
A Language for Role Specifications

Viktor Kuncak, Patrick Lam, and Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
{vkuncak, plam, rinard}@lcs.mit.edu

Abstract. This paper presents a new language for identifying the chang-
ing roles that objects play over the course of the computation. Each ob-
ject’s points-to relationships with other objects determine the role that it
currently plays. Roles therefore reflect the object’s membership in specific
data structures, with the object’s role changing as it moves between data
structures. We provide a programming model which allows the developer
to specify the roles of objects at different points in the computation. The
model also allows the developer to specify the effect of each operation
at the granularity of role changes that occur in identified regions of the
heap.

1 Introduction

In standard type systems for object-oriented languages, each object is created as
an instance of a specific class, with the object’s type determined by that class.
Because the object’s class does not change, the object has the same type for its
entire existence in the computation. This property limits the ability of the type
system to capture dynamically changing object properties. Specifically, a given
object may play many different roles during its lifetime in the computation,
with the distinctions between these roles crucial to the computation’s safety
and correctness. The inability of the type system to model these changing roles
prevents it from capturing these important distinctions.

This paper presents a new kind of type system, called a role system, which
enables a developer to express the different roles that each object plays during its
lifetime in the computation. The role of each object is determined by its points-
to relationships with other objects. As these relationships change, the object’s
type changes to reflect its changing role in the computation. Our system can
therefore capture important distinctions between objects of the same class as
they play different roles in the computation.

Because roles are determined by the linking relationships, role changes often
correspond to movements between data structures. Our role system is therefore
? This research was supported in part by DARPA Contract F33615-00-C-1692, NSF

Grant CCR00-86154, NSF Grant CCR00-63513, and an NSERC graduate scholar-
ship.

designed to capture the linking relationships at a level of precision that makes it
possible to track the removals and insertions that implement movements between
data structures. We realize this goal by providing three mechanisms:

1. Role Definitions: The role definitions specify the referencing relationships
for each role. For all references to an object o playing a given role, the role
definition specifies the field where the reference to o is stored and the role of
the object containing this reference. On the other hand, for each reference
originating at the object playing the role, the role definitions specify the
roles of the objects to which it refers. The role definitions therefore provide
complete heap aliasing information for each object at the granularity of roles.

2. Role Declarations: The programmer can declare the role of the object to
which each local variable or parameter refers. In effect, these role declara-
tions express additional application-specific safety properties not captured
by standard type systems.

3. Operation Effects: The programmer can declare how operations change
the roles of the objects that they access, providing useful information about
the effect of each operation at the granularity of roles.

2 Examples

We next present several examples that illustrate the role specification language.
The first example illustrates how roles capture distinctions that arise from the
semantics of the underlying application domain. The second example illustrates
how roles capture shape invariants of linked data structures at sufficient precision
to capture removals (and corresponding insertions) from the data structure.

2.1 Aircraft Example

Our first example illustrates how roles can capture the distinction between air-
craft that are parked at a gate, aircraft that are taxiing on the ground, and flying
aircraft. Each parked or taxiing aircraft is associated with an airport, with the
ground controllers at the airport responsible for its movements. Flying aircraft
are not associated with a specific airport; instead, the controllers at a control
center are responsible for its flight path.

Aircraft are represented in the system by instances of the Aircraft class from
Figure 1. Each Aircraft object has two instance variables: cc is its control center
when it is flying, and ap is its airport when it is parked or taxiing. Figure 1 also
presents the definitions of the roles that Aircraft objects can play. The Parked
and Taxiing role definitions specify that the ap field of each Parked and Taxiing
aircraft refers to a specific, non-null Airport object where the aircraft is located.
The cc field is null for objects playing these roles, as an airport is controlling
these aircraft.

