
Using Early Phase Termination To Eliminate Load Imbalances At
Barrier Synchronization Points

Martin Rinard

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 021139

rinard@csail.mit.edu

Abstract
We present a new technique,early phase termination, for
eliminating idle processors in parallel computations that use
barrier synchronization. This technique simply terminates
each parallel phase as soon as there are too few remaining
tasks to keep all of the processors busy.

Although this technique completely eliminates the idling
that would otherwise occur at barrier synchronization points,
it may also change the computation and therefore the result
that the computation produces. We address this issue by pro-
viding probabilistic distortion modelsthat characterize how
the use of early phase termination distorts the result that the
computation produces. Our experimental results show that
for our set of benchmark applications, 1) early phase termi-
nation can improve the performance of the parallel compu-
tation, 2) the distortion is small (or can be made to be small
with the use of an appropriate compensation technique) and
3) the distortion models provide accurate and tight distor-
tion bounds. These bounds can enable users to evaluate the
effect of early phase termination and confidently accept re-
sults from parallel computations that use this technique if
they find the distortion bounds to be acceptable.

Finally, we identify a general computational pattern that
works well with early phase termination and explain why
computations that exhibit this pattern can tolerate the early
termination of parallel tasks without producing unacceptable
results.

Categories and Subject DescriptorsD.1.2 [Programming
Techniques]: Concurrent Programming;
D.2.5 [Software Engineering]: Testing and Debugging;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

D.3.3 [Programming Languages]: Language Constructs and
Features

General Terms Performance, Reliability, Design, Lan-
guages

Keywords Barrier Synchronization, Parallel Computing,
Probabilistic Distortion Models, Early Phase Termination

1. Introduction
Many parallel programs exhibit a parallelism pattern con-
sisting of alternating parallel and serial phases. Each parallel
phase consists of a set of tasks that can execute in parallel.
When all of the tasks finish, a serial phase consisting of a
single task continues the computation until the start of the
next parallel phase. Each serial phase typically accesses data
from all of the tasks in the preceding parallel phase. These
tasks must therefore finish before the subsequent serial phase
can begin. The synchronization that accomplishes this tem-
poral separation is calledbarrier synchronizationbecause it
imposes a temporal barrier that separates the two phases.

A well-known issue with barrier synchronization isbar-
rier idling, which occurs at the end of the parallel phase
when there are few tasks left to execute. If there is a mis-
match in processor speeds or task sizes, processors may be
left idle as they wait for the remaining tasks to finish. This
idling can limit the performance of the parallel computation.

We propose a simple solution,early phase termination,
to barrier idling: when there are too few tasks to keep all of
the processors busy at the end of the parallel phase, simply
terminate the remaining tasks and proceed immediately to
the subsequent serial phase. This solution completely elim-
inates any barrier idling. It may, however, change the com-
putation and therefore the result that the computation pro-
duces. There are two potential questions: 1) how much does
the result change, and 2) how predictable is the change? If
the change is sufficiently small and predictable, users may be
willing to accept the perturbed result in exchange for the in-
creased performance associated with the elimination of bar-
rier synchronization.

1.1 Distortion Models

To enable the user to evaluate the potential impact of early
phase termination on the results of their computations, we
build a statisticaldistortion modelthat characterizes the ef-
fect of terminating tasks [20]. We obtain and use this model
as follows:

• Task Decomposition:The developer specifies the task
decomposition by identifyingtask blocksin the program.
Each task block consists of a block of code whose ex-
ecution corresponds to a task in the computation. Note
that a given task block may execute many times during
the course of a computation and may therefore generate
many tasks into the computation.

• Phase Identification:The developer identifies the paral-
lel and serial phases in the computation.

• Baseline: We obtain several sample inputs for which
the program is known to generate correct output. We
run the program on these inputs, executing every task to
completion, and record the outputs that it generates.

• Criticality Testing: We configure the execution platform
to randomly skip executions of selected tasks at target
skip rates. We then select each task block in the program
in turn, skip executions of that task block at a targeted
rate, and observe the resulting output distortion. If the
task skips produce unacceptable distortion or cause the
computation to fail, we mark the task block ascritical,
otherwise we mark the task block asskippable.

• Distortion Model: Given a set of skippable task blocks,
we run repeated trials in which we randomly select a tar-
get task skip rate for each skippable task block, execute
the computation, then record both the observed task skip
rates and the resulting output distortion. We then use re-
gression [8] to obtain a probabilistic model that estimates
the distortion as a function of the task skip rates.

• Production Runs: We use early phase termination in the
production runs to eliminate barrier idling. We use the re-
sulting observed proportion of early terminated tasks and
the distortion model to obtain an estimated distortion and
confidence interval around the distortion. The estimated
distortion and confidence interval allow the user to deter-
mine whether or not to accept the result.

We have applied this approach to several benchmark ap-
plications selected from the Jade benchmark suite [17]. Our
results show that the models are quite accurate (they have
good statistical properties and usually explain almost all of
the observed variation in the distortion data) and that the es-
timated distortion and confidence intervals are small enough
to provide useful distortion bounds in practice. And it is pos-
sible to use models developed on one set of inputs to accu-
rately predict distortion properties for other inputs. Finally,
our results indicate that the elimination of barrier idling can

reduce the overall execution time and increase the perfor-
mance of our benchmark applications.

1.2 Computation Pattern

Based on our experience with our benchmark applications,
we have identified a general computation pattern that inter-
acts well with our approach. Specifically, the parallel phases
in our applications generate many contributions to a final
result, then combine the contributions to obtain the result.
If each parallel task either generates or combines contribu-
tions, the net effect of terminating tasks early is simply to
discard some of the contributions. Our results indicate that
the distortion associated with discarding these contributions
is often quite small (or that it is possible to accurately com-
pensate for the discarded contributions).

Identifying this pattern provides a conceptual framework
that can help users better understand the effect of early phase
termination on their computations. One of our benchmark
applications, for example, performs a Monte Carlo simula-
tion in which each set of trials comprises a contribution. The
net effect of early phase termination is simply to drop some
of the trials. Another application traces a set of rays through
a medium to compute the density of different parts of the
medium. The net effect of early phase termination is simply
to drop some of the traced rays.

