’. In: ACM STOC. pp. 320–325.

Revesz, P.: 2004, ‘Quantifier-Elimination for the First-Order Theory of Boolean
Algebras with Linear Cardinality Constraints’. In: Proc. Advances in Databases
and Information Systems (ADBIS’04), Vol. 3255 of LNCS.

Ruess, H. and N. Shankar: 2001, ‘Deconstructing Shostak’. In: Proc. 16th IEEE
LICS.

Rugina, R.: 2004, ‘Quantitative Shape Analysis’. In: Static Analysis Symposium
(SAS’04).

Sagiv, M., T. Reps, and R. Wilhelm: 2002, ‘Parametric shape analysis via 3-valued
logic’. ACM TOPLAS 24(3), 217–298.

Skolem, T.: 1919, ‘Untersuchungen über die Axiome des Klassenkalküls and über
“Produktations- und Summationsprobleme”, welche gewisse Klassen von Aus-
sagen betreffen’. Skrifter utgit av Vidnskapsselskapet i Kristiania, I. klasse, no.
3, Oslo.

Thatcher, J. W. and J. B. Wright: 1968, ‘Generalized Finite Automata Theory with
an Application to a Decision Problem of Second-Order Logic’. Mathematical
Systems Theory 2(1), 57–81.

Thomas, W.: 1997, ‘Languages, Automata, and Logic’. In: Handbook of Formal
Languages Vol.3: Beyond Words. Springer-Verlag.

Tinelli, C. and C. Zarba: 2004, ‘Combining non-stably infinite theories’. Journal of
Automated Reasoning. (Accepted for publication).

Tiwari, A.: 2000, ‘Decision procedures in automated deduction’. Ph.D. thesis,
Department of Computer Science, State University of New York at Stony Brook.

Voronkov, A.: 1995, ‘The anatomy of Vampire (implementing bottom-up procedures
with code trees)’. Journal of Automated Reasoning 15(2), 237–265.

Weidenbach, C.: 2001, ‘Combining Superposition, Sorts and Splitting’. In: A. Robin-
son and A. Voronkov (eds.): Handbook of Automated Reasoning, Vol. II. Elsevier
Science, Chapt. 27, pp. 1965–2013.

Yorsh, G., T. Reps, and M. Sagiv: 2004, ‘Symbolically Computing Most-Precise
Abstract Operations for Shape Analysis’. In: 10th TACAS.

Zarba, C. G.: 2004a, ‘The Combination Problem in Automated Reasoning’. Ph.D.
thesis, Stanford University.

Zarba, C. G.: 2004b, ‘Combining Sets with Elements’. In: N. Dershowitz (ed.): Ver-
ification: Theory and Practice, Vol. 2772 of Lecture Notes in Computer Science.
pp. 762–782.

Zarba, C. G.: 2004c, ‘A Quantifier Elimination Algorithm for a Fragment of Set
Theory Involving the Cardinality Operator’. In: 18th International Workshop
on Unification.

Zarba, C. G.: 2005, ‘Combining Sets with Cardinals’. Journal of Automated
Reasoning 34(1).

Zhang, L. and S. Malik: 2002, ‘Conflict driven learning in a quantified Boolean
Satisfiability solver’. In: ICCAD ’02: Proceedings of the 2002 IEEE/ACM in-
ternational conference on Computer-aided design. New York, NY, USA, pp.
442–449.

main.tex; 12/07/2006; 11:49; p.33

main.tex; 12/07/2006; 11:49; p.34