Conceptually, each role has a set of slots filled by incoming references from
other objects; the role definitions specify the number of slots and the roles and

fields of the references that may fill each slot. In our example, each Parked
aircraft has an incoming slot filled by a reference from the Gate object where
the aircraft is parked; this reference is the only heap reference to a Parked
aircraft. Taxiing aircraft have a slot filled by a reference from the runway that
the aircraft is on; this reference is the only heap reference to a Taxiing aircraft.
The cc field of Flying aircraft refers to a non-null ControlCenter object that
represents the control center responsible for the aircraft’s flight plan; the ap field
is null. Flying aircraft have a single slot, filled by a reference from the controlling
center’s list of aircraft.

In addition to the textual representation, Figure 1 presents a graphical repre-
sentation of the roles and their referencing relationships. Each box in the picture
represents either a role or a class. Arrows with closed heads represent references
between objects, while arrows with open heads represent the partition of a class
into the roles that objects from that class can play.

class Aircraft {

ControlCenter cc;

Airport ap;

}

role Parked of Aircraft {

fields ap: Airport, cc: null;

slots Gate.p;

}

role Taxiing of Aircraft {

fields ap: Airport, cc: null;

slots Runway.p;

}

role Flying of Aircraft {

fields cc: ControlCenter, ap: null;

slots ControlCenterListNode.aircraft;

}

Aircraft

ControlCenter Airport

Flying Taxiing Parked

GateRunway

controlCenterListNode

p pap apcc

aircraft

Fig. 1. Aircraft Example Role Definitions

The developer can use roles to improve the precision of operation interfaces.
Figure 2 presents a sample operation on an aircraft. The land operation executes
when an aircraft lands at an airport. The parameter declarations state that
landing aircraft must be playing the Flying role. The effects declarations specify
that control of the landing aircraft passes from the control center to the airport,
with the aircraft’s role changing from Flying to Taxiing. Other operations
(takeoff, pushback, etc.) place similar requirements on the roles that their
parameters play and have similar effects on these roles. From these operations,
it is possible to automatically extract the role transition diagram for Aircraft
objects, which is presented in Figure 3.

void land(Flying p, Runway r, Airport a)

effects { p.ap = a; p.cc = null; r.p = p;

roleChange(p : Taxiing); }

{

p.ap = a; p.cc = null; r.p = p;

roleChange(p : Taxiing);

}

Fig. 2. The land Operation

ParkedTaxiingFlying

land

takeoff

gate

pushback

Fig. 3. Role Transition Diagram for Aircraft Objects

2.2 Doubly Linked List Example

This example illustrates the use of roles with a simple doubly-linked list data
structure. The data structure has a dummy header node followed by some inner
nodes which refer to the elements stored in the list. Figure 4 presents the role
definitions for the list data structures. The nodes in the linked list are all objects
of the doubleNode class, which has three roles. The dummy header plays the
doubleHeader role, which requires the header to have a null content field. Inner
nodes play the doubleInner role, which require the inner nodes to have a non-
null content field. An object playing the doubleNode role can play either the
doubleHeader or doubleInner role. Finally, the soloNode is a node that has
been deleted from the list.

The role definitions for the doubleHeader and doubleInner roles require the
next and prev fields of objects playing these roles to point to non-null objects
playing either the doubleHeader or doubleInner role, and that prev.next and
next.prev paths terminate at the object where they started, i.e., the two links
are inverses. The next and prev fields of objects playing the soloNode role are
null, and there are no heap references to soloNode roles.

We next discuss the removal of a node from a doubleNode list. The procedure
navigates the list until it reaches the node to remove or returns back to the header
node. If it finds the node to remove, it removes it, changing the node’s role from
doubleInner to soloNode. The effects statement of the remove operation states
that the operation may set the content field of one of the nodes in the list to
null and change the role of a list node to soloNode. The operation may also
read and write some of the fields of the nodes in the list.

class doubleNode {

doubleNode next, prev;

Element content;

}

role doubleHeader of doubleNode {

fields next: doubleHeader | doubleInner,

prev: doubleHeader | doubleInner, content: null;

slots (doubleHeader | doubleInner).prev,

(doubleHeader | doubleInner).next;

identities prev.next, next.prev;

