
Survival Strategies for Synthesized Hardware Systems

Martin Rinard
Department of Electrical Engineering and Computer Science

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract—Survival is a key concern of many complex sys-
tems. A standard approach to maximizing the likelihood of
survival is to attempt to produce a system that is as free of
errors as possible. We instead propose a methodology that
changes the semantics of the underlying development and
execution environments to cleanly and simply obtain survival
guarantees that are difficult if not impossible to obtain with
standard techniques. Examples of survival properties include
continued execution in the face of addressing errors and guar-
anteed bounds on the amount of memory required during any
execution of the system (even in the face of dynamic memory
allocation). We summarize results for software implementations
of these techniques and discuss issues and advantages that arise
in the context of hardware implementations.

Keywords-Reliability, Testing, and Fault Tolerance; Auto-
matic Synthesis; Verification; Test Generation; Validation; Reli-
ability; Risk Management; Error Processing; Storage Manage-
ment; High Availability; Semantics of Programming Languages

I. INTRODUCTION

It is common knowledge that all large deployed systems
contain many errors [1]. Despite these errors, most of these
systems provide acceptable service to their users. This is
true even though the underlying development and execu-
tion environments (specifically, the programming language
implementation, library design, and advocated software en-
gineering practice) are extremely brittle — at the first sign
of an error (such as an exception, invalid library call, or
assertion violation) mechanisms built into the environment
typically terminate the execution. Note that, given current
engineering realities, a substantial level of resilience in the
face of errors is a necessary prerequisite for the economically
feasible construction of large systems. Any realistic attempt
to build completely error-free systems on a broad scale
would immediately restrict the scope to include only systems
with unacceptably limited functionality.

Interestingly enough, there is evidence that some simple
changes to the development and execution environment can
substantially improve system robustness in the face of oth-
erwise fatal errors, both naturally occurring and artificially
injected [2], [3], [4], [5], [6], [7], [8], [9], [10]. This is
true despite the fact (or perhaps even because of the fact)
that the original developers were unaware of these changes
and, indeed, developed the system using the original brittle
environments.

These empirical results suggest that deployed systems can
tolerate significant changes to the underlying development
and execution environments and still execute (in many cases
even more) acceptably. The possibility of changing these
environments broadens the system design space, which may,
in turn, make otherwise very challenging system goals easily
attainable.

II. SURVIVAL

For many complex systems survival (i.e., continuing to
execute to provide as much service as possible) is a primary
concern. In past research, we have analyzed the classes
of fatal errors in software systems and, for each class,
developed a dynamic technique that enables the system to
survive errors in that class [2], [3], [7]. Each such technique
is applied automatically and uniformly across the entire
system at the level of the underlying development and
execution systems. They require no effort on the part of
the original developers — indeed, the developers typically
remain completely oblivious to these techniques. The ap-
plication of these techniques makes it possible to develop
immortal systems that survive any error in the software that
implements the system. We discuss three such techniques:

• Safe Memory Block Accessing: Many programs use
computed expressions to access arrays and pointer
arithmetic to compute addresses for accessed memory
blocks. In both cases, it is possible for out of bounds
accesses to cause the program to fail. We have imple-
mented three ways to avoid this failure:

– Failure-Oblivious Computing: In failure-
oblivious computing [2], the program contains
checks for out of bounds memory accesses. It
discards out of bounds writes and manufactures
values for out of bounds reads. The experimental
results indicate that this technique enables servers
to survive otherwise fatal memory errors to
continue on to correctly process subsequent
requests.

– Cyclic Memory Block Addressing: A variant on
failure-oblivious computing, cyclic memory block
addressing, maps reads and writes cyclically onto
the addressed memory block. So out of bounds
reads are cyclically remapped (typically via a mod



operation) to a corresponding location within the
accessed block of memory. Out of bounds writes
can either be discarded or cyclically mapped to
overwrite older values in the accessed memory
block.
In contrast to standard failure-oblivious computing,
cyclic memory block accessing has the advantage
that groups of out of bounds reads tend to ac-
cess groups of values that satisfy any underlying
data structure consistency constraints. In certain
circumstances this consistency preservation may
enhance the acceptability of the results that the pro-
gram produces when it encounters out of bounds
memory accesses [4].

– Boundless Memory Blocks: Boundless memory
block implementations store out of bounds writes
in a hash table to be returned on subsequent reads
of corresponding addresses [3]. This modification
can be seen as converting the size parameter of
memory allocation operations from potentially af-
fecting the semantics of the system to only affect-
ing its performance.

In all cases, the programming language semantics de-
termines the memory block granularity. Each array is
typically a memory block, as is each (dynamically
or statically allocated) object. An important aspect of
these policies is the elimination of certain kinds of
memory corruption via the confinement of changes to
the memory block that the writes were intended to
access. The change in memory accessing semantics can
be profitably viewed as a change in the semantics of
the programming language.