We anticipate that this kind of understanding, which
translates the effect of early phase termination back into
concepts from the underlying application domain, can help
users determine if they are comfortable using the technique.
In the two examples above, it is clear that, in practice, both
computations have enough redundancy (either from other tri-
als or other traced rays) to easily tolerate the loss of some of
the contributions without substantially impairing the utility
of the final result. Indeed, users may find that understanding
the effects of early phase termination at the level of the ap-
plication domain may provide a more compelling case for its
use than the (in comparison relatively opaque) probabilistic
distortion models.

1.3 A Broader Perspective

To place early phase termination in a broader perspective,
consider that almost all scientific computations are inher-
ently inaccurate in that they are designed to produce an ap-
proximation to an ideal result rather than the ideal result it-
self. Many computational chemistry programs, for example,
use classical or semi-empirical methods instead ofab initio
quantum mechanics (which is computationally intractable
for larger molecules) [10]. Many scientific computations dis-
cretize conceptually continuous fields to enable the represen-
tation and computation of approximate solutions on digital
computers, with the granularity of the discretization deter-
mined, in part, by factors such as the amount of available
memory and computational power [15]. As these examples
illustrate, accuracy versus performance tradeoffs strongly in-

fluence the form and basic approach of almost all scientific
computations.

The key question for such computations, then, is not cor-
rectness or incorrectness, but accuracy and pragmatic feasi-
bility — does the computation produce a result that is close
enough to the ideal result within an acceptable time frame,
and, if so, can the user determine that the result is acceptably
close the ideal result? Viewed from this perspective, early
phase termination is simply yet another technique for ob-
taining acceptable performance at the potential cost of some
accuracy. And the probabilistic distortion models enable the
user to evaluate the effect of the technique and determine
whether or not the final result is acceptably accurate.

It is worth considering how these issues might play out
in different application domains. Many information retrieval
computations, for example, map a subcomputation over a set
of discrete items, then combine the results, with the over-
all computation able to tolerate the loss of some of the sub-
computations [7]. Because of the ability of the human sen-
sory system to tolerate noise and other processing artifacts,
computer graphics and other sensory processing computa-
tions can often drop subcomputations without unacceptably
degrading the final output [14, 19]. As these examples il-
lustrate, early phase termination may be feasible in practice
for a wide range of computations, including computations
for which probabilistic distortion models may not be readily
available.

1.4 Contributions

This paper makes the following contributions:

• Elimination of Barrier Idling: It introduces the concept
of eliminating barrier idling by terminating tasks at the
end of parallel phases.

• Distortion Models: It introduces the use of probabilis-
tic distortion models for characterizing the effect of early
phase termination on the result that the program gener-
ates. These models provide an estimate of the distortion
and probabilistic accuracy bounds around this distortion
estimate.

• Explanation: It identifies a computation pattern that
works well with early phase termination and explains
why computations that exhibit this pattern can terminate
tasks before they complete and still produce acceptable
results.

• Experimental Results: It provides experimental results
for our set of benchmark applications. These results indi-
cate that the distortion and accuracy bounds are small
enough for practical use and that eliminating barrier
idling can improve the overall parallel performance.

The remainder of the paper is structured as follows. In
Section 2 we provide an example that illustrates our pro-
gramming model. Section 3 presents the methodology we
use to obtain the distortion models. Section 4 presents our

experience applying our technique to a set of scientific com-
putations. We present related work in Section 5 and conclude
in Section 6.

2. Programming Model
Figure 1 presents a simple procedure, theadd procedure,
that we use to illustrate the programming model. This pro-
cedure is written in the Jade programming language [17];
it computes and returns the sum ofn numbers. The Jade
phase construct on line4 indicates that the loop from lines
5 through9 comprise a parallel phase. All of the tasks in this
phase must complete before the program continues past line
10.

The task block on lines7 and8 uses the Jadewithonly
construct to specify that the computation of each number
is a task. Each task computes a numberf(i) and adds
the number into the corresponding partial sumfs[i]. The
withonly access specification on line7 uses the access
specification operationsrd(p) and wr(p) to specify that
the code in the body of the task may, when it executes, read
and/or write the shared object whichp references.

The code starting at line11 following the parallel phase
is the subsequent sequential phase. The loop on lines12
through16 adds up the partial sums into the final sumsum.
Theadd procedure returnssum at line17.

1: int add(int n, int shared* shared* fs) {
2: int i, sum;
3: int shared *p;
4: phase {
5: for (i = 0; i < n; i++) {
6: p = fs[i];
7: withonly { rd(p); wr(p); }
8: do (p,i) { *p += f(i); }
9: }
10: }
11: sum = 0;
12: for (i = 0; i < n; i++) {
13: p = fs[i];
14: with { rd(p); } cont;
15: sum += *p;
16: }
17: return sum;
18: }

Figure 1. Example Jade Program

When it executes this program, the Jade implementation
creates a new task for every execution of the task block on
lines7 and8. It dynamically analyzes the data dependences
between tasks to exploit any available concurrency; Jade
implementations exist for a variety of parallel computing
platforms [17].

To support the development of the distortion models, we
modified the Jade implementation to accept a target task skip

rate for each task block. When the program runs, the Jade
implementation randomly skips the corresponding tasks at
the specified rates.

To construct the distortion model, our technique first runs
the program on several inputs for which it is known to
produce correct output. It records the output (in this case
the value ofsum thatadd returns), then runs a sequence of
trials that randomly skip executions of each task block at
a randomly selected skip rate. For each trial it records the
output of the computation and the actual task skip rate for
each task block.

To quantify the impact of the task skips on the output, the
technique computes thedistortionassociated with each trial.
In our example the distortion is simply|(o − ô)/o|, where
o is the correct output and̂o is the observed output from
the trial with task skips. Dividing the differenceo − ô by o
makes it possible to meaningfully compare distortions from
executions with different correct outputs.

The result of the sampling phase is a set of observations
x, d, wherex is the actual task skip rate for the task block in
the program andd is the observed distortion. Our technique
takes this set of observations and uses regression [8] to ob-
tain a linear model̂d(x) = c0[±e0] + c1[±e1]x of the dis-
tortion. Herec0 andc1 are the regression coefficients ande0

ande1 provide the confidence bounds for these coefficients.
For the program in our example, the regression produces the
following distortion model.

d̂(x) = 0[±0.0002] + 1.0[±0.0007]x

In this modelc0 = 0, which correctly estimates that there
should be no distortion if there are no skipped tasks. The
coefficientc1 = 1, which indicates that every increase in the
task skip rate produces the same increase in the distortion.
So, for example, an increase of 10% in the task skip rate
would produce an increase in the distortion of 0.10.1

In addition to the model, the regression algorithm pro-
vides a variety of statistics that evaluate how well the model
fits the data. In our exampleR2 is 1, which means that the
model perfectly explains the variation in the data. Finally,
given a task skip ratex, the regression can provide a confi-
dence bounde around the estimated distortionc0 + c1x. In
our example the maximum 95% confidence bound over all
of the 2064 sampled task skip rate points is 0.0025, which
provides a tight confidence interval around the estimated dis-
tortion.