}

role doubleInner of doubleNode {

fields next: doubleHeader | doubleInner,

prev: doubleHeader | doubleInner, content: stored;

slots (doubleHeader | doubleInner).prev,

(doubleHeader | doubleInner).next;

identities prev.next, next.prev;

}

role soloNode of doubleNode {

fields next: null, prev: null;

slots ;

}

role stored of Element {

slots doubleInter.content;

}

role soloElem of Element {

slots ;

}

Fig. 4. Roles for the Circular Linked List

void remove(doubleHeader d, stored c)

effects {

read(d.next);

(([x, y : d.next*] x.* = y;

[x : d.next*] x.content = null; changeRole(x : soloNode);

[x : d.next*] read(x.*);

changeRole(c : soloElem)

) | skip) }

{

doubleNode n = d.next;

do {

if (n.content == c) {

assert(n : doubleInner);

doubleNode nn = n.next, np = n.prev;

nn.prev = n.prev; np.next = n.next;

n.next = null; n.prev = null;

n.content = null;

changeRole(n : soloNode);

changeRole(c : soloElem);

return;

}

n = n.next;

} while (n != d);

}

Fig. 5. Code for Removing a Node from a Doubly Linked List

3 The Role Definition Language

We next present the full role definition language.

3.1 Basic Constraints

The heart of the role definition language is a set of basic constraints that the
programmer can use to identify the relationships that define a role. There are
several kinds of constraints:

Field constraints: Each field constraint is of the form

field : role1| · · · |rolek

where field is the name of a field in the object and role1 through rolek are the
names of roles. If this constraint appears in the definition of a given role, all
objects playing the role have a field named field that refers to an object playing
one of the roles role1 through rolek.

Slot constraints: Each role has a number of slots, or incoming references.
There is a slot constraint associated with each slot that defines the kinds of
references that can fill the slot. Each slot constraint has the form

role1.field1 | · · · | rolek.fieldk

where role1 through rolek are role names and field1 through fieldk are field names.
If a given object is playing a role whose definition contains this constraint, there
must exist an i such that the field fieldi in some object playing role rolei contains
a reference to the given object.

Identity constraints: Each identity constraint is of the form field1.field2, where
field1 and field2 are two field names. If this constraint appears in the definition
of a given role and an object o is playing the role, o.field1.field2 refers back to o.
The standard example is a doubly linked list node l, where l.next.prev = l.

Property constraints: Each property constraint consists of a predicate over
the primitive fields (integers, booleans, doubles, etc.) of the object. When an
object satisfies a role which contains some property constraint p, then p must
evaluate to true on this object. In this way, properties allow the specification of
user-defined abstractions of object state.

Acyclicity constraints: Each acyclicity constraint is a specification of the
form regExp, where regExp is a regular expression over the field names. Given
an object playing the role, this constraint states that there are no cycles in the
subgraph obtained by following paths that 1) start from the given object and 2)
conform to the regular expression.

Figure 6 summarizes the syntax for basic role definitions.

role r{

fields f1 :r11 | r12 | · · · | r1p1 ,
· · ·
fn :rn1 | rn2 | · · · | rnpn ;

slots r′11.f
′
11 | · · · | r′1q1 .f′1q1 ,

· · ·
r′m1.f

′
m1 | · · · | r′mqm

.f′mqm

identities f1.g1, . . . , fk.gk;
properties p1, . . . , pl;
acyclic regExp1, . . . , regExpt

}

Fig. 6. General Form of Basic Role Specification

3.2 Multislots

An object of basic role with k slots requires exactly k references from other
objects. In some cases an object may be referred to by a statically undetermined
number of other objects. This possibility can be specified using multislots.

multislots role1.field1, . . . , rolek.fieldk;

A multislot allows arbitrary number of references of types role1.field1 through
rolek.fieldk. All references must be distinct and they must also to be distinct
from all references mentioned in the slots declaration.

