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Abstract

We show that the first-order theory of structural subtyp-
ing of non-recursive types is decidable, as a consequence of
a more general result on the decidability of term powers of
decidable theories.

Let Σ be a language consisting of function symbols and
let C (with a finite or infinite domainC) be anL-structure
whereL is a language consisting of relation symbols. We
introduce the notion ofΣ-term-powerof the structureC,
denotedPΣ(C). The domain ofPΣ(C) is the set ofΣ-terms
over the setC. PΣ(C) has one term algebra operation for
eachf ∈ Σ, and one relation for eachr ∈ L defined by
lifting operations ofC to terms overC.

We extend quantifier elimination for term algebras and
apply the Feferman-Vaught technique for quantifier elimi-
nation in products to obtain the following result. LetK be
a family ofL-structures andKP the family of theirΣ-term-
powers. Then the validity of any closed formulaF on KP

can be effectively reduced to the validity of some closed for-
mulaq(F ) onK.

Our result implies the decidability of the first-order the-
ory of structural subtyping of non-recursive types with co-
variant constructors, and the construction generalizes to
contravariant constructors as well.

1. Introduction

In this paper we show that the first-order theory of struc-
tural subtyping constraints for non-recursive types is decid-
able. We show this result as a consequence of a more gen-
eral result on the decidability of term powers of decidable
theories, which we show using quantifier elimination.

Subtyping Constraints. Subtyping constraints are an im-
portant technique for checking and inferring program prop-
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erties, used both in type systems and program analyses. The
study of subtyping constraints is therefore important for
developing techniques that increase the reliability of pro-
grams.

Subtyping was introduced through the subsumption rule
in [29]. [4, 24, 21] treat subtyping in the presence of recur-
sive types. [49] shows that terms typable in a system with
structural subtyping denote terminating computations. [12]
treats intersection types in ML in the presence of computa-
tional effects. [15] presents an extension of ML that allows
a more precise typing of programs than the standard ML
type system. [34] shows the equivalence of non-structural
subtyping and flow-analysis. Set constraints are related to
the subtyping constraints and form the basis of several pro-
gram analyses [2, 1, 7, 8, 5, 17].

The applications of type systems with subtyping have
motivated the study of the complexity and the decidabil-
ity of the subtyping constraints. [19] shows that typability
is equivalent to the satisfiability of a conjunction of atomic
formulas in the language of structural subtyping constraints.
[16] shows that the satisfiability for structural subtyping
over an arbitrary structure of base types is in PSPACE. [45]
shows that if the ordering on primitive types has the form of
“crowns”, then the satisfiability is PSPACE hard. The need
for efficient handling of constraints arising from type infer-
ence, and the need for presenting results of type inference in
human-readable form led the researchers to ask more gen-
eral problems about subtyping constraints [35, 39]. [18]
studies the entailment problem for structural subtyping and
shows that if the ordering on the primitive types is a lat-
tice, then the entailment is coNP complete. Because the
more complicated notions of subtyping involve quantifiers
[47, 42], it is natural to consider the decidability and the
complexity of the fullfirst-order theoryof subtyping con-
straints.

[32] studies the complexity and decidability properties
of feature tree constraints with subsumption, which cor-
respond closely to subtyping constraints and have appli-
cations in constraint logic programming [3] and computa-



tional linguistics [37]. [32] shows that the first-order the-
ory of subtyping constraints of feature trees is undecid-
able and that the existential entailment problem is PSPACE-
complete. The first-order theory ofnon-structuralsubtyp-
ing constraints has been shown to be undecidable [42]. In
this paper we show that the first-order theory ofstructural
subtyping of non-recursive types is decidable.

This problem was left open in [42]. [42] shows the
decidability of the first-order theory of non-structural sub-
typing for the special cases of one unary constructor sym-
bol (where the problem is solved using tree automata tech-
niques), as well as for the special case of one constant sym-
bol (where the problem reduces to the decidability of term
algebras).

Contribution. The main contribution of this paper is a
proof that a term power of a structure with a decidable first-
order theory is a structure with a decidable first-order the-
ory. This result directly implies that the first-order theory of
structural subtyping of non-recursive types is decidable. In
addition, we believe that the decidability of term powers is
of general interest and may be useful for constructing deci-
sion procedures in automated theorem proving. The com-
plexity of the decidability problem for term powers is non-
elementary because term powers extend term algebras. The
non-elementary bound applies to term algebras as a conse-
quence of the lower bound on the theory of pairing functions
[14], see also [11].

Previous Quantifier Elimination Results. We show our
decidability result usingquantifier elimination. Quantifier
elimination [20, Section 2.7] is a fruitful technique that has
been used to show decidability and classification of boolean
algebras [40, 44], Presburger arithmetic [36], decidability of
products [30, 13], [28, Chapter 12], and algebraically closed
fields [43]. Directly relevant to our work are quantifier-
elimination techniques for term algebras [28, Chapter 23],
[27, 41]. Several extensions of term algebras have been
shown decidable using quantifier elimination. [9] gives a
terminating term rewriting system for quantifier elimination
in term algebras with membership constraints, [38] gives
quantifier elimination for term algebras with queues, [6]
presents quantifier elimination for the first-order theory of
feature trees with arity predicates. [46] shows the decid-
ability of any feature tree structure whose edge labels are
elements of a decidable structure, and [48] shows the de-
cidability of the monadic second-order theory of an infinite
binary tree whose edges come from a structure with a de-
cidable monadic second-order theory. Compared to struc-
tures in [46], term powers allow the additional lifted rela-
tions between trees, which perform a global comparison of
all leaves in a tree. It may be possible to combine our tech-
nique with [46] to obtain a family of decidable structures

parameterized by both the edge label theory and the leaf the-
ory. The main difficulty in applying the result of [48] to the
decidability of the full first-order theory of structural sub-
typing stems from the need to simultaneously represent 1)
selector operations on trees (which require operations that
manipulate the initial segments of paths in a tree) and the
prefix-closure property of the tree domain (which requires
operations that manipulate the terminal segment of paths in
a tree), see [31], [25, Section 7].

Preliminaries. If A is a set, write|A| to denote the cardi-
nality of A. An L-structure(model) is a set together with
functions and relations interpreting the languageL. If S
is an L-structure andr ∈ L a function or relation sym-
bol, write ar(r) to denote the arity ofr. (Arity is a non-
negative integer.) WriteJrKS to denote the interpretation of
r in structureS. An L-formula is a first-order formula in the
languageL. A sentenceis a closed formula. IfK is a family
of L-structures, atheoryof K is the set of allL-sentences
that are true in all structuresS ∈ K. If F is a sentence, then
JF KK = true if F is in the theory ofK andJF KK = false
otherwise. The notation〈Ei〉ki denotes the listE1, . . . , Ek

(if k is omitted, it is understood from the context).

1.1. Structural Subtyping andΣ-Term-Power

We introduce the notion of theΣ-term-power of some
structureC as a generalization of the structure that arises in
structural subtyping.