We anticipate the following usage scenario. The user has
obtained the model and now runs the program in parallel
with early phase termination enabled. The program comes
back with an output̂o. It also informs the user that it termi-
nated several tasks early at the end of parallel phases. The

1 It turns out that for this example it is possible to apply the bias compen-
sation technique discussed in Section 3.8 to obtain an estimator with an
expected distortion of 0.0 for task failure rates within the sampled range of
0.0 to 0.75. This technique enables the program to acceptably tolerate much
higher task skip rates.

user plugs the early task terminate rate into the model to get
an estimated distortionc0 + c1x and confidence bounde.
The user then evaluates the distortion and confidence bound
to determine if, with high enough likelihood, the distortion
is acceptable.

3. Distortion Models
We obtain and evaluate the distortion model for each pro-
gram as follows.

3.1 Standard Executions

Our approach applies to programs that produce an output
of the formo1, . . . , om, where each output componentoi is
a number. We obtain several representative test inputs for
which the program is known to execute without failures, run
the program on these inputs, and record the correct output
o1, . . . , om for each input.

3.2 Distortion Definition

Given a correct outputo1, . . . , om and an observed output
ô1, . . . , ôm, the following quantityd, which we call thedis-
tortion, measures the accuracy of the observed output:

d =
1
m

m∑
i=1

∣∣∣∣oi − ôi

oi

∣∣∣∣
The closer the distortion is to zero, the less distorted is the
observed output.

Note that because each differenceoi − ôi is scaled by the
corresponding correct output componentoi and because the
sum is divided by the number of output componentsm, it
is possible to meaningfully compare distortionsd obtained
from executions on different inputs even if the inputs cause
the program to produce outputs with different numbers of
componentsm and different correct component valuesoi.

Note that the distortion equation weights each output
value oi equally. It is possible to use a set of weightswi

to generalize the distortion equation for programs whose
outputs are not all equally important. Each weightwi would
capture the importance of the corresponding outputoi:

d =
1
m

m∑
i=1

wi

∣∣∣∣oi − ôi

oi

∣∣∣∣
where thewi satisfym =

∑m
i=1 wi.

3.3 Criticality Testing

It turns out that some programs have task blocks that must al-
ways execute completely for the program to produce accept-
ably accurate output. We experimentally detect thesecriti-
cal task blocks as follows. We first configure the underlying
execution engine (in our case the Jade runtime system) to
randomly skip executions of a selected task block at a spec-
ified rate (our criticality testing executions skip 10% of the
executions of the selected task block). We then select each

task block in turn and run the program at least ten times with
the execution engine randomly skipping that task block at
the specified rate. If any of these runs does not produce any
output at all (typically because the program failed) or if the
mean distortion from all of the runs is larger than the spec-
ified acceptable distortion for criticality testing (we use an
acceptable distortion of 0.10), we identify the task block as a
critical task block that must execute completely. Otherwise,
we consider the task block to be askippabletask block. The
purpose of the remaining steps is to characterize how skip-
ping tasks from skippable task blocks affects the distortion
of the result that the program produces.

3.4 Distortion Sampling Runs

We next run a set of trials in which we randomly select a
target skip rate for each skippable task block, run the pro-
gram on each of the representative inputs with the execution
engine randomly skipping executions of each task block at
its target skip rate, then record the distortion and actual skip
rate for each skippable task block for that run. If we have
n skippable task blocks, the result is a set of observations
xi

1, . . . , x
i
n, di, wheredi is the distortion andxi

1, . . . , x
i
n are

the actual skip rates for then skippable task blocks in the
i’th trial.

Our motivation for selecting target skip rates randomly
(instead of using some more systematic approach) was sim-
ply to distribute the trials more or less evenly across the skip
rate space with no biases. That said, we anticipate that al-
most any approach that distributes the trials reasonably well
across the skip rate space should produce a reasonably accu-
rate model.

3.5 Distortion Model

Given the results from the distortion sampling runs, we
use multiple linear regression [8] to compute a linear least-
squares distortion model of the form

d̂(x1, . . . , xn) = c0[±e0] +
n∑

i=1

ci[±ei]xi

where theci are the least-squares coefficients for the regres-
sion and theei provide the confidence intervals for these co-
efficients (we use 95% confidence intervals in this paper).
Given skip ratesxi for all of the skippable task blocks, this
model produces a distortion estimatêd(x1, . . . , xn) of the
expected accuracy of the result produced by a computation
with task block skip ratesx1, . . . , xn.

The regression also produces an F value that assesses how
well the model predicts the data and anR2 value that indi-
cates how much of the variation in the data the model ac-
counts for. Moreover, given a specific pointx1, . . . , xn in
the skip rate space, the regression can produce a confidence
interval around the distortion estimatêd(x1, . . . , xn) at that
point. It is possible to obtain confidence intervals for what-
ever alpha level one desires; in this paper we use an alpha

level of 0.05, which produces a 95% confidence interval. We
use the SAS system to compute the regression [8].

3.6 Number of Distortion Sampling Runs

In general, there is a trade-off between the accuracy of the
distortion model and the number of trial runs. More trial
runs produce more samples, which in turn produce a more
accurate model. But performing more trial runs takes more
time. So one potential question is how many trial runs does
it take to obtain an acceptably accurate model?

In principle, one could use the confidence intervals to an-
swer this question — as the number of samples increases, the
sizes of the confidence intervals should decrease. One could
therefore periodically recalculate the distortion model and
resulting confidence intervals during the sampling phase to
stop sampling when the confidence intervals either converge
or become acceptably small.

In practice, we found it unnecessary to control the sam-
pling phase this closely. Specifically, we simply let the script
that performed the sampling runs execute for about a day for
each program before collecting the data and computing the
distortion model. For our set of benchmark programs, we
found that this approach delivered acceptably accurate dis-
tortion models.