3.3 Compound Roles

As described so far, each object plays a single role at any given time, with its
role changing over time as it moves between data structures and its relationships
with other objects change. It is also sometimes useful for an object to play
multiple roles at the same time. For example, an object may participate in
both a linked list and a tree, playing the linked list and tree roles at the same
time. We support this concept by allowing the programmer to define compound
roles, which combine multiple roles into a single new role. Syntactically, the
programmer declares a compound role as follows.

role r = r1 + . . . + rn ;

The fields and slots of the role r are the disjoint union of the fields and slots of
roles r1 through rn. A object of role r satisfies all identity, property, and acyclicity
constraints of roles r1 through rn.

3.4 Parameterized Roles

It is useful to parameterize roles with respect to other roles or with respect to
individual references.

Role Parameters allow the definition of a role to be parametrized by names of
other roles. This is a form of parametric polymorphism for role definitions. For
example, a list can be parametrized by the role of its elements. Role parameters
are introduced by < > brackets in the role definition. Once introduced, role
parameters can be used inside the role definition in all places where a fixed role
name is expected. In order to be used as an ordinary role, a parametrized role
needs to be supplied with actual role arguments, written in < > brackets.

role List<T> {

fields first : ListNode<T>;

}

role ListNode<T> {

fields next : ListNode<T> | null,

elem : T;

slots ListNode<T>.next | List<T>.first;

}

role Airport {

fields landed : List<Aircraft>;

}

Fig. 7. Parametrization by Roles

Reference Parameters allow role definitions to be parametrized by individual
references from some object, where the identity of the object may not be known
until run-time. This allows very fine-grained role definitions, suitable even for
descriptions of nested data structures. Reference parameters are introduced into
role definitions using [] brackets after the role name. Reference parameters
can be used in slots or to instantiate other reference-parametrized roles. Every
reference-parametrized role must be instantiated with an appropriate number of
reference arguments supplied in [] brackets. Arguments can be field names or
other role parameters.

The example in figure 8 illustrates the use of reference parameters. The
GraphList role represents a list of disjoint graphs: there are no edges between
nodes of graphs reachable from different nodes of the GraphListNode role. Nodes
of the list are represented by objects with GraphListNode role. Each graph is
made up of GraphNodes. The disjointness of the graphs is ensured by parametriz-
ing the GraphNode role.

Reference parameters for roles, unlike role parameters, cannot in general be
eliminated by source-to-source transformation at the role definition time. Note,

role GraphList {

fields first : GraphListNode;

}

role GraphListNode {

fields next : GraphListNode | null,

graph : GraphNode[graph];

slots GraphListNode.next | GraphList.first;

}

role GraphNode[f] {

fields succ : List<GraphNode[f]>

slots f | ListNode<GraphNode[f]>.elem;

}

Fig. 8. Parametrization by References: List of Disjoint Graphs

however, that parametrization by individual references does not prevent the
static analysis of data structures. If, for references o1.f1 and o2.f2, either f1 6= f2

or the alias analysis implies o1 6= o2, then two data structures parametrized by
roles o1.f1 and o2.f2 are known to be disjoint.

3.5 Roles and Classes

Our role system can be realized as a refinement of a static class system where
each role is a refinement of some class, with one class being refined into multiple
roles. To indicate that a role rl refines a class cl, we write the name of c after the
definition of role r.

role rl of cl { . . . }

We note that it is also possible to use roles as a stand-alone type system.

4 The Role Programming Model

Due to the fine-grained nature of load statements x.f=y and store statements
x=y.f, role constraints tend to be temporarily violated at certain program points.
In this section we provide a programming model that gives the minimal require-
ments for a program to be role correct. A static program analysis can enforce a
stronger role checking policy; it may not accept a weaker role checking policy.
We assume a type safe programming language with a clean memory model, such
as Java [5]. In the absence of acyclicity constraints, at any given program point,
the set of all objects on the heap can be partitioned into:

1. onstage objects which are referenced by at least one local variable of the
currently executing procedure;

2. offstage objects which are not referenced by any of the local variables of
the currently executing procedure.