We represent primitive types in structural subtyping as
an LC-structureC with the carrierC. We callC the base
structure. We assume thatLC contains only relation sym-
bols because functions and constants can be represented as
relations.

We represent type constructors as free operations in the
term algebra with a finite signatureΣ. Because we repre-
sent the primitive types as elements ofC, we do not need
constants inΣ, so we assumear(f) ≥ 1 for eachf ∈ Σ.

Before defining term powers, we review the notion of a
finite power of aC structure, which is a special case of direct
products of structures [20, Section 9.1, Page 413].

Definition 1 (Finite Power) Let m > 0 be a positive inte-
ger andIm = {0, . . . ,m− 1}. The structureCm is defined
as follows. The domain ofCm is the setCIm of all total
functions fromIm to C. Each relationr ∈ LC is inter-
preted by

JrKCm

(〈tj〉j) = ({i | JrKC(〈tj(i)〉j)} = Im)

The notion of term power is the central notion of this paper.

Definition 2 (Term Power) The Σ-term-power ofC is a
structureP = PΣ(C), defined as follows. LetΣ′ = Σ ∪ C.

2



The domain ofP is the setP of finite groundΣ′-terms,
where we letar(c) = 0 for c ∈ C.

The structureP has the languageLP = Σ ∪ LC ∪
{IsPRI}. A constructorf ∈ Σ is interpreted inP as in the
free term algebra:

JfKP(〈tj〉j) = f(〈tj〉j)
If r ∈ LC with ar(r) = n thenJrKP is the least relationρ
such that:

1. if JrKC(〈cj〉nj ) thenρ(〈cj〉nj )
2. if ρ(〈tij〉nj ) for all i where1 ≤ i ≤ k, andar(f) = k

then
ρ(〈f(〈tij〉ki )n

j 〉)
IsPRI is a unary relation symbol interpreted by

JIsPRIKP(p) ⇐⇒ p ∈ C

for all p ∈ P .

The reason for introducingIsPRI is that we allowC to be
infinite, but we keepLP finite. If there is a need to identify
explicitly some elements ofC as constants, we represent
them as some of the unary relationsr ∈ LC . Note further
that ifF is aLC-formula andF ′ results fromF by replacing
quantifiers with quantifiers bounded by theIsPRI predicate,
thenJF KCη = JF ′KPη for every valuationη of C.

2. The Decidability Result

The main result of this paper is the following Theorem 3,
which states the existence of a quantifier-elimination algo-
rithm for term powers that is uniform with respect to the
structureC.

Theorem 3 Let LC be a language consisting of relation
symbols,Σ a language consisting of function symbols, and
LP the language ofΣ-term-powers ofLC-structures. There
exists a quantifier-elimination algorithmq mappingLP -
sentences toLC-sentences such that for every structureC
in the languageLC and for everyLP -sentenceF

JF KPΣ(C) = Jq(F )KC

Proposition 4 follows directly from Theorem 3.

Proposition 4 LetLC be a language consisting of relation
symbols,Σ a language consisting of function symbols, and
LP the language ofΣ-term-powers ofL-structures. There
exists a quantifier-elimination algorithmq mappingLP -
sentences toLC-sentences with the following property. Let
K be a family ofLC structures and

KP = {PΣ(C) | C ∈ K}
the family ofΣ-term-powers of structures inK. Then
JF KKP = Jq(F )KK for everyLP -sentenceF .

The following Corollary 5 captures the consequence of The-
orem 3 for the theory of structural subtyping, it follows from
the fact that the structureC = 〈C,≤〉 for finite C and any
binary relation≤ ⊆ C2 is decidable.

Corollary 5 Let C be a finite set of primitive types and
≤ a binary relation onC representing an order on prim-
itive types. LetΣ be a finite set of covariant constructors.
Then the first-order theory of structural subtyping of non-
recursive types built from elements ofC as constants using
constructors inΣ is decidable.

Our technique can be generalized to handlecontravariant
constructors as well, see [25, Section 5.5]. The remain-
der of this paper sketches the proof of Theorem 3. When
reading the proof the reader may find it useful to com-
pare how our technique works in two special cases: term
algebras [25, Section 3.4] and structural subtyping with
two primitive types [25, Section 4]. In the case of struc-
tural subtyping with two primitive types it suffices to use
quantifier-elimination for Boolean algebras [40] instead of
the Feferman-Vaught theorem [30, 13].

2.1. Proof Plan

Our proof uses two main ideas.
The first idea is to extendP into the extended term

powerstructurePE . The domain of the new structurePE

is inspired by the observation that ifr is a partial order
with a least element, then the relationt1 ∼ t2 defined
by ∃t0.JrKP(t0, t1) ∧ JrKP(t0, t2) is a congruence relation
on P with respect to the constructor operationsJfKP for
f ∈ Σ. Like [45, Page 313], we call the∼ equivalence
classesshapes. A shape is an abstraction of a term obtained
by throwing away the information about the constants oc-
curring within the term, e.g.f(a, f(a, a)) andf(a, f(b, a))
both have the shapef s(cs, f s(cs, cs)). We introduce shapes
as explicit elements ofPE , and introduce into the lan-
guage ofPE the homomorphismsh mapping terms to their
shapes. Our next observation is that elements of the same
∼-equivalence classs together with the operationsJrKP for
r ∈ LC form a finite power structureCm wherem is the
number of constants occurring in the shapes. This allows
us to use the Feferman-Vaught theorem [13, 30] as a step
in our quantifier elimination algorithm. To enable the ap-
plication of the Feferman-Vaught technique, we introduce
for everyn and for everyLC-formulaφ(〈xi〉ni ) whose vari-
ables are among〈xi〉ni relations(|φ(〈xi〉ni )|=k)(s, 〈ti〉ni )
and(|φ(〈xi〉ni )|≥k)(s, 〈ti〉ni ) of arity n + 1. We call these
relationscardinality constraints. Our cardinality constraints
generalize the relations in [30] by introducing an additional
shape arguments.

The second idea of our proof is the choice of canonical
formulas, which we callstructural base formulas. Struc-
tural base formulas are existentially quantified conjunctions
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Figure 1. Scheme of Quantifier Elimination

of unnested literals that satisfy certain consistency rules.
These consistency rules help justify the elimination of a
quantified variableu because they ensure that the remaining
conjuncts in the structural base formula entail all the rela-
tionships between the remaining variables that are a conse-
quence of the existence ofu.

Figure 1 gives a schematic view of our quantifier elim-
ination algorithm for term powers. On the one hand, exis-
tentially quantifying a structural base formula yields a struc-
tural base formula because structural base formulas are ex-
istentially quantified conjunctions. On the other hand, the
conjunction, disjunction, and most importantly, negation,
of a quantifier-free formula yields a quantifier-free formula.
Quantifier elimination therefore reduces to finding an effec-
tive transformation from quantifier-free formulas to disjunc-
tion of structural base formulas (Proposition 13), and from
structural base formulas to quantifier-free formulas (Propo-
sition 25).

