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Abstract

We present an overview of the Jahob system for
modular analysis of data structure properties. Jahob
uses a subset of Java as the implementation language
and annotations with formulas in a subset of Isabelle
as the specification language. It uses monadic second-
order logic over trees to reason about reachability in
linked data structures, the Isabelle theorem prover and
Nelson-Oppen style theorem provers to reason about
high-level properties and arrays, and a new technique to
combine reasoning about constraints on uninterpreted
function symbols with other decision procedures. It
also incorporates new decision procedures for reasoning
about sets with cardinality constraints. The system can
infer loop invariants using new symbolic shape analysis.
Initial results in the use of our system are promising;
we are continuing to develop and evaluate it.

1 Introduction

Complex software systems currently play a crucial
role in the management and operation of our society.
Moreover, this role will only increase in importance
as software becomes even more pervasively deployed
across the activities, infrastructure, and devices of our
society. Given this central role, software reliability is a
critical and increasingly important issue.

The goal of the Jahob project is to increase software
reliability by statically verifying that certain classes of
errors can never occur. The Jahob system analyzes
annotated programs written in a subset of Java. A
basic idea behind Jahob is to model the state that
the program manipulates (its data structures) as ab-
stract sets of objects and relations between these ob-
jects. The program uses these sets and relations to
state key data structure consistency constraints that
must hold between the data structures. Each method
also uses these sets and relations to state its specifica-
tion, which consists of a precondition and a postcondi-
tion. Given the invariants and specifications, the Jahob

verifier statically analyzes the program to ensure that
1) it preserves important data structure consistency
properties, and 2) each method conforms to its speci-
fication. Method specifications connect the actions of
the program to the data structures that it manipu-
lates, enabling the verification of properties that relate
actions and state.

There are several challenges associated with this ef-
fort. First, there must be a verified connection be-
tween the concrete data structures that the program
manipulates and the sets and relations that the Ja-
hob analyzer operates with. To establish this connec-
tion, Jahob program encapsulate their data structures
in modules, with each module containing an abstrac-
tion function that maps the encapsulated concrete data
structure to the corresponding sets and relations.

A second challenge is that the Jahob analyzer is de-
signed to verify extremely precise, detailed properties
that are significantly beyond the reach of traditional
analyses. Moreover, the range of potential properties
to verify is extremely large, making it implausible that
any single analysis will be able to verify all properties
of interest. The Jahob system is therefore structured
to incorporate multiple specialized analyses, each of
which is tailored to analyze a targeted class of proper-
ties. Together, these analyses are capable of verifying
important properties of unprecedented sophistication
and importance.

2 Example

In this section we use a simple list example to
demonstrate how the Jahob system can verify data
structure consistency properties. Figure 1 presents
the specification for a standard List class. The run-
ning program uses a standard linked list data structure
to implement instances of this class (we present and
discuss the implementation below). Clients, however,
should not be concerned with the details of any particu-
lar implementation. The specification of the List class
therefore serves as an interface that abstracts away
the particular implementation details of the class, leav-



class List

{

/*: public static specvar content :: objset; */

public List() /*:

modifies content

ensures "content = {}"

*/

public void add(Object o) /*:

requires "o ~: content & o ~= null"

modifies content

ensures "content = old content Un {o}"

*/

public boolean empty() /*:

ensures "result = (content = {})"

*/

public Object getOne() /*:

requires "content ~= {}"

ensures "result : content"

*/

public void remove (Object o) /*:

requires "o : content"

modifies content

ensures "content = old content - {o}"

*/

}

Figure 1. List Specification

ing behind only those aspects of the class upon which
clients rely.

In this case, the List specification uses the abstract
specification variable content to hold the set of objects
present in the list. This set does not exist when the
program runs — it is simply an abstraction that the
Jahob program uses to express the specification and
that the Jahob verifier uses as it verifies the program.