Only onstage objects can have their role constraints temporarily violated. More
precisely, we have the following invariant.

roleDef ::= "role" roleName
("<" roleParams ">")? ("[" refParams "]")? "of"ClassName "{"
("fields" fieldDecls ";")?
("slots" slotDecls ";")?
("multislots"multislotDecl ";")?
("identities" identDecls ";")?
("acyclic" acyclicDecls ";")? "}"

| "role" roleName "=" disjRole ";"
| "role" roleName "=" roleSum ";"

fieldDecls ::= fieldDecl | fieldDecls "," fieldDecl
fieldDecl ::= field ":" disjRole
disjRole ::= role | disjRole "|" role

slotDecls ::= slotDecl | slotDecls "," slotDecl
slotDecl ::= reference | slotDecl "|" reference

multislotDecl ::= reference | multislotDecl "," reference
identDecls ::= identDecl | identDecls "," identDecl
identDecl ::= field "." field

acyclicDecls ::= acyclicDecl | acyclicDecls "," acyclicDecl
acyclicDecl ::= regExp

reference ::= role "." field
roleSum ::= role | roleSum "+" role

role ::= roleName("<" roleArg ">")? ("[" refArg "]")?
roleArg ::= role | roleArg "," role
refArg ::= field | refParam

roleParams ::= ID | roleParams "," ID
refParams ::= ID | refParams "," ID

Fig. 9. Syntax of Role Specifications

Local Role Consistency Invariant: At every program point, there exists an
assignment of roles to all objects of the heap such that the constraints for all
offstage objects are satisfied.

Next, we introduce the notion of program checkpoints. The checkpoints in-
clude at least procedure entry, procedure exit, and procedure call points. They
may also include additional program points specified by the programmer using
the roleCheck() command.

Global Role Consistency Invariant: At every program checkpoint, there
exists an assignment of roles to all objects of the heap such that the constraints
for all objects are satisfied.

Note that it is not neccessary to have a checkpoint in every loop of the
control-flow graph. This allows the verification of nonlocal changes to the heap
without complex global loop invariants.

Role changes to onstage objects are specified using the changeRole construct.
The statement changeRole(x : r) changes the current role of the onstage ob-
ject o, referenced by local variable x, to role r. Local role consistency implies that
the constraints of all offstage objects adjacent to o must be consistent with the
new role of o. (The consistency of the object o with its own role is not checked
until o goes offstage, or until a checkpoint is reached.)

In some cases it is useful to change roles of multiple offstage objects, without
bringing them onstage first. The changeRoles statement is used for this purpose.
It specifies a regular expression denoting a region of the heap, and a set of role
transitions to be performed on this region. Every role transition specifies an
initial role and a final role. As in Section 5, a regular expression denotes all
objects reachable from the given variable without passing though other variables
in the current scope.

statement ::= . . .
| "changeRole" "(" var ":" role ")" onstage role change
| "changeRoles" "(" regExp "," "{"roleTrans"}" ")" offstage role changes
| "roleCheck()" global role check

roleTrans ::= roleTrans "," roleTran role transition list
roleTran ::= role1 "->" role2 role transition

Fig. 10. Role Changing Statements

Acyclicity Constraints: Acyclicity constraints introduce the need to take into
account the reachability of one onstage object from another to ensure that the
program does not introduce a cycle into a region of the heap that the roles
require to be free of cycles.