Applying Proposition 13, then applying existential quan-
tification and then applying Proposition 25 to obtain a quan-
tifier free formula corresponds to the usual method of elimi-
nating quantifiers from conjunctions of literals [20, Lemma
2.7.4, Page 70]. Dually, applying Proposition 25, negat-
ing the resulting quantifier-free formula and then applying
Proposition 13 corresponds to the elimination of quantifier
alternations [10, 46], [28, Chapter 23].

Several operations in the extended structurePE are nat-
urally viewed aspartial operations. We use Kleene’s three-
valued logic [23, Page 334], [22] to give a systematic ac-
count of partial functions in quantifier elimination, see [25,
Section 2.3]. The use of partial functions and the three-
valued logic in quantifier elimination can be avoided, but
we find that it naturally captures the ideas of our quantifier
elimination algorithm.

2.2. Extended Term Power Structure

For the purpose of quantifier elimination we define the
structurePE by extending the domain and the set of opera-
tions of the term power structureP.

The domain ofPE is PE = P ∪ PS wherePS is the set
of shapesdefined as follows. LetΣs = {cs}∪{f s | f ∈ Σ}
be a set of function symbols such thatcs is a fresh constant
symbol withar(cs) = 0 andf s are fresh distinct constant

symbols withar(f s) = ar(f) for eachf ∈ Σ. The set of
shapesPS is the set of groundΣs-terms. When referring
to elements ofPE by term we mean an element ofP ; by
shapewe mean an element ofPS . We writeXs to denote
an entity pertaining to shapes as opposed to terms, soxs, us

denote variables ranging over shapes, andts denotes terms
that evaluate to shapes.

To specify the semantics of cardinality constraints, we
define the setsJφ(x1, . . . , xk)KPE (s, t1, . . . , tk). We make
a parallel with finite direct products [13, Definition 2.1,
Page 63], [20, Section 9.6, Page 458].

Definition 6 (Index Sets for Products) If φ(〈xj〉nj ) is an
LC-formula whose variables are among〈xj〉nj and
〈tj〉nj : Im → C, then

Jφ(〈xj〉nj )KCm

(〈tj〉nj ) = {i ∈ Im | Jφ〈xj〉nj KC(〈tj(i)〉nj )}

DefineJ|φ(〈xj〉nj )|=kKCm

(〈tj〉nj ) as

|Jφ(〈xj〉nj )KCm

(〈tj〉nj )| = k,

similarly for J|φ(〈xj〉nj )|≥kKCm

(〈tj〉nj ).

In the case of term powers, we replace the notion of an index
i ∈ Im by the notion of a leaf of the tree representing a term,
as follows.

Definition 7 (Leaf Sets for Term Powers) If s is a shape,
we call the set of positions of constantcs in s leavesof s,
and denote this set byleaves(s). We represent each leaf as
a sequence of pairs〈f, i〉 wheref is a constructor of arity
k and 1 ≤ i ≤ k. If l ∈ leaves(s) and sh(t) = s, then
t[l] denotes the elementc ∈ C at positionl in term t i.e. if
l = 〈f1, i1〉 . . . 〈fn, in〉 then

t[l] = fn
in(. . . f2

i2(f
1
i1(t)) . . .)

Define:

Jφ(〈xj〉nj )KPE (s, 〈tj〉nj ) =

{l ∈ leaves(s) | Jφ(〈xj〉nj )KC(〈tj [l]〉nj ) }
Definition 8 (Extended Term Power) The extended term
power structurePE contains term algebra operations on
terms and shapes (including selector operations and tests
as in [20, Page 61]), the homomorphismsh, and cardinality
constraint relations|φ|=k and|φ|≥k, defined as follows:

1. constructors in the term algebra of terms,f ∈ Σ
JfKPE (〈tj〉kj )=f(〈tj〉kj );

2. selectors in the term algebra of terms,
JfiKPE (f(〈tj〉kj )) = ti;

3. constructor tests in the term algebra of terms,
JIsf KPE (t) = ∃〈tj〉kj . t = f(〈tj〉kj ),
JIsPRIKPE (t) = (t ∈ C);
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4. constructors in the term algebra of shapes,f s ∈ Σs

Jf sKPE (〈tsj〉kj ) = f s(〈tsj〉kj );
5. selectors in the term algebra of shapes,

Jf s
i KPE (f s(〈tsj〉kj )) = tsi;

6. constructor tests in the term algebra of shapes,
JIsf sKPE (ts) = ∃〈tsj〉kj . ts = f s(〈tsj〉kj );

7. the homomorphism mapping terms to shapes such
that:

JshKPE (f(〈tj〉kj )) =

shapified(f)(〈JshKPE (tj)〉kj )

whereshapified(x)=cs if x ∈ C andshapified(f)=f s

if f ∈ Σ;
8. cardinality constraint relations

J|φ(〈xj〉nj )|=kKPE (s, 〈tj〉nj ) =

|Jφ(〈xj〉nj )KPE (s, 〈tj〉nj )| = k

and
J|φ(〈xj〉nj )|≥kKPE (s, 〈tj〉nj ) =

|Jφ(〈xj〉nj )KPE (s, 〈tj〉nj )|≥k

whereφ(〈xj〉nj ) is is a first-order formula over the
base-structure languageLC with free variables
〈xj〉nj , arguments is a shape, arguments〈tj〉nj are
terms, andk is a nonnegative integer constant.

The following equations follow from Definition 8 and Defi-
nition 7 and can be used as an equivalent alternative defini-
tion of cardinality constraints:

|Jφ(〈xj〉nj )KPE (cs, 〈cj〉nj )| =
{

1, Jφ(〈xj〉nj )KC(〈cj〉nj )

0, ¬Jφ(〈xj〉nj )KC(〈cj〉nj )

|Jφ(〈xj〉nj )KPE (f s(〈si〉ki ), 〈f(〈tij〉ki )〉nj )|
=

∑k
i=1 |Jφ(〈xj〉nj )KPE (si, 〈tij〉nj )|

(1)

We write |φ(〈tj〉nj )|s=k as a shorthand for the atomic
formula (|φ(〈xj〉nj )|=k)(s, 〈tj〉nj ), similarly for
|φ(〈tj〉nj )|s≥k. This is more than a notational conve-
nience, see [25] for an approach which introduces sets of
leaves as elements of the domain ofPE and defines a cylin-
dric algebra interpreted over sets of leaves. The approach
in the present paper follows [30] in merging the quantifier
elimination for products and quantifier elimination for
boolean algebras.

Some of the operations inPE are partial. fi(t) is de-
fined iff Isf (t) holds, f s

i (t
s) is defined iff Isf s(ts) holds.

Cardinality constraints|φ(〈tj〉nj )|ts=k and |φ(〈tj〉nj )|ts≥k
are defined iff∧n

i=1sh(ti)=ts holds. We assume that a term
evaluates to⊥ if some term operation is undefined. Partial

and total operations are strict in⊥; when a value of atomic
formula is undefined it evaluates toundef. Logical oper-
ations and quantifiers are interpreted as in Kleene’s three-
valued logic with truth values{false, undef, true}. We say
that a formula iswell-definediff it evaluates totrue or false
(as opposed toundef) for every valuation assigning values
to free variables. The structurePE has the property that
the domain of every partial function is expressible as a con-
junction of atomic formulas. This property enables trans-
formation of each well-defined quantifier-free formula to a
disjunction of well-defined conjunctions in Proposition 13,
see also [25, Section 2.3].