• Cyclic Memory Allocation: It is often desirable to ob-
tain, before a system executes, a bound on the amount
of memory that the system will attempt to consume.
A standard approach to obtaining such a bound is to
analyze the dynamic memory allocation behavior of the
system to attempt to determine the maximum amount
of memory that the system will attempt to allocate.
Cyclic memory allocation applies a different strategy.
Instead of attempting to provide a conceptually new
block of memory for each memory allocation, the
memory allocator instead provides, for each memory
allocation site, a buffer containing a fixed number of
object slots of the appropriate size. It then cyclically
allocates objects out of the buffer [7]. Specifically, for
the nth allocation from a buffer of size b, it allocates the
new object in slot n mod b. Note that with this memory
allocation strategy, there is an immediate bound on the
total amount of memory required to execute the system.
Specifically, the total amount is simply the sum, over
all allocation sites, of the size of the corresponding
cyclic buffer for that site. One way to obtain appropriate

buffer sizes is to profile the execution of the system
on a representative set of inputs, then use the profiling
results to compute the number of live objects in each
buffer, then use a cyclic buffer large enough to contain
the live objects.
The potential drawback of this technique is that it has
the potential to place multiple live objects in the same
buffer slot, thereby overlaying live memory. Our results
show that this overlaying can change the behavior
of the program, but typically in a way that causes
the program to degrade gracefully rather than failing
outright. Cyclic memory allocation can therefore be
seen as a mechanism for enabling survival with graceful
degradation in the face of insufficient resources. Such
a graceful degradation may often be preferable to the
standard alternative of system failure.

• Bounded Loops: Infinite loops, like unbounded mem-
ory allocation, can threaten the survival of the system.
Infinite loops can consume all of the time the sys-
tem needs to produce acceptable results; unbounded
memory allocation can consume all of the space. It is
possible to eliminate infinite loops by simply choosing
a maximum number of iterations that each loop is
allowed to execute, then exiting the loop and proceed-
ing on to the next activity if the loop attempts to
exceed this number of iterations. One way to obtain
these maximum numbers of iterations is to profile the
execution of the system on appropriate inputs, then use
the profiling results to choose appropriate bounds [7].

All of these techniques are simple to implement and pro-
vide survival guarantees that are difficult, if not impossible,
to obtain using standard techniques, which are constrained
by a perceived (and arguably unjustified) need to preserve
the standard semantics of the underlying development and
execution environments.

III. POTENTIAL HARDWARE IMPLEMENTATIONS

All of the above survival techniques have been imple-
mented and evaluated in software systems. But for many
systems the underlying implementation substrate (hardware
or software) is becoming an increasingly fluid choice. There
are several advantages to applying two of the three survival
techniques listed above in hardware instead of software.

A. Hardware Safe Memory Block Accessing

Software implementations of safe memory block access-
ing in languages without array bounds checks or other out
of bounds checks (such as C and C++) typically insert
additional instructions into the execution stream to perform
the bounds checks. In the absence of optimization, these
instructions can degrade the performance of the system [2],
[3] (although engineering effort can significantly reduce this
overhead [11]). Of course, for languages (such as Java) that
already have bounds checks, there is no additional overhead.



A standard way to synthesize hardware implementations
of systems that use references to access memory blocks is to
first perform an analysis pass that resolves each reference to
(ideally) the block of memory that it accesses. If each block
of memory is implemented as a distinct hardware resource,
each reference is then routed to the corresponding hardware
resource that implements the accessed memory block, with
an offset into the hardware resource identifying the specific
item to access. With a successful static disambiguation of
the accessed hardware resource and all offset calculations
performed modulo the size of the hardware resource, the
synthesized hardware should be incapable of producing an
access to any other block of memory. The only remaining
issue is to flag offsets whose address calculations have
wrapped around to enable the synthesized hardware to drop
writes via these offsets.

If the static analysis is unable to disambiguate the refer-
ence to a single hardware resource, one way to synthesize the
reference is to combine a resource identifier with an offset.
In this case the resource identifier chooses the hardware
resource to access, with the offset identifying the item within
that hardware resource. Because address calculations affect
only the offset and not the resource identifier, there is no
possibility of the kind of out of bounds memory corruption
characteristic of software implementations. Modulo address-
ing can be implemented in a combination of the offset
calculation and (if the resources have different sizes) in an
address rectification module placed before each resource that
appropriately adjusts out of bounds offsets to fall within the
hardware resource. Out of bounds address flags can enable
the synthesized circuit to drop out of bounds writes.