5 The Invariant Specification Language

Invariants allow the programmer to specify properties that hold at a given pro-
gram point. The assert statement is used to enforce invariants. An invariant is
a propositional formula over atomic properties. Atomic properties allow stating
1) roles of objects at a given program point; 2) aliasing between two given ref-
erences; and 3) an upper bound on the set of paths between two objects in the
current heap.

statement ::= . . .
| "assert" "(" prop ")" assertion

prop ::= atomic atomic proposition
| "!" prop negation
| prop1 "||" prop2 disjunction
| prop1 "&&" prop2 conjunction

atomic ::= obj1 ":" role role assertion
| obj1 "==" obj2 aliasing
| obj1 "*>" obj2 ":" regExp reachability

obj ::= var | obj "." field object reference
regExp ::= "empty" | "none" empty path, empty set

| field single field
| regExp1 "." regExp2 concatenation
| regExp1 "|" regExp2 union
| regExp "*" Kleene star
| regExp "&" Infinite paths

Fig. 11. Invariant Specifications

Roles at a given program point are asserted by the proposition obj : role. This
allows the developer to verify the statically computable role of an object at a
given program point.

To specify that objects obj1 and obj2 must be aliased, the assertion obj1==obj2
is used. Objects are referred to using a sequence of fields starting from pro-
gram variables. To specify that obj1 and obj2 must not be aliased, the assertion
! (obj1 ==obj2) is used. Omitting the aliasing relation between these two objects
allows for both cases. Note that both must and may aliasing information can be
specified.

The expression obj1 *> obj2 denotes the set of all finite and infinite directed
paths in the heap that lead from obj1 to obj2 without going through any on-
stage objects. (Paths that may pass through onstage objects can be split into
segments that pass only through offstage objects.) Concrete sets of paths are
specified using regular expressions, extended with the & operator, which al-
lows the specification of infinite paths. This allows the precise specification of
cyclicity. The symbol ":" denotes path subset, so obj1 *> obj2 : regExp gives

may-reachability information in the form of an upper bound on the set of paths
between two objects. For example, in the context of variables x and y, the con-
straint x *> y : none implies that any sequence of operations that has access
only to x cannot perform structural modifications on the object pointed to by
y. Using negation, it is possible to express must reachability information, which
is a poweful tool when combined with aliasing constraints in role definitions,
allowing the analysis of nonlocal operations on tree-like data structures.

6 Procedure Specifications

In this section we present the sublanguage for specifying procedure effects. It is
designed to convey detailed yet concise procedure summaries which can be used
as a basis for a compositional flow-sensitive interprocedural analysis with strong
updates. The use of procedure summaries allows the use of precise analysis tech-
niques inside procedures while retaining an overall linear analysis complexity in
the total size of the program. Among our design goals for procedure specifications
were:

1. the ability to approximate incremental changes to the regions of the heap;
2. easy instantiation of procedure specification in the context of the caller;
3. the ability to precisely specify the effects of simple procedures that perform

local transformations on the heap;
4. the ability to specify aliasing contexts among procedure parameters as well

as regions of heap reachable from parameters.

The first goal led us to a language whose primitives are local effects similar to
loads and stores. These effects can be combined using nondeterministic choice,
and their location specified using regular expressions. The second goal implied
the decision to interpret all regular expressions in a procedure specification with
respect to the state of the heap at procedure invocation time. The effects of
simple procedures can be easily specified as a combination of elementary effects.
The procedure contexts can be specified in a flexible way using the conditional
effect construction. The syntax of procedure effects is given in figure 12.

Formally, an effect with no free variables is a binary relation between the
initial heap and the final heap. We define the following hierarchy of effects: 1)
primitive effects 2) simple effects 3) effects. Each class includes the previous ones.