The structurePE is at least as expressive asP because
the only operations or relations present inP but not inPE

areJrKP for r ∈ LC , and we can expressJrKP(t1, . . . , tk)
as

|¬ r(〈tj〉nj )|sh(t1)=0 ∧
k∧

i=2

sh(ti) = sh(t1) (2)

By a quantifier-free formula we mean a formula without
quantifiers outside cardinality constraints, e.g. the formula
|∀x.x ≤ t|xs = k is quantifier-free.

We define a subclass of quantifier-free cardinality con-
straints calledprimitive formulas, denotedprim(φ) for ev-
eryLC-sentenceφ: prim(φ) ≡ |φ|cs = 1. Note that

Jprim(φ)KPΣ(C) = JφKC (3)

so for a given concrete structureC we may replace prim-
itive formulas withtrue and false. We nevertheless retain
primitive formulas throughout the quantifier elimination al-
gorithm. This ensures that our quantifier elimination al-
gorithm is uniform wrt. the base structureC. In the se-
quel we therefore assume some fixed structureC and pro-
ceed to give a quantifier elimination algorithm that performs
equivalence-preserving transformations wrt. the extended
term powerPE corresponding toPΣ(C).

2.3. Structural Base Formulas

Our quantifier-elimination algorithm is centered around
certain existentially quantified unnested conjunctions of lit-
erals. We call these conjunctionsstructural base formulas.

We first introduce several auxiliary definitions. Let
distinct(u1, . . . , un) be a shorthand for

∧
1≤i<j≤n ui 6= uj .

If φ is a formula andx and y two term variables, then
x ½φ y means thatφ contains a conjunct of the form
x = f(y1, . . . , y, . . . , yk) for somef ∈ Σ. Similarly if xs

andys are two shape variables thenxs ½φ ys means thatφ
contains a conjunct of the formxs = f s(ys

1, . . . , y
s, . . . , ys

k)
for somef ∈ Σ. The relation½+

φ is the non-reflexive tran-
sitive closure of½φ. We next define base formulas for term
algebras and state some of their properties; [25] presents a
quantifier elimination procedure for term algebras based on
these definitions.
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Definition 9 (Base Formula) A base formulawith

• free term variablesx1, . . . , xm;
• internal non-parameter term variablesu1, . . . , up;
• internal parameter term variablesup+1, . . . , up+q;

is a formula of the form:

base(u1, . . . , un, x1, . . . , xm) =
p∧

i=1

ui = ti(u1, . . . , un) ∧
m∧

i=1

xi = uji

∧ distinct(u1, . . . , un)

where n = p + q, each ti is a term of the form
f(ui1 , . . . , uik

) for somef ∈ Σ, k = ar(f), and j :
{1, . . . , m} → {1, . . . , n} is a function mapping indices
of free term variables to indices of internal term variables.

We require each base formula to satisfy the following
conditions:

C1) base does not violate the occur-check [26, 10]:
¬(u ½+

base u) for every variableu occurring inbase;
C2) congruence closure property: there are no two dis-

tinct variables ui and uj such that bothui =
f(ul1 , . . . , ulk) and uj = f(ul1 , . . . , ulk) occur as
conjuncts inbase.

The following Lemma 10 is important for quantifier
elimination in term algebras and term powers.

Lemma 10 Letβ be a base formula of the form

∃u1, . . . , up, up+1, . . . , up+q. β0

whereup+1, . . . , up+q are parameter variables ofβ, and
β0 is quantifier-free. LetSp+1, . . . , Sp+q be infinite sets of
terms. Then there exists a valuationσ such thatJβ0Kσ =
true andJuiKσ ∈ Si for p + 1 ≤ i ≤ p + q.

The notion of base formula and Lemma 10 apply to terms
P as well as shapesPS in the structurePE because shapes
are also terms over the alphabetΣs. For brevity we writeu∗

for an internal shape or term variable, and similarlyx∗ for a
free shape or term variable,t∗ for terms,f∗ for a constructor
in the term algebra of terms or shapes, andf∗i for a selector
in the term algebra of terms or shapes.

Definition 11 below introducesstructural base formu-
las. The disjunction of structural base formulas can be
thought of as a normal form for existential formulas inter-
preted overPE . A structural base formula contains a copy
of a base formula for shapes (shapeBase), a base formula
for terms but without term disequalities (termBase), a for-
mula expressing mapping of term variables to shape vari-
ables (termHom), and cardinality constraints on term pa-
rameter nodes of the term base formula (cardin). A struc-
tural base formula contains several kinds of variables, clas-
sified according to the positions in which they appear within

the structural base formula. Free variables are the free vari-
ables of the structural base formula; internal variables are
the existentially quantified variables. Parameter variables
are variables whose top-level constructor is not specified
by the structural base formula, in contrast to non-parameter
variables. Primitive non-parameter term variables denote
terms inC, composed non-parameter term variables denote
terms inP \ C.

Definition 11 (Structural Base Formula)
A structural base formulawith:

• free term variablesx1, . . . , xm;
• internal composed non-parameter term variables

u1, . . . , ur;
• internal primitive non-parameter term variables

ur+1, . . . , up;
• internal parameter term variablesup+1, . . . , up+q;
• free shape variablesxs

1, . . . , x
s
ms ;

• internal non-parameter shape variablesus
1, . . . , u

s
ps ;

• internal parameter shape variablesus
ps , . . . , us

ps+qs

is a formula of the form:

∃u1, . . . , un, us
1, . . . , u

s
ns .

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) ∧

termBase(u1, . . . , un, x1, . . . , xm) ∧
termHom(u1, . . . , un, us

1, . . . , u
s
ns) ∧

cardin(ur+1, . . . , un, us
ps+1, . . . , u

s
ns)

wheren = p + q, ns = ps + qs, and formulasshapeBase,
termBase, termHom, cardin are defined as follows.