3.7 Using the Model

One goal of the distortion model is to allow a user running
the program to obtain an estimate of how any early task ter-
minations in that execution affected the accuracy of the re-
sult that the program produced. In particular, the user would
take the observed early task termination ratesx1, . . . , xn,
apply the distortion model to obtain an estimated distortion
d̂(x1, . . . , xn) along with its associated confidence interval
to evaluate whether the terminations were likely to have un-
acceptably distorted the result. In this scenario, several is-
sues are likely to be of interest:

• Distortion: How quickly does the distortion grow as a
function of the task block skip rates? We evaluate this
issue by examining the model coefficientsci. The smaller
the model coefficients, the less the results are affected by
early terminations of the corresponding tasks.

• Bounds: How small are the confidence intervals? We
evaluate this issue by computing the minimum and max-
imum sizes of the upper confidence intervals at all of the
x1, . . . xn points observed during the distortion sampling
runs. For a user to accept a distorted result, both the dis-
tortion estimate and the upper confidence interval must
be small enough to make the likelihood that an unaccept-
ably large actual distortion has occurred remote enough
for the user to accept. The upper confidence interval pro-
vides the appropriate bound for this purpose — the dis-
tortion is inherently bounded below by zero and becomes
more acceptable the closer it gets to this bound.

• Predictive Power: We use our test inputs to obtain the
regression model. We anticipate that users will apply the
model to executions of the program running on other in-
puts. The issue is whether a model derived from execu-
tions on one set of inputs can accurately predict the dis-
tortion for other inputs. Our experimental results show
that, for our set of benchmark applications, our models
can accurately predict distortions for unseen inputs [20].

• Sampling Time: It is possible for the time required to
perform the trial runs to exceed the time gained by the
application of early phase termination during production
runs. We anticipate usage scenarios in which the over-
head of the trial runs is profitably amortized over the pro-
duction runs, either because the production runs take sub-
stantially longer to execute than the trial runs or because
the program will be used for many more production runs
than trial runs. It may also be feasible to perform the trial
runs during a lead time between development and deploy-
ment.

3.8 Bias Definition and Use

The distortion measures the absolute error induced by skip-
ping a set of tasks. It is also sometimes useful to consider
whether there is any systematic direction to the error. The
following quantityb measures thebiasof the outputs:

b =
1
m

m∑
i=1

oi − ôi

oi

Note that this is the same formula as the distortion with
the exception that it preserves the sign of the summands.
Errors with different signs may therefore cancel each other
out in the computation of the bias instead of accumulating as
for the distortion.

If there is a systematic bias, it may be possible to compen-
sate for the bias to obtain a more accurate result. Consider,
for example, the special case of a program with a single out-
put componento. If we know that the bias at a certain point
is b, we can simply divide the observed outputô by (1 − b)
to obtain an estimate of the correct output whose expected
distortion is 0.

The reasoning in this example generalizes to handle pro-
grams with multiple output componentso1, . . . , om — the
key is to generalize our methodology to obtain a separate
distortion and bias model for each different output compo-
nentoi. It is then possible to correct each output component
individually to eliminate the bias for that component. If the
output components do, in fact, exhibit a systematic bias in
the face of skipped task blocks, the primary obstacle to ap-
plying this technique is the number of output components.
For programs with large numbers of output components it
may be difficult to perform the number of trials required to
obtain a useful model of the distortion and bias for each in-
dividual output component.

4. Experimental Results
We apply early phase termination to three scientific compu-
tations:

• String: String uses seismic travel-time inversion to con-
struct a discrete velocity model of the geological medium
between two oil wells[12]. Each element of the velocity
model records how fast sound waves travel through the
corresponding part of the medium. The seismic data are
collected by firing non-destructive seismic sources in one
well and recording the seismic waves digitally as they ar-
rive at the other well. The travel times of the waves can
be measured from the resulting seismic traces. The appli-
cation uses the travel-time data to iteratively compute the
velocity model.

• Water: Water evaluates forces and potentials in a system
of water molecules in the liquid state. Water is derived
from the Perfect Club benchmark MDG [4] and performs
the same computation.

• Search:Search is an application from the Stanford Elec-
trical Engineering department [5, 6]. It simulates the in-
teraction of several electron beams at different energy
levels with a variety of solids. It uses a Monte-Carlo
technique to simulate the elastic scattering of electrons
from the electron beam into the solid. The result of this
simulation is used to measure how closely an empirical
equation for electron scattering matches a full quantum-
mechanical expansion of the wave equation stored in ta-
bles.

In addition to these computations, the Jade benchmark
suite contains Panel Cholesky, which performs a Cholesky
factorization of a sparse matrix; Volume Rendering, which
generates a sequence of images of a set of volume data; and
Ocean, whose core computation uses an iterative method to
solve a set of spatial partial differential equations [17]. Panel
Cholesky is not a candidate for early phase termination be-
cause it has an irregular concurrency pattern with no easily
identifiable serial and parallel phases. Volume Rendering, on
the other hand, is a perfect candidate for early phase termina-
tion — it uses ray casting to produce two-dimensional pro-
jections of a three-dimensional data set [16]. Applying early
phase termination to this computation would result in the
computation casting somewhat fewer rays, which we expect
would not substantially affect the quality of the final image.
Unfortunately, we were unable to run Volume Rendering on
our current computational platform because of incompatibil-
ities associated with the input and output data file formats.

While it is possible to apply early phase termination to
Ocean, it does not improve the performance. Although early
phase termination eliminates the overhead associated with
barrier idling at the end of each parallel phase, it also causes
the phase to drop some relaxation computations, which in
turn causes the computation to take more iterations to con-
verge. The net effect is a decrease in performance [20].

4.1 Methodology

For each of our benchmark applications, we perform the fol-
lowing steps to evaluate the effect of early phase termination
on the parallel performance and the distortion.

4.1.1 Inputs and Outputs

For each application we choose a set of inputs (the goal
is to obtain a set of inputs that reflect how the program
will be used in practice). In general, an application may
produce multiple outputs, only some of which are important
for the user. We therefore select a set of outputs to use in
the calculation of the distortion metric (the goal is to select
important outputs that motivated the development of the
application in the first place).

4.1.2 Distortion Model

We next apply the procedure outlined in Section 3 to obtain
a distortion model for each of our programs. In our experi-
ments the target skip rates for our distortion sampling runs
range from 0 (skip no execution of the task block) to 0.75
(skip three out of every four executions). For each program
we run the script that performed the distortion sampling runs
for about a day. The number of sampling runs for each test
input varied between approximately 500 and 5000 depend-
ing on the program.