Finally, the hardware implementation may place multiple
memory blocks in the same hardware resource, with all
blocks in the resource accessed via a uniform address space.
Like software implementations, the implementation must
deal with the possibility that address calculations starting
from an address that refers to one memory block may
produce an address that refers to another memory block
within the same hardware resource. So like software imple-
mentations of safe memory blocks, the synthesized hardware
implementation must also typically perform bounds checks.
In comparison with software implementations, however,
hardware implementations have a wider range of implemen-
tation choices available to them. An example of a more effi-
cient bounds check implementation implements addresses
as combinations of memory block identifiers and offsets
(potentially with a translation into the uniform address space
of the underlying hardware resource performed just before
the access). This alternative resembles standard base plus
bounds translation and checking mechanisms present in seg-
mented memory system implementations [12], with further
optimizations possible that exploit statically determinable
properties of the specific memory blocks in the system.
For example, if the memory blocks are identically sized

powers of two, it may be possible to eliminate the standard
translation from the memory block identifier into the base
of the corresponding region in the hardware resource.

B. Cyclic Memory Allocation

In many cases the hardware synthesis system statically
preallocates all of the memory blocks, eliminating the need
for any memory management as the system executes. In
some cases, however, especially when reusing components
originally designed for implementation in software, the
synthesized hardware implementation may need to manage
the allocation and deallocation of memory as the system
executes. In this situation key issues include the allocation of
one or more hardware resources to hold the allocated blocks
of memory, adequately sizing these hardware resources, and
devising an algorithm to manage the memory in each hard-
ware resource. These issues are complicated by the fact that
standard dynamic memory management approaches work
with the abstraction of an unbounded amount of memory.

Cyclic memory allocation (and related techniques that al-
locate a conceptually unbounded number of memory blocks
into a memory of fixed size) can provide a relatively simple
solution to the memory allocation problem. The first step
is to group the dynamically allocated objects together into
classes that are placed in the same hardware resource. There
are a variety of options — for example, one could place all
objects allocated at the same allocation site together into
the same hardware resource. The next step is to profile
representative executions to obtain an estimate of the size of
the hardware resource required to hold the allocated objects.
The profiler can either track allocations and deallocations,
or, for more precision, track reads and writes to dynamically
compute the number of live objects. It is possible to feed
the profiling results back into the assignment of objects to
hardware resources by, for example, allocating groups of
objects with disjoint lifetimes in the same hardware resource.

Cyclic memory allocation is simple and easy to imple-
ment, but works best when the lifetimes of the objects corre-
late with their allocation order. The broader implementation
space available to hardware implementations makes it feasi-
ble to contemplate more sophisticated memory management
strategies such as least recently used allocation. This strategy
would combine hardware instrumentation to track accesses
at the granularity of individual allocation units with the
allocation of the least recently accessed object slot on each
new allocation.

IV. TESTING

The sometimes distressing tendency of systems to vary
from their anticipated behavior makes testing an essential
step in virtually every system development effort. But testing
often has a broader purpose — instead of merely checking
conformance (or the lack of conformance) with a specifi-
cation, a primary benefit of many testing efforts is simply



to make certain aspects of the system behavior apparent
to the developers. The resulting enhanced understanding
of the system behavior can then serve as a foundation
for developing new functionality or altering the existing
specification or implementation.

A. Standard Testing Approaches

Safe memory block access mechanisms and cyclic mem-
ory allocation (along with extensions that use more sophisti-
cated allocation strategies within a buffer of fixed size) affect
the execution of the system only when the execution goes
outside the original anticipated execution envelope. Specif-
ically, in the absence of out of bounds memory accesses,
systems that use safe memory block access mechanisms have
the same behavior as systems without these mechanisms.
Similarly, when the system does not overlay live objects,
systems with cyclic memory allocation and its extensions
have the same semantics as systems with more standard
memory management approaches. Thus, standard testing ap-
proaches, while essential for exploring the overall behavior
of the system, may not exercise the survival mechanisms at
all and may therefore provide little or no insight into the
potential consequences of activating these mechanisms.

B. Reduced Resource Testing

The success or failure of these survival techniques de-
pends on the natural resilience of the specific system to
which they are applied. Luckily, there is a simple mech-
anism, reduced resource testing, available to explore this
natural resilience. Specifically, it is possible to drive the
system into activating the anticipated survival mechanisms
by artificially reducing the size of allocated memory blocks
or cyclic buffers to provoke the system into dropping writes,
wrapping out of bounds addresses around back into the ap-
propriate memory block, overlaying live data, or terminating
loops early. The resulting behavior of the system under these
operating conditions can provide insight into its potential
behavior when and if it encounters operating conditions
during production that activate the survival mechanisms. We
therefore advocate the inclusion of this kind of testing into
the overall testing plan for the system.