As Figure 1 shows, Jahob is structured as an anno-
tation language for Java. Jahob annotations appear as
comments to the standard Java compiler. It is possible
to distinguish Jahob annotations from standard com-
ments by the fact that Jahob annotations all start with
either //: or /*: — in other words, they have a ”:”
after the initial comment token. For example, the first
comment in Figure 1 declares the specification vari-
able content (which, as mentioned above, abstracts
the contents of the list).

2.1 Method Interfaces

After the declaration of the specvar specification
variable, the List specification contains a sequence of
method interface declarations. Each declaration may
contain a requires clause, which states the precondi-
tion of the method; a modifies clause, which states the
sets and relations that the method may modify; and an
ensures clause, which states the properties that the
method guarantees will hold when it returns, assum-
ing that the precondition held when it was invoked.

class Client {

List a, b;

/*:

public ghost specvar init :: bool;

invariant

"init -->

a ~= null & b ~= null &

a..List.content Int b..List.content = {}";

*/

public Client() /*:

modifies "List.content"

ensures "init"

*/

{

a = new List();

b = new List();

Object x = new Object(); a.add(x);

Object y = new Object(); a.add(y);

//: init := "True";

}

public static void move() /*:

requires "init"

modifies "List.content"

ensures "a..List.content = {}"

*/

{

while (!a.empty()) {

Object o = a.getOne();

a.remove(o);

b.add(o);

}

}

}

Figure 2. List Client

The List constructor List(), for example, modifies
the content specification variable — specifically, it en-
sures that the content specification variable is empty
when it constructs the List.

Note that the program may invoke the List con-
structor multiple times to construct many different
lists. According to the semantics of Jahob, each in-
stantiation has its own specification variable content.
It is therefore possible to write specifications that re-
late different instances of the specvar variable that
come from different instantiations of the List module.
One could, for example, state that one instantiation
contains a set of objects that is a subset of another, or
that two lists contain disjoint objects.

We next consider the interface for the add(o)
method, which adds the object o to the list. Here the
requires clause states that o must not already be in
the list (o ~: content) and that o must not be null
(o~=null). As this example illustrates, developers can
use boolean combinations of clauses in the requires
and ensures clauses.

The ensures clause of the add method uses the Un
(union) operator to state that the effect of the add



method is to add the object o to the set of objects
content already in the list. The remaining methods
(empty, getOne, and remove) similarly use requires,
modifies, and ensures clauses to specify their inter-
faces.

2.2 List Client

We next show how a client can instantiate the List
class to obtain multiple List instances, specify invari-
ants involving these instances, manipulate the lists,
and use the Jahob system to verify that the program
correctly respects the invariants. The Client class in
Figure 2 creates two lists (a and b), adds some objects
to these lists, then moves all of the elements from a
into b.

The key invariant in this example is that the sets of
elements in the two lists are disjoint and remain disjoint
throughout all of the manipulations of the client. There
is, however, a technical detail that somewhat compli-
cates the expression of this invariant. Specifically, be-
fore the client is instantiated, the lists do not exist. It
therefore does not make sense to express the invariant
directly as holding whenever the program executes. In-
stead, the Client uses the boolean init specification
variable to state that the invariant holds whenever the
Client exists. The invariant in Figure 2 also states
that, once the Client has been initialized, that a and
b are not null.

2.3 List Implementation

We next discuss the implementation of the List
class. There are two key considerations: 1) imple-
menting the List methods in Java, and 2) establishing
the connection between the List’s Java data structures
and the abstract specification variables used to specify
the List interface. Figure 3 presents the state of the
List.

The implementation uses the variable first to re-
fer to the first Node in the list. Each Node object has a
field next that contains a reference to the next object
in the list and a field data that contains a reference to
the object in the list. The private specification vari-
able nodes is the set of all Nodes that is reachable by
following next references starting from the first vari-
able.

The Jahob specification uses an abstraction func-
tion to define the contents of the nodes set. This ab-
straction function consists of a set comprehension that
states that nodes is the set of all objects n in the re-
flexive, transitive closure of the next relation on Node
objects starting with first. The specification can then
use the node set to define the content set as the set
of all objects which objects in the node set reference.
This definition uses the existential quantifier EX in its
set comprehension.