4.1.3 Performance

We calculate the parallel performance of each application
as follows. We first instrument the application and the Jade
implementation to emit a log of events in the computation.
These events include the beginning and end of each parallel
and serial phase and each task.

We next run the application sequentially on each input.
We use the resulting event logs to compute the running
time of the parallel computation running onp processors as
follows. We first scan the log to find the parallel phases and
compute the execution time of each task in each phase. We
also compute the time required to perform each serial phase.

We next use an event-driven simulation to compute the
amount of time required to execute the computation in paral-
lel onp processors. Specifically, we use a standard dynamic
load-balancing algorithm to schedule tasks onto processors
— during each parallel phase, the algorithm maintains a list
of waiting tasks. When a processor finishes a task, the al-
gorithm selects the next task in the list and assigns it to the
newly ready processor for execution. This algorithm has the
property that no processor will become idle as long as there
are tasks that are waiting to execute. We work with two ver-
sions of this scheduling algorithm:

• Natural: In most programs there is a natural task execu-
tion order. This order corresponds to the order in which
a sequential execution of the program would execute the
corresponding computations. This order is usually deter-
mined by the order in which the sequential computation

traverses the data structures that the parallel tasks access.
In the Natural scheduler, tasks appear the list of waiting
tasks in the natural execution order.

Note that with the Natural scheduler, early phase termina-
tion will tend to terminate sets of tasks that 1) occur next
to each other in the natural execution order, and 2) occur
near the end of the order. Note that this could be a signif-
icant source of bias, since such sets of tasks may tend to
operate on 1) related pieces of data, and 2) extreme parts
of the computational domain (which may differ signifi-
cantly from the computational domain as a whole).

Recall that the distortion sampling runs select the tasks
to skip randomly. The assumption behind the resulting
probabilistic distortion model is that there is no system-
atic bias in the set of tasks that early phase selection ter-
minates. One potential problem with the Natural sched-
uler is the possibility that the bias it exhibits in the termi-
nated tasks could invalidate the distortion model.

• Random: In the Random scheduler, tasks appear in the
list of waiting tasks in a random order. The goal is to ar-
range to have the early phase termination algorithm ter-
minate a randomly selected set of tasks at the end of the
parallel phase. Note that the Random scheduler may not
completely achieve this goal. In particular, longer tasks
are more likely to be executing at the end of the paral-
lel phase and are therefore more likely to be terminated
by the early phase termination algorithm. For our set of
applications this phenomenon does not cause the actual
distortion to diverge significantly from the predicted dis-
tortion. When applying early phase termination to a new
application it may nevertheless be prudent to recognize
that this phenomenon could affect the ability of the dis-
tortion model to accurately predict the actual distortion.

Without early phase termination, we compute the end
time of each parallel phase as the time when the last proces-
sor finishes its last task at the end of the parallel phase. With
early phase termination there are two possibilities. If the par-
allel phase contains tasks from critical task blocks, we com-
pute the end time of the parallel phase as described above
for the version without early phase termination. If the paral-
lel phase does not contain tasks from critical task blocks, we
compute the end time as the time when the first processor
to become idle at the end of the parallel phase completes its
last task. The time required to perform each parallel phase is
then simply the end time of the phase minus the start time of
the phase (the time when the previous serial phase finished).
Given a time for each parallel phase, we compute the overall
parallel execution time as the sum of the times required to
complete all of the parallel and serial phases. We then divide
the total sequential execution time (the sum of the times re-
quired to complete all of the tasks and serial phases) by the
overall parallel execution time to obtain the speedup. We cal-
culate three different parallel speedup measures:

• Optimized Speedup:The speedup with early phase ter-
mination.

• Standard Speedup:The speedup without early phase
termination (all tasks in parallel phases execute to com-
pletion).

• Balanced Speedup:The hypothetical speedup of a com-
putation that executes all tasks to completion with per-
fect load balancing in parallel phases. The overall paral-
lel execution time is the sum of the parallel task execution
times divided by the number of processorsp plus the time
spent in serial phases. The speedup is the total sequential
execution time divided by this quantity.

To appreciate the value of the balanced speedup measure,
understand that there are two distinct ways in which early
phase termination can improve the performance. First, it can
improve the overall load balance by eliminating idle time at
the end of parallel phases. Second, it can cause the compu-
tation to perform less work by eliminating computation in
terminated tasks. The balanced speedup measure separates
these two effects by presenting the speedup that would result
if the load balance was perfect. Any remaining performance
increase is caused by a reduction in the amount of work that
the computation performs.

This simulation assumes that it takes no time to manage
the parallel computation — to create, schedule, and syn-
chronize the tasks. While these activities clearly must take
some time, in practice we expect the associated overhead
to be amortized away to negligible levels given reasonable
task sizes (which our benchmarks have). A potentially more
problematic assumption is that the parallel machine pro-
vides a low-overhead mechanism that one processor (specif-
ically, the first processor to go idle at the end of the parallel
phase) can use to terminate tasks running on other proces-
sors. While most parallel machines provide such a mecha-
nism, it is typically available only via a relatively high over-
head interaction with the operating system. Exposing such
mechanisms more directly could reduce the overhead of im-
plementing early phase termination. One factor that should
simplify the development of an effective task termination
mechanism is that the computation should be relatively in-
sensitive to the latency of the mechanism. Specifically, it
should be feasible to overlap the execution of the remaining
tasks from one parallel phase with the execution of the next
serial phase while the mechanism terminates the remaining
parallel tasks.

4.1.4 Distortion

We calculate the distortion for each application as follows.
We instrument the event-driven simulation to print, at the
end of each parallel phase, the identifiers of all of the tasks
that are still executing when the first processor to become
idle at the end of the phase completes its last task (these are
the tasks that early phase termination would terminate). We

then rerun the computation, but configure the Jade run-time
system to use these identifiers to skip all of the correspond-
ing tasks. We then use the results from the original sequential
execution (which executed all tasks to completion) to com-
pute the resulting distortion caused by skipping terminated
tasks.

This distortion calculation assumes that terminated tasks
have no effect whatsoever on the overall computation. On
message-passing machines one could easily achieve this ef-
fect by simply discarding the updates from terminated tasks
(these updates would all be resident in the memory of the
machine executing the task) [21]. On shared-memory ma-
chines, one could use transactional memory [13, 1, 2] to
achieve this effect — simply make each task execute as a
transaction.