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) =

ps∧
i=1

us
i = ti(us

1, . . . , u
s
ns) ∧

ms∧
i=1

xs
i = us

ji

∧ distinct(us
1, . . . , u

s
n)

where eachti is a shape term of the formf s(us
i1

, . . . , us
ik

)
for somef ∈ Σ0, k = ar(f), and
j : {1, . . . , ms} → {1, . . . , ns} is a function mapping
indices of free shape variables to indices of internal shape
variables.

termBase(u1, . . . , un, x1, . . . , xm) =
r∧

i=1

ui = ti(u1, . . . , un) ∧
p∧

i=r+1

IsPRI(ui) ∧
m∧

i=1

xi = uji

where eachti is a term of the formf(ui1 , . . . , uik
) for

somef ∈ Σ, k = ar(f), andj : {1, . . . ,m} → {1, . . . , n}
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is a function mapping indices of free term variables to
indices of internal term variables.

termHom(u1, . . . , un, us
1, . . . , u

s
ns) =

n∧
i=1

sh(ui) = us
ji

wherej : {1, . . . , n} → {1, . . . , ns} is a function such that
{j1, . . . , jp} ⊆ {1, . . . , ps} and
{jp+1, . . . , jp+q} ⊆ {ps + 1, . . . , ps + qs} (a term variable
is a parameter variable iff its shape is a parameter shape
variable).

cardin(ur+1, . . . , un, us
ps+1, . . . , u

s
ns) = ψ1 ∧ · · · ∧ ψd

where eachψi is a cardinality constraint of the form

|φ(uj1 , . . . , ujl
)|us = k

or
|φ(uj1 , . . . , ujl

)|us ≥ k

where{j1, . . . , jl} ⊆ {r + 1, . . . , n} and the conjunct
sh(ujd

) = us occurs intermHom for 1 ≤ d ≤ l. We
require each structural base formula to satisfy the
following conditions:

P0) shapeBase does not violate the occur-check:
¬(us ½+

shapeBase us) for every shape variableus

occurring inshapeBase;

P1) congruence closure property forshapeBase
subformula: there are no two distinct variablesus

i and
us

j such that bothus
i = f(us

l1
, . . . , us

lk
) and

us
j = f(us

l1
, . . . , us

lk
) occur as conjuncts in formula

shapeBase;

P2) congruence closure property fortermBase
subformula: there are no two distinct variablesui and
uj such that bothui = f(ul1 , . . . , ulk) and
uj = f(ul1 , . . . , ulk) occur as conjuncts in formula
termBase;

P3) homomorphism property ofsh: for every composed
non-parameter term variableu such that
u = f(ui1 , . . . , uik

) occurs intermBase, if conjunct
sh(u) = us occurs intermHom, then for some shape
variablesus

j1
, . . . , us

jk
termus = f s(us

j1
, . . . , us

jk
)

occurs inshapeBase wheref s = shapified(f) and for
everyr where1 ≤ r ≤ k, conjunctsh(uir ) = us

jr

occurs intermHom; furthermore:
for every primitive non-parameter variableu (i.e.u
s.t.IsPRIu occurs intermBase), conjunctsh(u) = us

occurs intermHom whereus is the shape variable
such thatus = cs occurs inshapeBase.

As a special case, we allow quantifier-free formulasprim(φ)
in cardin. Note that¬(u ½+

termBase u) for each term vari-
able u follows from P0) and P3). An immediate conse-
quence of Definition 11 is the following Proposition 12.

Proposition 12 (Quantification of Structural Base) If β
is a structural base formula andx a free shape or term
variable inβ, then there exists a structural structural base
formulaβ1 equivalent to∃x.β.

For example, ifβ ≡ ∃u, us. sh(u)=us ∧ x=u then∃x.β
is equivalent to∃u, us. sh(u)=us wherex=u conjunct was
removed.

We proceed to show that a quantifier-free formula can be
written as a disjunction of structural base formulas, and a
structural base formula can be written as a quantifier-free
formula.

2.4. Conversion to Structural Base Formulas

The conversion to structural base formulas builds on the
conversion to disjunctions of well-defined conjunctions of
unnested literals [25, Section 2.3], congruence closure al-
gorithms [33], and the equality (1).

Proposition 13 (Quantifier-Free to Structural Base)
Every well-defined quantifier-free formulaφ is equivalent
on PE to true, false, or a disjunction of structural base
formulas.

Proof Sketch. We outline an algorithm for convertingφ
into a disjunction of structural base formulas. Rules for per-
forming the transformation are presented in the Appendix.

First convertφ into the disjunctive normal form (DNF)
using rulesDNF. These rules are valid in three-valued logic
because the three-valued domain is a distributive lattice,
¬ is idempotent and DeMorgan’s laws hold. For exam-
ple,¬(Isf (x) ∧ y=f1(x)) gets transformed into¬Isf (x) ∨
y 6=f1(x). The resulting DNF is well-defined, but the in-
dividual conjunctions (e.g.y 6=f1(x)) need not be well-
defined. Applying rulesWDNF to all conjuncts yields a
disjunction of well-defined conjunctions (e.g.y 6= f1(x)
becomesIsf (x) ∧ y 6= f1(x)). This transformation pre-
serves the equivalence because the starting disjunction was
well-defined, see [25, Section 2.3].

The next step converts the formula into the unnested
(flat) form by introducing existentially quantified variables
for subterms and free variables, using rulesUNF (e.g.
x=f(f(y, z), y) becomes ∃u. u=f(y, z) ∧ x=f(u, y)
whereasy 6=f1(x) becomes∃u.u=f1(x) ∧ y 6=u). The
result is a disjunction of well-defined existentially quanti-
fied conjunctions of unnested literals. Apply rulesELNG
to eliminate negations of all atomic formulas except for
disequalities (e.g. ifΣ = {f} then ¬Isf (x) becomes
IsPRI(x)). ELNG rules may violate DNF; useDNF rules
again to reestablish the normal form (this also applies to
all subsequent rules that may violate DNF). Eliminate
selector functions and constructor tests using rulesSelEl
(e.g. iff is a binary constructor, then∃u. Isf (x)∧u=f1(x)
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becomes∃u, v1, v2. x=f(v1, v2) ∧ u=v1). The result
contains only the relation and function symbols that
occur in structural base formulas. Make sure each term
variable has a corresponding shape variable by apply-
ing rules ShpInt. For example, ∃v1, v2. x=f(v1, v2)
becomes ∃v1, v2, x

s, vs
1, v

s
2. sh(v1)=vs

1 ∧ sh(v2)=vs
2 ∧

sh(x)=xs ∧ x=f(v1, v2). Next, apply congruence
closure (CongCl) and occur check (OccChk). For exam-
ple, ∃x, u, v1, v2. x=f(v1, v2) ∧ y=f(u, v2) ∧ u=v1

becomes ∃x, u, v2. x=f(u, v2) ∧ y=x, whereas
x=f(u, v) ∧ u=f(x, v) becomesfalse. Use HomExp
rules to ensure that parameter term variables are mapped to
parameter shape variables, non-parameter term variables
are mapped to non-parameter shape variables, and that
the homomorphism property P3) of Definition 11 holds.
RepeatCongCl andOccChk rules if needed. For example,
∃v1, v2, x

s, vs
1, v

s
2. sh(v1)=vs

1 ∧ sh(v2)=vs
2 ∧ sh(x)=xs ∧

x=f(v1, v2) becomes ∃v1, v2, x
s, vs

1, v
s
2. sh(v1)=vs

1 ∧
sh(v2)=vs

2 ∧ sh(x)=xs ∧ x=f(v1, v2) ∧ xs=f s(vs
1, v

s
2).