Note that these abstraction functions directly ref-
erence implementation entities (first, next) to de-
fine the sets nodes and contents in terms of the state
that the implementation uses to represent the list. The
abstraction functions therefore establish a formal con-
nection between the concrete implementation state and
the abstract specification state. This connection allows
the the Jahob verifier to start with facts that have been
established by reasoning about the abstract state and
conclude facts that are valid about the concrete state
of the program as it is running.

In our example, the Jahob verification of the dis-
jointness of the two List contents sets in the client in
Figure 2, in combination with the abstraction function,
enables the Jahob verifier to conclude that the concrete
lists are disjoint as well. Of course, this verification also
depends on the verification that the list methods cor-
rectly implement their interfaces. For this verification
to succeed, the concrete data structures must satisfy
several additional invariants. Figure 3 presents these
properties — specifically, the list must be acyclic with
no sharing of sublists, no node in the list refers to the
first node, and the data references are not shared.

public List() { }

public void add(Object o) {

Node n = new Node();

n.data = o;

n.next = first;

first = n;

}

public boolean empty() {

return (first==null);

}

public Object getOne() {

return first.data;

}

public void remove (Object o) {

if (first!=null) {

if (first.data==o) {

first = first.next;

} else {

Node prev = first;

Node current = first.next;

boolean go = true;

while (go && (current!=null)) {

if (current.data==o) {

prev.next = current.next;

go = false;

}

current = current.next;

}

}

}

}

Figure 4. List Implementation Methods



class List

{

private Node first;

/*:

// representation nodes:

specvar nodes :: objset;

private vardefs "nodes == { n. n ~= null & rtrancl_pt (% x y. x..Node.next = y) first n}";

// list content:

public specvar content :: objset;

private vardefs "content == {x. EX n. x = n..Node.data & n : nodes}";

// next is acyclic and unshared:

invariant "tree [List.first, Node.next]";

// ’first’ is the beginning of the list:

invariant "first = null |

(first : Object.alloc &

(ALL n. n..Node.next ~= first &

(n ~= this --> n..List.first ~= first)))";

// no sharing of data:

invariant "ALL n1 n2. n1 : nodes & n2 : nodes & n1..Node.data = n2..Node.data --> n1=n2";

*/

}

class Node {

public /*: claimedby List */ Object data;

public /*: claimedby List */ Node next;

}

Figure 3. List Implementation State and Invariants

Figure 4 presents the implementation of the List
methods. These methods provide a standard list im-
plementation. They manipulate only the concrete data
structures that make up the list. The Jahob verifier
must check that, given the definition of the abstract
content set in Figure 3 and the method interfaces
in Figure 1 (which provide the interfaces in terms of
the abstract content set), that the method implemen-
tations in Figure 4 correctly implement the abstract
method interfaces in Figure 1.

2.4 Verification

A key verification challenge is that there are an
enormous number of possible data structures, many of
which may require specialized verification strategies. It
is therefore difficult to imagine that any single verifica-
tion algorithm could successfully verify all data struc-
ture implementations. In our example, the verification
of the List implementation involves detailed reason-
ing about the references in the implementation. Other
programs may use array-based data structures such as
hash tables that produce very different verification con-
ditions. The Jahob framework is therefore set up as
a verification condition generator that can invoke any
one of a number of decision procedures to discharge the
proof obligations provided by the verification condition
generator. By populating Jahob with a variety of de-

cision procedures, each of which may be specialized to
the verification conditions that arise in the analysis of
different data structures or clients, Jahob can effec-
tively deploy very specialized, even unscalable, tech-
niques to verify the full range of data structure imple-
mentations and clients.

One issue that arises in the generation of the verifi-
cation conditions is loop invariants. The current verifi-
cation condition generator is able to exploit the avail-
ability of explicitly-provided loop invariants for com-
plex code. It is also able to leverage loop invariant in-
ference engines, including speculative engines that may
generate incorrect loop invariants. Any incorrect loop
invariants would be detected and rejected during the
verification condition analysis.