We anticipate, however, that for many applications it
should be viable to simply let each task’s effects become im-
mediately visible. This approach would include the effects
of more of the computation into the final result and should
therefore improve the accuracy of this result. One issue is the
potential for data structure corruption if the system happens
to terminate a task in the middle of an update. It is possible to
address this issue by enforcing a minimal acceptable atom-
icity granularity for each data structure update, with either
the developer or a program analysis algorithm identifying
an appropriate granularity [18]. For our set of benchmark
programs, this issue does not arise at all — it is possible to
terminate any parallel task at any point without corrupting
the data structures or unacceptably distorting the final result
(the only distortion would be the anticipated distortion that
comes from discarding the remaining computation in the
task).

Note that including more of the computation into the final
result can affect the accuracy of any applied bias compen-
sation. Because this technique attempts to compensate for
any missing computation, including the effects of additional
computation into the starting point can result in overcompen-
sation. Transactional task execution eliminates this issue. It
may also be possible to base the bias compensation not on
the number of tasks that execute to completion, but on an
estimate of the percentage of the total computation whose
effects were included into the starting point for the compen-
sation calculation. This percentage would include, of course,
those parts of each terminated task that executed before the
system terminated the task at the end of the parallel phase.

4.2 String

String repeatedly traces a set of rays from one well to the
other. The velocity model between the two wells determines
both the path and the simulated travel time of each ray. The
computation records the difference between the simulated
and measured travel times. It backprojects the difference lin-
early along the path of the ray. At the end of the phase the
computation averages the backprojected differences to con-

struct an improved velocity model. The process continues
for a specified number of iterations.

We ran String on four input files: A.pro, B.pro, C.pro,
and D.pro. A.pro and B.pro have the same seismic data and
starting velocity models but different ray tracing parameters
(these parameters control the density and orientation of the
set of traced rays). Similarly, C.pro and D.pro also have the
same seismic data and starting velocity models (which are
different from the seismic data and starting velocity mod-
els for A.pro and B.pro) but different ray tracing parame-
ters. The output is the new velocity model for the geology
between the oil wells. This output is a large matrix of num-
bers; the size of this matrix varies depending on the size of
the starting velocity model.

4.2.1 Task Blocks and Criticality Testing

String has five task blocks. Executions of the first task block
shoot rays through the current velocity model, storing their
intermediate results into blocks of storage allocated for that
purpose. Executions of the second task block combine these
results into a single block of storage that executions of the
third task block use to compute a new velocity model. The
fourth task block creates data structures used in the remain-
ing computation; the fifth task block deallocates these data
structures at the end of the computation.

Our criticality testing runs revealed that the first two task
blocks are skippable, while the third and fourth task blocks
are critical. We attribute the criticality of the third task block
to the fact that skipping its executions leaves some of the
values of the old velocity model in place, which causes sig-
nificant distortion. The fourth task block is critical because
skipping its tasks leaves the remaining computation without
a place to store some of its results. Skipping tasks from the
fifth task block has no effect at all on the result, but leaves
the data structures allocated at the end of the computation.

4.2.2 Performance Results

Table 1 presents the performance results for String running
with the Random and Natural schedulers. The table has
several columns:

• Application: The name of the application — String, Wa-
ter, or Search.

• Processors:The number of processors executing the
computation.

• Input: The input for the computation.

• Optimized Speedup, Random Scheduler:The speedup
for the computation using the Random scheduler and
early phase termination.

• Standard Speedup, Random Scheduler:The speedup
for the computation using the Random scheduler when
every parallel task executes to completion.

• Optimized Speedup, Natural Scheduler:The speedup
for the computation using the Natural scheduler and early
phase termination.

• Standard Speedup, Natural Scheduler:The speedup
for the computation using the Natural scheduler when
every parallel task executes to completion.

• Balanced Speedup:The speedup for the hypothetical
perfectly load balanced computation in which every task
would execute to completion with no idle time in parallel
phases.

The performance results show that String is inherently
well suited for parallel execution — the vast majority of
the execution time is spent in parallel phases and the load is
reasonably well balanced. Under these circumstances early
phase termination is useful primarily for larger numbers of
processors.

We note that the speedups are close to identical for both
schedulers. The Balanced Speedup numbers indicate that the
performance increase for early phase termination is roughly
evenly split between an improvement in the load balance and
reduction in the amount of work that the computation per-
forms. Several runs have superlinear speedup; this is possi-
ble because early phase termination can cause the parallel
version to perform less work than the sequential version.

4.2.3 Distortion Model

Figure 2 presents the distortion model for String. We present
each regression coefficient in the formc[±e], wherec is
the coefficient itself and[±e] provides the 95% confidence
bounds for that coefficient. The F value for this model is in
the thousands, the corresponding p value is less than 0.0001,
and theR2 value is around 44%, which reflects the fact
that the representative inputs used to obtain this model have
somewhat different distortion properties. The maximum up-
per 95% confidence bound for any sampled task block skip
point x1, x2 is 0.0229. An appropriate probabilistic bound
on the distortion at, for example, a 50% task skip rate for
executions of task blocks 1 and 2 is therefore approximately
0.063. The coefficientsc1 andc2 are very small, which indi-
cates that the distortion is hardly affected at all by skipping
tasks. It is therefore possible to skip a large proportion of the
tasks without incurring substantial distortion.

4.2.4 Distortion Results

Table 2 presents the distortion results for String running
with the Random and Natural schedulers. In addition to the
Application, Processors, and Input columns, which have the
same meaning as in the performance tables, the table has the
following columns:

• Actual Distortion, Random Scheduler: The distortion
for the computation using the Random scheduler and
early phase termination.

Optimized Standard Optimized Standard
Speedup, Speedup, Speedup, Speedup,
Random Random Natural Natural Balanced

Application Processors Input Scheduler Scheduler Scheduler Scheduler Speedup

String 60 A.pro 60.34 53.25 60.33 53.16 56.66
String 80 A.pro 82.30 69.60 82.33 69.51 74.14
String 100 A.pro 100.90 82.42 100.76 82.21 90.99
String 120 A.pro 129.67 100.63 129.60 100.42 107.24
String 60 B.pro 61.37 54.02 61.36 54.07 57.52
String 80 B.pro 84.30 70.99 84.27 71.10 75.63
String 100 B.pro 103.78 84.31 103.70 84.48 93.24
String 120 B.pro 134.64 103.58 134.62 103.86 110.39
String 60 C.pro 53.94 48.21 53.94 48.27 51.00
String 80 C.pro 70.86 61.27 70.85 61.37 64.70
String 100 C.pro 84.11 70.92 84.09 71.05 77.14
String 120 C.pro 103.24 83.96 103.21 84.24 88.49
String 60 D.pro 56.53 50.24 56.53 50.29 53.27
String 80 D.pro 75.37 64.54 75.41 64.70 68.43
String 100 D.pro 90.67 75.42 90.64 75.58 82.51
String 120 D.pro 113.00 90.23 113.25 90.70 95.63