V. VERIFICATION AND MODULARITY

In general, reusable modules can reasonably tolerate
higher reliability efforts than complete systems. Any ver-
ification costs can be amortized across all uses of the
module, reusable modules are typically substantially smaller
and easier to verify than complete systems, an explicit
specification (which is typically required for any verification
effort to succeed) is easier to justify since it can help clients
understand the module interface, and (because reusable
modules may be used in a different contexts with different
reliability requirements) it is difficult to comfortably settle
for anything less than total conformance to the specification.

Verified modules typically assume the standard execution
semantics. They also typically use an assume/guarantee
approach in which the correctness of the module depends
on the client using the module correctly. Both of these
assumptions undermine the ability of the module to behave
acceptably in a broad range of contexts. Specifically, changes
in the underlying execution semantics may invalidate the
verification reasoning; clients may fail to satisfy the assump-
tions that the module relies on for its correct execution. We
therefore advocate a broader verification approach which
relaxes these assumptions. Specifically, we advocate an
approach in which the verification produces a guarantee that
key properties (such as the consistency of any internal state
and an eventual return to correct behavior) are preserved
even in the presence of nonstandard execution semantics
(such as cyclic memory allocation or other strategies that
may overlay live objects). We also advocate the use of
self-defending modules that make no assumptions what-
soever about how the client uses the module. In effect,
self-defending modules attempt to provide an acceptable
outcome in the face of all possible client behaviors. In
comparison with standard modules, self-defending modules
in some cases contain additional error checking to detect
and protect themselves against client behavior they are
not prepared to tolerate; in other cases they generalize
the standard semantics of the module to provide intuitive
behavior in the face of possible client behavior that the
standard interface assumes does not occur.

VI. CONCLUSION

Standard development and execution environments deploy
unforgiving mechanisms in response to exceptional system
behaviors such as out of bounds memory accesses, un-
bounded memory allocation, and infinite loops. This brittle
approach can undermine the ability of the system to execute
successfully in the face of unexpected events and errors.

We propose instead to expand the system design space
to include changes to the underlying development and
execution environments. Such changes alter the standard
semantics to cleanly and simply provide guaranteed survival
properties such as continued execution and the use of a
statically bounded amount of memory. Our experience using
these techniques to enable software systems to survive
otherwise fatal errors demonstrates the potential benefits of
this approach.

In comparison with software implementations of these
survival mechanisms, there is a larger design space available
to hardware implementations. Hardware synthesis systems
can exploit this larger design space to provide hardware
systems with the same survival benefits, but with less (and
in some cases no) overhead. Reduced resource testing can
provide insight into the consequences of deploying the
survival mechanisms in the synthesized system.



REFERENCES

[1] C. Jones, Estimating Software Costs Bringing Realism to
Estimating. McGraw-Hill, 2007.

[2] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee, “Enhancing server availability and
security through failure-oblivious computing,” in Proceeding
of 6th Symposium on Operating System Design and Imple-
mentation (OSDI 2004), 2004.

[3] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu,
“A dynamic technique for eliminating buffer overflow vul-
nerabilities (and other memory errors),” in Proceedings of
the 2004 Annual Computer Security Applications Conference
, 2004.

[4] M. Rinard, C. Cadar, and H. H. Nguyen, “Exploring the ac-
ceptability envelope,” in 2005 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications Companion (OOPSLA ’05 Companion) Onwards!
Session, Oct. 2005.

[5] S. Sidiroglou, O. Laadan, C.-R. Perez, N. Viennot, A. D.
Keromytis, and J. Nieh, “ASSURE: Automatic Software Self-
healing Using REscue points,” in Proc. 14th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2009.

[6] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis, “A
dynamic mechanism for recovering from buffer overflow
attacks,” in Proceedings of the 8th Information Security
Conference (ISC), 2005.

[7] H. H. Nguyen and M. Rinard, “Detecting and eliminating
memory leaks using cyclic memory allocation,” in Pro-
ceedings of the 2007 International Symposium on Memory
Management, 2007.

[8] B. Demsky and M. Rinard, “Automatic detection and repair of
errors in data structures,” in Proc. 18th Annual ACM Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, 2003.

[9] ——, “Static specification analysis for termination of
specification-based data structure repair,” in IEEE Interna-
tional Symposium on Software Reliability, 2003.

[10] ——, “Data structure repair using goal-directed reasoning,”
in Proceedings of the 2005 International Conference on
Software Engineering, 2005.

[11] D. Dhurjati and V. Adve, “Backwards-compatible array
bounds checking for c with very low overhead,” in Proc. 2006
International Conference on Software Engineering, 2006.

[12] E. Witchel, J. Cates, and K. Asanovic, “Mondrian memory
protection,” in Proc. 10th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2002.