Eliminate all disequalities between term variables using
the NEQEl rule, which is justified by the negation of the
equivalence:

t1 = t2 ⇐⇒ sh(t1) = sh(t2) ∧ |t1 = t2|sh(t1) = 0 (4)

For example, u6=x ∧ sh(u)=us ∧ sh(x)=xs becomes
((us 6=xs)∨(us=xs∧|u6=x|us≥1))∧sh(u)=us∧sh(x)=xs.
Repeat previous stages (e.g.DNF, CongCl, OccChk) if
needed. Convert all cardinality constraints into constraints
on parameter term variables, usingCCD rules justi-
fied by (1), e.g.|u6=v|us=1 becomes(|u1 6=v1|us

1
=0 ∧

|u2 6=v2|us
2
=1) ∨ (|u1 6=v1|us

1
=1 ∧ |u2 6=v2|us

2
=0)

in the context of u=f(u1, v1) ∧ v=f(v1, v2) ∧
us=f s(us

1, u
s
2) ∧ sh(u)=sh(v)=us ∧ sh(u1)=sh(v1)=us

1 ∧
sh(u2)=sh(v2)=us

2. Finally, to produce the formula
distinct(us

1, . . . , u
s
n) useShDis to ensure that for every two

shape variablesxs
1 and xs

2 occurring in the conjunction
exactly one of the conjunctsxs

1=xs
2 or xs

1 6=xs
2 is present.

2.5. Conversion to Quantifier-Free Formulas

The conversion from structural base formulas to
quantifier-free formulas is the main phase of our quantifier-
elimination algorithm. We split this conversion into several
stages; Proposition 25 below summarizes the overall con-
version process.

Consider a structural base formulaβ ≡ ∃ū∗. C(x̄∗, ū∗)
with free variablesx̄∗ and internal variables̄u∗, where
C(x̄∗, ū∗) is quantifier-free. C(x̄∗, ū∗) defines a relation
between variables̄x∗, ū∗. If this relation has a functional
dependence from the free variablesx̄∗ to some internal vari-
ableu, with a termt(x̄∗) such thatC(x̄∗, ū∗) |= u = t(x̄∗),
then the internal variableu can be replaced byt(x̄∗) and

the quantification overu can be eliminated. This leads to
the notion ofdeterminations.

Definition 14 The setdets of variable determinations of a
structural base formulaβ is the least setS of pairs〈u∗, t∗〉
whereu∗ is an internal term or shape variable andt∗ is a
term over the free variables ofβ, such such that:

1. if x∗ = u∗ occurs intermBase or shapeBase for a
free variablex∗, then〈u∗, x∗〉 ∈ S;

2. if 〈u∗, t∗〉 ∈ S andu∗ = f∗(u∗1, . . . , u
∗
k) occurs in

shapeBase or termBase then
{〈u∗1, f∗1 (t∗)〉, . . . , 〈u∗k, f∗k (t∗)〉} ⊆ S;

3. if {〈u∗1, t∗1〉, . . . , 〈u∗k, t∗k〉} ⊆ S and
u∗ = f∗(u∗1, . . . , u

∗
k) occurs inshapeBase or

termBase then〈u∗, f∗(t∗1, . . . , t∗k)〉 ∈ S;

4. if 〈u, t〉 ∈ S andsh(u) = us occurs intermHom then
〈us, sh(t)〉 ∈ S.

Definition 15 An internal variable u∗ is determinedif
〈u∗, t∗〉 ∈ dets for some termts. An internal variable is
undeterminedif it is not determined.

Lemma 16 follows by induction using Definition 14.

Lemma 16 Let β ≡ ∃ū. C(x̄∗, ū∗) be a structural base
formula. If〈u∗, t∗〉 ∈ dets(β) thenC(x̄∗, ū∗) |= u∗ = t∗.

Corollary 17 Let β ≡ ∃〈u∗i 〉i. C(x̄∗, 〈u∗i 〉i) be a struc-
tural base formula such that each internal variableu∗i is
determined by some termt∗i , that is, 〈u∗i , t∗i 〉 ∈ dets(β).
Thenβ is equivalent to the well-defined quantifier-free for-
mulaβ′ ≡ C(x̄∗, 〈t∗i 〉i).

Proof. By Lemma 16 using the rule

∃u.u = t ∧ φ(u) ⇐⇒ φ(t) (5)

which holds when the termt is well-defined. Ift is not
well-defined, then bothβ andβ′ evaluate to false.

Our goal thus reduces to eliminating all undetermined
variables from a structural base formula. We first show how
to eliminate undetermined composed non-parameter term
variables.

Lemma 18 Let u be an undetermined composed non-
parameter term variable in a structural base formulaβ
such that u is a source i.e. no conjunct of the form
u′=f(u1, . . . , u, . . . , uk) occurs intermBase. Letβ′ be the
result of removing fromβ the variableu and all conjuncts
containingu. Thenβ is equivalent toβ′.
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Proof. The conjunct containingsh(u) = us in termHom
is a consequence of the remaining conjuncts inβ, so we
may drop it. The only remaining occurrence ofu is in the
atomic formulau=f(v̄) of termBase subformula. Apply-
ing (5) therefore makesu disappear fromβ.

Corollary 19 (Composed Term Variable Elimination)
Dropping all undetermined composed non-parameter term
variables from a structural base formula together with the
conjuncts that contain them yields an equivalent structural
base formula.

Proof. If a structural base formula has an undetermined
non-parameter composed term variable, then it has an un-
determined non-parameter composed term variable that is a
source. Repeatedly apply Lemma 18 to eliminate all unde-
termined non-parameter term variables.

Our next goal is to eliminate undetermined primitive
non-parameter term variables and undetermined parameter
term variables. The key insight is that these variables are
related to the determined variables of a structural base for-
mula only through the relations that are expressible in the
product structure of the terms of the same shape. To clar-
ify the connection with the product-structure, lets ∈ PS

be a shape andP (s) = {t ∈ P | sh(t) = s}. Define
η : P (s) → C∗ whereC∗ is the set of finite sequences
of elements fromC, as follows: η(c) = c if c ∈ C;
η(f(t1, . . . , tk)) = η(t1) · . . . · η(tk) wherel1 · l2 denotes
the concatenation of sequencesl1 andl2. Let ηs = η|P (s)

be the restriction ofη to the setP (s). Let m = |leaves(s)|.
Observation 20 The mapηs is an isomorphism of the sub-
structure ofP with the domainP (s) and the finite power
Cm. Moreover,

|Jφ(〈xj〉nj )KPE (s, 〈tj〉nj )| = |Jφ(〈xj〉nj )KCm

(〈ηs(tj)〉nj )|

The following is the quantifier-elimination property that im-
plies Feferman-Vaught theorem [13, 30], [20, Section 9.6,
Page 460] for the case of finite products.

Lemma 21 Let k ≥ 0. Consider a formulaα of the form
α ≡ ∃u.

∧p
i=1 ψi where eachψi is a cardinality constraint

of the form(|φi|=k)(u, 〈uj〉nj ) or (|φi|≥k)(u, 〈uj〉nj ). Then
α can be effectively transformed intoα′ whereα′ is a dis-
junction of conjunctions of cardinality constraints of the
form (|φ′i|=k)(〈uj〉nj ) and (|φ′i|≥k)(〈uj〉nj ). The resultα′

is equivalent toα on each finite powerCm.