Table 1. Performance Results for String

d̂(x1, x2)=0.0004[±0.0005] + 0.033[±0.003]x1 + 0.033[±0.003]x2

Figure 2. Distortion Model for String

Actual Distortion, Actual Distortion, Predicted
Application Processors Input Random Scheduler Natural Scheduler Distortion

String 60 A.pro 0.0058 0.0291 0.0091[± 0.0237]
String 80 A.pro 0.0074 0.0396 0.0120[± 0.0237]
String 100 A.pro 0.0133 0.0421 0.0149[± 0.0237]
String 120 A.pro 0.0134 0.0437 0.0179[± 0.0237]
String 60 B.pro 0.0086 0.0175 0.0091[± 0.0237]
String 80 B.pro 0.0094 0.0259 0.0120[± 0.0237]
String 100 B.pro 0.0101 0.0293 0.0149[± 0.0237]
String 120 B.pro 0.0103 0.0331 0.0179[± 0.0237]
String 60 C.pro 0.0014 0.0026 0.0091[± 0.0237]
String 80 C.pro 0.0017 0.0030 0.0120[± 0.0237]
String 100 C.pro 0.0021 0.0027 0.0149[± 0.0237]
String 120 C.pro 0.0020 0.0028 0.0179[± 0.0237]
String 60 D.pro 0.0008 0.0019 0.0091[± 0.0237]
String 80 D.pro 0.0015 0.0026 0.0120[± 0.0237]
String 100 D.pro 0.0018 0.0036 0.0149[± 0.0237]
String 120 D.pro 0.0015 0.0045 0.0179[± 0.0237]

Table 2.
Distortion Results for String

• Actual Distortion, Natural Scheduler: The distortion
for the computation using the Natural scheduler and early
phase termination.

• Predicted Distortion: The predicted distortion of the
computation from the distortion model for the appli-
cation. We present the predicted distortion in the form
d[±e], whered is the predicted distortion itself and[±e]
provides the confidence bounds for that distortion.

With both schedulers, the actual distortions for inputs
A.pro and B.pro are always larger than the corresponding
distortions for inputs C.pro and D.pro. We attribute this
difference to differences in the input files (A.pro and B.pro
share an input file; C.pro and D.pro share a different input
file). These data underscore the need to use representative
inputs for the distortion sampling runs if one is to obtain an
accurate distortion model.

With the Random scheduler, the actual distortions for
inputs A.pro and B.pro track the predicted distortions. The
actual distortions for inputs C.pro and B.pro are always
smaller than the predicted distortions. The accuracy bounds
are reasonably tight and the distortion is always small. It is
possible to use early phase termination for this application
for all numbers of processors in our experiments.

We note that with the Natural scheduler, the actual dis-
tortions for inputs A.pro and B.pro appear to be somewhat
larger than the model predicts. This phenomenon may be due
to a correlation between the terminated tasks in the runs that
use the Natural scheduler. Specifically, the Natural scheduler
tends to leave a set of tasks that trace adjacent rays execut-
ing together at the end of the corresponding parallel phases.
This correlation may tend to undermine the redundancy that
keeps the overall distortion small in the distortion sampling
runs and the runs that use the Random scheduler.

4.3 Water

We ran Water on four different inputs; the inputs vary in the
number of molecules they cause Water to simulate. Specif-
ically, the inputs produce simulations of 343, 512, 729, and
1000 molecules. Water calculates several values of potential
interest, including the total energy, kinetic energy, and po-
tential energy. We choose to measure the distortion of the
total energy (in part because it includes contributions from
all of the other partial energy calculations); it would be pos-
sible to extend this measure to include the different partial
energy values explicitly.

4.3.1 Task Blocks and Criticality Testing

Water has four task blocks. Executions of the first task
block compute the intermolecular forces between pairs of
molecules, storing their intermediate results into blocks of
storage allocated for that purpose. Executions of the second
task block sum up all of the intermediate results to pro-
duce the final intermolecular forces. Similarly, executions
of the third task block compute the intermolecular contri-

butions to the potential energy, storing intermediate results
into blocks of storage allocated for that purpose. Executions
of the fourth task block sum up the intermediate results to
produce the final intermolecular potential energy.

Our criticality testing experiments revealed no critical
task blocks — all task blocks produce a mean distortion of
less than 0.1 when skipped at the target 10% rate during our
criticality testing runs.

4.3.2 Performance Results

Table 3 presents the performance results for Water running
with the Random and Natural schedulers. As for String,
the speedups are comparable for both schedulers. Note that
the speedup increases as the input size increases, indicating
that the computation spends relatively more time in parallel
phases as the number of molecules increases.

The Balanced Speedup numbers indicate that the perfor-
mance increase for early phase termination is split more or
less evenly between an improvement in the load balance and
reduction in the amount of work that the computation per-
forms. Unlike String, the reduction in work does not cause
any of the runs to exhibit superlinear speedup.

4.3.3 Distortion Model

Figure 3 presents the distortion model for Water. The F value
for this model is in the tens of thousands, the corresponding
p value is less than 0.0001, and theR2 value is above 98%,
which indicates that the model explains over 98% of the
variation in the data. The maximum upper 95% confidence
bound for any sampled task block skip pointx1, . . . , x4 is
0.586. Given a task block skip pointx1, . . . , x4, the quantity
d̂(x1, . . . , x4)+0.0586 provides an appropriate upper bound
for the actual distortion.

The model coefficients are relatively large, which indi-
cates that the distortion increases relatively quickly when the
computation skips tasks. For example, the coefficient forx3

is 0.56. So, for example, a 10% skip rate for task block 3
results in a 0.056 increase in the estimated distortion. If the
skip rate is 50% for all task blocks, the estimated distortion
is approximately 0.6 — in other words, the observed out-
put with skipped tasks is estimated to be more than a factor
of two different from the correct output! The models would
therefore appear to indicate that the vast majority of the tasks
in Water must execute to completion for the computation
to produce an acceptable output. Note, however, that Sec-
tion 4.3.5 describes a way to compensate for the bias in the
output to obtain a new output with an estimated distortion of
zero. With this bias compensation, Water can tolerate much
higher task block skip rates.