In our example, the verification condition genera-
tor analyzes each method in turn. It appropriately
augments the requires and ensures clauses with the
specified invariants to ensure that the methods preserve
them. The verification conditions for the data struc-
ture implementation could be verified, for example, by
a combination of field constraint analysis [80] and the
MONA decision procedure [40]. Loop invariants could
be provided explicitly or inferred by symbolic shape
analysis [80, 65, 79].

The verification conditions for the client could be
discharged by a decision procedure specialized for rea-
soning about membership changes in abstract sets of



objects. It is also possible in many cases to use off-
the-shelf automated theorem provers [78] to discharge
these kinds of verification conditions.

3 Status

We have implemented the Jahob framework, popu-
lated it with interfaces to the Isabelle interactive theo-
rem prover [63], the SMT-LIB interface [67] to Nelson-
Oppen style [62] theorem provers, the MONA decision
procedure [40], and a decision procedure for Boolean
Algebra with Presburger Arithmetic [43] based on re-
duction to the Omega decision procedure [66] for Pres-
burger arithmetic. We are using a simple goal decom-
position technique to prove different conjuncts in the
goal using different decision procedures. In addition,
we are using field constraint analysis [80] to combine
reasoning about uninterpreted function symbols with
reasoning using other decision procedures.

We have verified implementations and uses of global
data structures. By providing intermediate assertions
we have verified implementations of operations on as-
sociation lists. We have also annotated and partially
verified high-level properties in an implementation of a
turn-based strategy game. We have also implemented
a mechanisms for reasoning about data structure repre-
sentation in the presence of dynamic data structure in-
stantiation, combining the ideas from the Hob project
[47] with approaches from systems such as Spec# [6].
We are currently evaluating the practicality of our ap-
proach.

4 Related Work

Key features of Jahob system are modular reason-
ing with expressive procedure contracts and support
for data abstraction, and automated support for rea-
soning about linked data structure implementation and
usage. Jahob therefore builds on program verifica-
tion research to provide a framework for modular anal-
ysis, and builds on new analyses for data structure
implementation and data structure use to provide a
higher degree of automation than verification frame-
works based on general-purpose reasoning.

Verification systems with modular reasoning.
Systems based on verification-condition generation and
theorem proving include the program verifier [39], the
interactive program verifier [17], the Stanford Pascal
Verifier [74, 60], the Gypsy environment [28], Larch
[30], ESC/Modula-3 [16], ESC/Java [22], ESC/Java2
[12], Boogie [6], Krakatoa [55], KeY [3], as well as more
general frameworks such as ACL2 [38, 59], and STeP
[8], and PVS [64]. Traditionally, these systems are
based on verification condition generation combined
with theorem provers. They typically require loop in-

variants, and additionally either require either inter-
action with the theorem prover or lemmas specific for
the program being verified. Specification frameworks
include Z [81], VDM [36], B [2], RAISE [13]. Many of
these frameworks recognize the importance of data ab-
straction [36], which is an important component of Ja-
hob. Some of these frameworks provide no automation
for performing formal proofs, and some provide sup-
port in terms of verification condition generators and
interactive theorem provers [1]. Jahob, on the other
hand, aims at providing automated proofs that data
structures conform to their abstraction; previous ap-
proaches have been less ambitious either in terms of
automation [36] or in terms of using lighter-weight sub-
stitute of specification variables [51].

Recently, verification systems have incorporated
techniques for inferring loop invariants [23, 21, 11, 50].
Like more specialized analyses [75, 82, 19, 70, 24], such
techniques for loop invariant inference are effective for
analyzing simple array data structures and basic mem-
ory safety properties, but have so far been limited
in the range of properties that they can prove about
linked data structures. These systems are compatible
with our methodology of combining specialized anal-
yses based on abstract interpretation to increase the
automation in the context of a verification framework;
one of the properties that makes Jahob different is the
ability to utilize recently developed precise data struc-
ture analyses such as shape analysis.