Lemma 22 is a direct consequence of Lemma 21 and Ob-
servation 20.

Lemma 22 Letk ≥ 0. Consider a formulaα of the form

α ≡ ∃u. sh(u) = us ∧∧n
i=1 sh(ui) = us ∧∧p

i=1 ψi

for some shape variableus where eachψi is a cardinality
constraint of the form(|φi|=k)(us, u, 〈uj〉nj ) or of the form
(|φi|≥k)(us, u, 〈uj〉nj ). Thenα can be effectively trans-
formed into the formulaα′ which is a disjunction of for-
mulas of the form

α′j ≡ ∧n
i=1 sh(ui) = us ∧∧q

i=1 ψ′i,j

where eachψ′i,j is of the form(|φ′i,j |=k)(us, 〈uj〉nj ) or
(|φ′i,j |≥k)(us, 〈uj〉nj ). The resulting formulaα′ is equiv-
alent toα on all term powersPE .

Lemma 23 (Term Parameter Elimination) Every struc-
tural base formulaβ without undetermined composed non-
parameter term variables can be effectively transformed
into an equivalent disjunction of structural base formulas
without undetermined term variables.

Proof. We show how to eliminate undetermined parameter
term variables and undetermined primitive non-parameter
term variables fromβ.

Let u be an undetermined parameter term variable or an
undetermined primitive non-parameter term variable. Ifu
is a parameter variable thenu does not occur intermBase
because¬(u ½+ u′) for all u′, and¬(u′′ ½+ u) for all u′′

since there are no undetermined composed non-parameter
term variables. Therefore,u occurs only intermHom and
cardin. If u is a primitive non-parameter term variable, then
termBase contains only one occurrence ofu, namely the
conjunctIsPRI(u), which is a consequence of the conjuncts
sh(u) = us in termHom andus = cs in shapeBase, so we
drop IsPRI(u). In both cases, the resulting formula contains
u only in termHom andcardin.

Let us be the shape variable such thatus = sh(u) occurs
in termHom. Let ψ1, . . . , ψp be all conjuncts ofcardin that
containu. Eachψi is of the form|φ|us ≥ ki or |φ|us = ki

and for each variableu′ free inφ the conjunctsh(u) = us

occurs intermHom. The structural base formula can there-
fore be written in the form∃ū∗. φ∧α whereα has the form
as in Lemma 22. Applying Lemma 22 we eliminateu. Ap-
plying rulesDNF results in a disjunction of structural base
formulas. By repeating this process we eliminate all unde-
termined parameter term variables and undetermined prim-
itive non-parameter term variables from a structural base
formula. Each of the resulting structural base formulas con-
tains no undetermined term variables.

Finally, we show how to eliminate the undetermined shape
variables.

Lemma 24 (Shape Variable Elimination) Every struc-
tural base formulaβ without undetermined term variables
can be effectively transformed into an equivalent disjunc-
tion of structural base formulas without undetermined
variables.
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Proof Sketch. It remains to eliminate undetermined shape
variables fromβ. This process is similar to term algebra
quantifier elimination [25, Section 3.4]; the key ingredient
is Lemma 10, which relies on the fact that undetermined
parameter variables may take on infinitely many values. We
therefore ensure that the conjuncts outsideshapeBase do
not constrain the undetermined parameter shape variables
to denote the values from a finite set.

Consider an undetermined parameter shape variableus.
us does not occur intermHom, because all term vari-
ables are determined and a conjunctus=sh(u) would im-
ply that us is determined as well.us can thus occur only
in cardin within some cardinality constraint|φ|us=k or
|φ|us≥k. Moreover, formulaφ in each such cardinality con-
straint is closed: otherwiseφ would contain some free term
variableu and since all term variables are determined,us

would be determined as well.

Let us denote some shapes. Becauseφ is a closed for-
mula, |φ| is equal to0 if JφKC=false and to the shape size
m = |leaves(s)| if JφKC=true. (The fact that closed formu-
las reduce to the constraints on the domain size appears in
[30, Theorem 3.36, Page 13]. In term powers, these con-
straints become constraints on the size of the shape.) We
transformβ into the disjunctionβ1 ∨ β2 of base formulas
whereβ1 ≡ β ∧ prim(φ) andβ2 ≡ β ∧ prim(¬φ). Con-
straints of the formprim(¬φ) ∧ |φ|us=k reduce to0=k,
we replace them bytrue if k≡0 and false if k 6≡0. On
the other hand,prim(φ) ∧ |φ|us=k denotes the constraint
m = k and prim(φ) ∧ |φ|us≥k denotesm≥k. Hence,
by repeating this process for every formulaφ which ap-
pears in some cardinality constraint|φ|us=k or |φ|us≥k,
we obtain a conjunction of linear constraints of the form
m = k and m ≥ k. These constraints specify a finite
or infinite setS ⊆ {0, 1, . . .} of possible sizesm. Let
A = {s | |leaves(s)| ∈ S}. By nature of our constraints,
if the setS is infinite then it contains an infinite interval
of form {m0,m0 + 1, . . .}, so the setA is infinite. If Σ
contains a unary constructor andS is nonempty, thenA is
also infinite. IfΣ contains no unary constructors andS is
finite thenA is finite and we can effectively computeA.
The cardinality constraints containingus are thus equiva-
lent to

∨p
i=1 us = tsi whereA = {ts1, . . . , tsp}. Transform

the structural base formulaβ into a disjunction of formulas∨p
i=1 βi whereβi results fromβ by replacing the cardinal-

ity constraints containingus with us = tsi. Convert eachβi

to a structural base formula by labelling the subterms oftsi
with internal shape variables usingUNF rules, and by do-
ing case analysis on the equality between the new internal
shape variables, usingShDis rule. By repeating this process
for all shape variablesus where the setS is finite, we obtain
base formulas where the setA is infinite for every undeter-
mined parameter shape variableus. We may then eliminate
all undetermined parameter and non-parameter shape vari-

ables along with the conjuncts that contain them. The result
is an equivalent formula because Lemma 10 implies that it
is always possible to find the values of eliminated parame-
ter variables, so their existence is a redundant condition. We
therefore eliminate all undetermined shape variables and the
resulting structural base formulas contain only determined
variables.

Proposition 25 (Struct. Base to Quantifier-Free)Every
structural base formulaβ can be effectively transformed to
an equivalent well-defined quantifier-free formulaφ.

Proof. Apply Corollary 19, then Lemma 23, and then
Lemma 24. All variables in the resulting disjunction of
structural base formulas are determined, so each of them
is equivalent to some quantifier free formulaφi by Corol-
lary 17. The disjunction

∨
i φi is the desired quantifier-free

formulaφ.