Primitive effects are the building blocks of all effects. A write effect corre-
sponds to a store statement or modification of a primitive field. A read effect
specifies a load statement or read of a primitive field of a given object, without
specifying which local variable receives the value. The role change effects specify
a change of roles for one or more objects and correspond to the changeRole
and changeRoles statements in the procedure. The skip statement denotes an
empty effect; it does nothing. The expression fail denotes the effect which al-
ways fails. It is allowed to call the procedure only from contexts for which the
procedure effect does not fail.

effect ::= simpleEffect simple effect
| effect1 "|" effect2 nondeterministic choice
| effect1 ";" effect2 sequence
| prop "->" effect conditional effect
| "[" bindings "]" simpleEffect variable bindings
| simpleEffect "*" iteration

simpleEffect ::= primitive primitive effect
| simpleEffect1 "|" simpleEffect2 nondeterministic choice
| simpleEffect1 ";" simpleEffect2 sequence
| prop "->" simpleEffect conditional simple effect

primitive ::= obj "." fieldSpec "=" valSpec write
| "read" "(" obj "." fieldSpec ")" read
| "changeRole" "(" var ":" role ")" onstage role change
| "changeRoles" "(" regExp "," { roleTrans} ")" offstage role changes
| "skip" empty effect
| "fail" failure

bindings ::= binding | bindings "," binding binding sequence
binding ::= var ":" "regExp" existing object binding

| var ":" "new" role new object binding
valSpec ::= obj | "null" | "any" value specification

fieldSpec ::= field | "any" field specification
obj ::= var | paramRef object

paramRef ::= param | global | paramRef "." field object at fixed path

Fig. 12. Procedure Effects

Objects can be referred to via a fixed sequence of field names starting from
parameters (and global variables), or via a variable bound to a region of the heap
or a new object identifier. In both write and read effects it is possible to abstract
away from the value written or the field name by using the any keyword.

Simple effects are built out of primitive effects using nondeterministic choice,
sequence, and conditional. The nondeterministic choice operator "|" specifies
the union of the effect relations. In the expression effect1 | effect2, both effect1
and effect2 can occur; the called precedure is free to choose either one of them.
The sequence of the effects effect1; effect2 denotes execution of effect1 followed
by the execution of effect2. This corresponds to the composition of the effect
relations. The conditional effect prop → effect is the restriction of effect to the
states which satisfy the proposition prop. The effect relation acts as the identity
on all states for which prop predicate is not satisfied. The syntax for propositions
is the same as in Section 5.

Effects are built out of simple effects using variable binding and iteration in ad-
dition to nondeterministic choice, sequence, and conditional. A variable binding
specifies a list of bindings for the free variables of an effect expression. A variable
can be bound either to a nondeterministically chosen object in the region of the
initial heap specified by a given regular expression (notation var : regExp), or to
a newly allocated object of a given role (notation var : new role). The first form
summarizes structural changes of a given region of the heap. The second form
allows naming of objects created inside the procedure. This is important since
new objects are often incorporated into existing data structures, so that effects
that involve them determine the reachability properties of the heap after the
procedure execution. The iteration operator * denotes repetition of the effect an
unspecified number of times. It can be used to summarize the effect of loops in
the procedure.

7 Parallelization with Roles

It is possible to use the role definitions and operation effect statements as a basis
for the automatic parallelization of programs that manipulate linked data struc-
tures. Because the role definitions characterize the aliasing relationships in which
objects engage, the compiler can use the role definitions to discover computations
that access disjoint regions of recursive data structures. The role definitions of the
objects in a tree data structure, for example, enable the compiler to determine
that different subtrees rooted at the same node are disjoint. The combination of
this information with the operation effects information enables the compiler to,
for example, parallelize standard recursively-defined computations that update
tree nodes but do not change the structure of the tree. Similar transformations
are possible for other computations that access linked data structures.

8 Related Work

The concept of role models as a generalization of the static class system has
been present in the object modelling community for some time [13], but usually
with no formal relationship with program code. The idea of static analysis of
types which change at run-time was explored in [17], but without any treatment
of relationships between objects in the heap. A system for object reclassifica-
tion is presented in [3], but the class changes are designed to be transparent to
aliasing; in our approach, the roles change when the aliases change, which is a
requirement for reasoning about the role changes that take place when objects
move between data structures. Our system also associates a set of invariants
with the current role of every object, allowing stronger structural properties
to be expressed. Another difference is that implementation of the language in
[3] is based on performing additional run-time checks whereas our language is
primarily an interface to a static program analysis system.