Shape analysis. Shape analyses are precise anal-
yses for linked data structures. They were origi-
nally used for compiler optimizations [37, 27, 26], but
subsequently evolved into more precise analyses that
have been successfully used to analyze invariants of
data structures that are of interest for verification
[42, 25, 41, 49, 58, 71]. Most shape analyses that syn-
thesize loop invariants are based on precomputed trans-
fer functions and a fixed set of properties to be tracked;
recent approaches enable automation of such compu-
tation using decision procedures [86, 84, 85, 65, 80] or
finite differencing [69].

Recently there has been a resurgence of decision
procedures and analyses for linked list data structures
[4, 18, 54, 7, 68], where the emphasis is on predictability
(decision procedures for well-defined classes of proper-
ties of linked lists), efficiency (membership in NP), the
ability to interoperate with other reasoning procedures,
and modularity.

Shape analyses are among the most sophisticated
analyses for structural properties of programs; they
have also been applied to verify properties such as
sorting, by abstracting the ordering relation [53, 58].
Analyses and decision procedures have also been con-
structed that combine reasoning about reachability and
reasoning about quantitative properties such as length
of lists and height and balancing of trees [32, 31, 45,



57, 9]. Size constraints can be imposed on set abstrac-
tions of data structures, yielding logics that can reason
about numbers of data structure elements and support
quantifiers [43].

New logics were recently proposed for reasoning
about reachability, such as the logic of reachable shapes
[83]. Existing logics, such as guarded fixpoint logic [29]
and description logics with reachability [10] are attrac-
tive because of their expressive power, but so far no
decision procedures for these logics have been imple-
mented. Automated theorem provers such as Vampire
[78] can be used to reason about properties of linked
data structures, but axiomatizing reachability in first-
order logic is non-trivial in practice [61, 52] and not
possible in general.

Software Model Checking. Recent trends indi-
cate the convergence of shape analysis with predicate
abstraction [5, 33], with a spectrum of increasingly
complex domains ranging from propositional combina-
tions of predicates [5], through quantified propositional
combinations [23], indexed predicates [44], to symbolic
shape analysis [80, 65, 79]. The field remains an active
area of research, with different approaches demonstrat-
ing different precision/efficiency/automation tradeoffs.

Typestate systems. Because many precise analy-
sis approaches are difficult to scale, it is important to
be able to combine them with more scalable analyses.
Jahob uses expressive procedure interfaces to achieve
such a combination, which means that scalable analy-
ses must be able to communicate using procedure in-
terfaces. Typestate analyses have emerged as data-flow
analyses that take into account user-supplied interfaces
[73, 14, 15]. In the Hob project [48, 87, 46] we have
demonstrated that a combination of typestate analysis
with shape analysis is feasible when interfaces use ab-
stract sets to abstract global data structures. One of
the goals of Jahob is to demonstrate that such an ap-
proach is feasible for a more general class of procedure
interfaces that involve not only sets, but also relations.

Bug finding tools for complex properties. Given
that many verification attempts demonstrate bugs in
specifications or code, it is useful to supplement verifi-
cation tools with bug fining tools. Finite model check-
ers such as the Alloy Analyzer [34] can be used to
find bugs in code that manipulates linked data struc-
tures [35, 76]. Explicit state model checking and test-
ing approaches can also be effective for this purpose
[20, 56, 72, 77]. Although somewhat orthogonal to ver-
ification, bug finding can be combined with verification
in productive ways, and we may consider such combi-
nations in the future.

5 Conclusion

Software reliability is an increasingly important con-
cern for our society. The automatic verification of pro-
gram properties promises to address this concern by
eliminating potential sources of software errors. The
Jahob project focuses on data structure consistency
properties and connections between the actions of the
program and the effect that these actions have on the
state. The combination of a general verification condi-
tion generator and an architecture that supports the in-
tegration of multiple specialized analyses is designed to
enable the verification of properties of unprecedented
precision.
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