Summary of Our Quantifier Elimination Algorithm.
Consider a closedLP -formulaφ. Convertφ to an extended-
term-power formulaφ1 using (2). Convertφ1 to prenex
form φ2. Eliminate all quantifiers fromφ2 starting from the
innermost one, as follows. Ifφ2 ≡ 〈Qiu

∗
i 〉i∃v∗. ψ whereψ

is quantifier-free then apply Proposition 13, Proposition 12
and then Proposition 25. Ifφ2 ≡ 〈Qiu

∗
i 〉∀v∗. ψ then con-

sider〈Qiu
∗
i 〉.¬∃v∗.¬ψ and proceed as in the previous case.

By applying Proposition 13 and Proposition 25 to the result-
ing variable-free formula we obtain a propositional combi-
nation ofprim(φ) formulas. Theorem 3 then follows by (3).
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Appendix: Transforming Quantifier Free Formulas
to Structural Base Formulas

Rules are applied modulo associativity and commutativity of∧,∨
and symmetry of equality=. Ē denotes a sequence of expressions
〈Ei〉i. The result of substituting termt for variablex in formula
C is denotedC(x 7→ t).

DNF: Disjunctive Normal Form

C[¬(P ∧Q)] → C[¬P ∨ ¬Q]
C[¬(P ∨Q)] → C[¬P ∧ ¬Q]
C[¬¬P ] → C[P ]
C[P ∧ (Q ∨R)] → C[(P ∧Q) ∨ (P ∧R)]

WDNF: Disjunction of Well-Defined Conjunctions

F → DomCl(F ) whereF in DNF
DomCl(∨iCi) = ∨iDomCl(Ci)
DomCl(∧iLi) = ∧iDomCl(Li)
DomCl(R(t̄)) = R(t̄) ∧ DefCl(t̄)
DomCl(¬R(t̄)) = ¬R(t̄) ∧ DefCl(t̄)
DefCl(t̄) =

V{Df (s̄) |
f a partial function symbol of arityn
Df the relation specifying the domain off
f(s̄) a subterm occuring in̄t }

UNF: Unnested Form

C1 ∨ (∃ȳ.C2[f(x̄)]) → C1 ∨ (∃ȳ∃z.z=f(x̄) ∧ C2[z]) where
C2[f(x̄)] a conjunction of literals
occurenceC2[ ] not in a literal of formw = f(x̄)

C1 ∨ (∃ȳ.C2) → C1 ∨ (∃ȳ∃u.u=x ∧ C2(x 7→ u)) where
u a fresh variable
x a free variable s.t.C2 contains nou′=x for u′ bound

ELNG: Negative Literal Elimination

C[¬Isf (y)] → C[IsPRI(y) ∨W{Isg(y) | g ∈ Σ \ {f} }]
C[¬IsPRI(y)] → C[

W{Isg(y) | g ∈ Σ }]
C[¬Isf s(ys)] → C[Iscs(ys) ∨W{Isgs(ys) | g ∈ Σ \ {f} }]
C[¬Iscs(ys)] → C[

W{Isgs(ys) | g ∈ Σ }]
C[¬|φ|us=k] → C[|φ|us≥k+1 ∨Wk−1

i=0 |φ|us=i]

C[¬|φ|us≥k] → C[
Wk−1

i=0 |φ|us=i]

SelEl: Selector and Test Elimination

C1 ∨ (∃ȳ∗.C2 ∧ Isf∗(y
∗)) →

C1 ∨ (∃ȳ∗∃z̄∗.C2 ∧ y∗ = f∗(z̄∗))
C1 ∨ (∃ȳ∗.C2 ∧ u∗=f∗(〈u∗i 〉i) ∧ v∗=f∗j (u∗)) →

C1 ∨ (∃ȳ∗.C2 ∧ u∗=f∗(〈u∗i 〉i) ∧ v∗=u∗j )

ShpInt: Shape Introduction

C1 ∨ (∃ū∗. C2) → C1 ∨ (∃ū∗, us. sh(u)=us ∧ C2)
u occurs inC2

us fresh shape variable
C2 contains nosh(u) = us′

CongCl: Congruence Closure

C1 ∨ (∃ȳ∗∃u∗1∃u∗2. u∗1=u∗2 ∧ C2) →
C1 ∨ (∃ȳ∗∃u∗1. C2(u

∗
2 7→ u∗1))

C[u∗1=f∗(z̄∗) ∧ u∗2=f∗(z̄∗)] → C[u∗1=f∗(z̄∗) ∧ u∗2=u∗1]
C[u∗=f∗(z̄∗) ∧ u∗=g∗(x̄∗)] → C[false], f∗ 6≡ g∗

C[u∗=f∗(ū∗) ∧ u∗=f∗(v̄∗)] →
C[u∗=f∗(ū∗) ∧ u∗=f∗(v̄∗) ∧ ∧iu

∗
i =v∗i ]

C[u∗ 6=u∗] → C[false]
C[u∗=u∗] → C[true]
C[P ∧ false] → C[false]
C[P ∨ false] → C[P ]
C[P ∧ true] → C[P ]
C[P ∨ true] → C[true]

OccChk: Occur Check

C1 ∨ β → C1 where
β ≡ ∃ū.C2 for C2 conjunction of literals
u�+

β u for some variableu

HomExp: Homomorphism Property and Expansion

C[sh(u)=us
1 ∧ sh(u)=us

2] →
C[sh(u)=us

1 ∧ sh(u)=us
2 ∧ us

1 = us
2]

C1 ∨ (∃ȳ∗.C2 ∧ v=f(ū) ∧ sh(v)=vs) →
C1 ∨ (∃ȳ∗∃ūs.C2 ∧ v=f(ū) ∧ sh(v)=vs

∧ vs=f s(ūs) ∧ ∧ish(ui) = us
i)

C1 ∨ (∃ȳ∗.C2 ∧ vs=f s(ūs) ∧ sh(v)=vs) →
C1 ∨ (∃ȳ∗∃ū.C2 ∧ vs=f s(ūs) ∧ sh(v)=vs

∧ v=f(ū) ∧ ∧ish(ui) = us
i)

NEQEl: Term Disequality Elimination

C[u1 6=u2 ∧ sh(u1)=us
1 ∧ sh(u2)=us

2] →
C[(us

1 6= us
2 ∨ (us

1 6= us
2 ∧ |u1 6= u2|us

1
≥ 1)) ∧

sh(u1)=us
1 ∧ sh(u2)=us

2]

CCD: Cardinality Constraint Decomposition

C1[|φ(〈f(〈uij〉j)〉i)|us=k] →
C1[
W{∧j |φ(〈uij〉i)|us

j
=kj | Σjkj = k } ∧ C2]

C1[|φ(〈f(〈uij〉j)〉i)|us≥k] →
C1[
W{∧j |φ(〈uij〉i)|us

j
≥kj | Σjkj = k } ∧ C2]

whereC2 contains
us = f(〈us

j〉j) ∧
V

i,j sh(uij)=us
j

ShDis: Shape Distinction

C1 ∨ (∃ū∗.C2) → C1 ∨ (∃ū∗.(us
i = us

j ∨ us
i 6= us

j) ∧ C2)
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