The sublanguage we use for specifying context-specific invariants is similar
to the logic described in [1] which also explains the relationship with [8]. A more
general system used for dependence testing is described in [9].

There appears to be surprisingly little work on languages for describing pre-
cise effects procedures with respect to the heap. The importance of procedure
specifications for pointer analysis was indicated in [14]. A language for annotat-
ing software libraries is described in [6]. Effects systems in general were used in
functional languages with side effects [10]. Our specification language bears some
similarities to propositional dynamic logic [7]. Similarly to [4], our effect language
specifies operations on heap. Unlike graph rewrite rules, our effect specifications
are based on primitive effects which correspond to statements in imperative pro-
grams. The effects of complex procedures also tend to be more nondeterministic
than graph rewrite rules due to their approximate nature.

Although the focus in this paper is on the specification language, the ana-
lyzability of the language was our major concern. The techniques useful for role
analysis are discussed in [15], [12], [4]. More restrictive approaches rely on the
extensions of linear type systems or on ownership types [16], [11], [2].

9 Conclusion

We have proposed a language for specifying invariants of objects which move
between dynamically changing data structures. We have given the syntax and
semantics of the language and illustrated its use on several examples.

The role definition sublanguage enables the classification of objects according
to their membership in different data structures as well as the specification of
some essential data structure heap invariants. The invariant specification sublan-
guage allows the communication of additional context-specific reachability and
aliasing properties. Finally, the procedure effect sublanguage is designed to cap-
ture precise effects of short procedures and to summarize complex modifications
performed in regions of the heap reachable from procedure parameters.

We have constructed this language to serve as a foundation for a compo-
sitional flow-sensitive interprocedural program analysis. Such an analysis can
increase a programmer’s confidence in program correctness. Moreover, it can
enable a variety of program transformations.

References

1. Michael Benedikt, Thomas Reps, and Mooly Sagiv. A decidable logic for linked
data structures. In Proc. 8th European Symposium on Programming, 1999.

2. David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible
alias protection. In Proc. 13th Annual Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 1998.

3. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle:
Dynamic object re-classification. In Proc. 15th European Conference on Object-
Oriented Programming, LNCS 2072, pages 130–149. Springer, 2001.

4. Pascal Fradet and Daniel Le Metayer. Shape types. In Proc. 24th ACM POPL,
1997.

5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Sun Microsystems, Inc., 2001.

6. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software
libraries. In Second Conference on Domain Specific Languages, 1999.

7. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
Cambridge, Mass., 2000.

8. Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. Abstract descrip-
tion of pointer data structures: An approach for improving the analysis and opti-
mization of imperative programs. ACM Letters on Programming Languages and
Systems, 1(3), September 1993.

9. Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A language for con-
veying the aliasing properties of dynamic, pointer-based data structures. In Proc.
8th International Parallel Processing Symposium, Cancun, Mexico, April 26–29
1994.

10. Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects.
In Proc. 18th ACM POPL, 1991.

11. Naoki Kobayashi. Quasi-linear types. In Proc. 26th ACM POPL, 1999.
12. Anders Møller and Michael I. Schwartzbach. The Pointer Assertion Logic Engine.

In Proc. ACM PLDI, 2001.
13. Trygve Reenskaug. Working With Objects. Prentice Hall, 1996.
14. Radu Rugina and Martin Rinard. Design-driven compilation. In Proc. 10th Inter-

national Conference on Compiler Construction, 2001.
15. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-

lems in languages with destructive updating. In Proc. 23rd ACM POPL, 1996.
16. F. Smith, D. Walker, and G. Morrisett. Alias types. In Proc. 9th European Sym-

posium on Programming, Berlin, Germany, March 2000.
17. Robert E. Strom and Shaula Yemini. Typestate: A programming language concept

for enhancing software reliability. IEEE Transactions on Software Engineering,
January 1986.