4.3.4 Distortion Results

Table 4 presents the distortion results for Water running
with the Random and Natural schedulers. With the Random
scheduler, the actual distortions for all inputs closely track
the predicted distortions and the accuracy bounds are reason-

Optimized Standard Optimized Standard
Speedup, Speedup, Speedup, Speedup,
Random Random Natural Natural Balanced

Application Processors Input Scheduler Scheduler Scheduler Scheduler Speedup

Water 60 343 40.09 33.40 41.94 33.61 37.37
Water 80 343 47.99 38.54 49.53 38.08 44.17
Water 100 343 54.45 42.52 56.16 41.58 49.60
Water 120 343 60.06 45.71 63.68 45.25 54.01
Water 60 512 44.12 38.42 45.57 38.90 41.84
Water 80 512 53.84 45.50 56.17 46.29 50.59
Water 100 512 62.19 51.14 64.53 51.98 57.86
Water 120 512 69.37 55.76 72.54 56.60 63.98
Water 60 729 46.33 41.89 47.20 42.08 44.64
Water 80 729 57.35 50.57 58.25 50.53 54.76
Water 100 729 66.93 57.83 68.73 58.42 63.39
Water 120 729 75.36 63.87 77.62 64.49 70.83
Water 60 1000 49.63 45.73 50.36 45.17 48.14
Water 80 1000 62.51 55.73 63.56 55.11 60.15
Water 100 1000 73.95 64.15 74.93 63.02 70.74
Water 120 1000 84.39 71.25 86.54 70.48 80.16

Table 3. Performance Results for Water

d̂(x1, . . . , x4)=0.011[±0.0006] + 0.052[±0.0035]x1 + 0.11[±0.0035]x2 + 0.56[±0.0035]x3 + 0.54[±0.0035]x4

Figure 3. Distortion Model for Water

Actual Distortion, Actual Distortion, Predicted
Application Processors Input Random Scheduler Natural Scheduler Distortion

Water 60 343 0.2471 0.0629 0.2281[± 0.0581]
Water 80 343 0.3088 0.0927 0.3017[± 0.0581]
Water 100 343 0.3441 0.1203 0.3753[± 0.0581]
Water 120 343 0.4068 0.1631 0.4488[± 0.0581]
Water 60 512 0.1491 0.0334 0.1564[± 0.0581]
Water 80 512 0.1997 0.0616 0.2057[± 0.0581]
Water 100 512 0.2512 0.0816 0.2550[± 0.0581]
Water 120 512 0.2859 0.0876 0.3043[± 0.0581]
Water 60 729 0.0918 0.0235 0.1131[± 0.0581]
Water 80 729 0.1283 0.0155 0.1478[± 0.0581]
Water 100 729 0.1549 0.0357 0.1824[± 0.0581]
Water 120 729 0.1913 0.0453 0.2170[± 0.0581]
Water 60 1000 0.0741 0.0223 0.0855[± 0.0581]
Water 80 1000 0.1011 0.0247 0.1107[± 0.0581]
Water 100 1000 0.1268 0.0155 0.1359[± 0.0581]
Water 120 1000 0.1557 0.0355 0.1612[± 0.0581]

Table 4.
Distortion Results for Water

Actual Distortion Actual Distortion
After Bias Compensation, After Bias Compensation,

Application Processors Input Random Scheduler Natural Scheduler

Water 60 343 0.0256 0.2127
Water 80 343 0.0113 0.2978
Water 100 343 0.0486 0.4064
Water 120 343 0.0751 0.5167
Water 60 512 0.0077 0.1447
Water 80 512 0.0065 0.1802
Water 100 512 0.0040 0.2314
Water 120 512 0.0254 0.3101
Water 60 729 0.0230 0.1000
Water 80 729 0.0217 0.1539
Water 100 729 0.0325 0.1781
Water 120 729 0.0318 0.2180
Water 60 1000 0.0114 0.0680
Water 80 1000 0.0097 0.0955
Water 100 1000 0.0095 0.1382
Water 120 1000 0.0054 0.1487

Table 5.
Actual Distortion for Water After Bias Compensation

ably tight. Because the distortions are large for large num-
bers of processors, this application requires the use of bias
compensation (see Section 4.3.5) to make early phase termi-
nation practical as the number of processors grows.

With the Natural scheduler, however, the actual distor-
tions differ substantially from the predicted distortions. In
fact, they are substantially lower than the predicted distor-
tions. While this property makes the results more accurate
than expected, it also causes the bias compensation mech-
anism to overcompensate, resulting in less accurate results
after bias compensation (see Section 4.3.5).

We attribute this deviation from the predicted distortion to
the fact that the Natural scheduler tends to cause the run-time
system to terminate a set of tasks that compute values for
molecules in extreme points in the computational domain.
These molecules apparently make smaller contributions to
the total energy than molecules that are closer to the center
of the domain. The net result is that the total energy changes
less than the distortion model (which is based on eliminating
computations from randomly selected molecules) predicts.

4.3.5 Bias Compensation

It turns out that, for every execution of Water, the bias is the
same as the distortion (which implies that the bias estimator
b̂(x1, . . . , x4) equals the distortion estimatord̂(x1, . . . , x4)).
Because Water has a single output, it is possible to compen-
sate for the bias by simply dividing the observed output by
(1 − d̂(x1, . . . , x4)) to obtain an output estimator with an
expected distortion of zero and a confidence interval of the
same size as the confidence interval of the distortion.

Table 5 presents the distortion results for Water with the
Random scheduler and Natural schedulers after bias com-
pensation. In addition to the Application, Processors, and
Input columns, which have the same meaning as in the per-
formance and distortion tables, the table has the following
columns:

• Actual Distortion After Bias Compensation, Random
Scheduler:The distortion for the computation after bias
compensation using the Random scheduler and early
phase termination.

• Actual Distortion After Bias Compensation, Natu-
ral Scheduler: The distortion for the computation after
bias compensation using the Natural scheduler and early
phase termination.

The numbers show that, with the Random scheduler, bias
compensation eliminates much of the distortion, enabling
the use of early phase termination for this application for
large numbers of processors. With the Natural scheduler,
however, the deviation from the predicted distortion makes
bias compensation impractical.

4.4 Search

Search simulates the interaction of solids and electron
beams. It uses a Monte-Carlo approach to trace the paths
that a set of electrons take through the solid. It counts the
number of electrons that emerge back out of the solid and
(implicitly) the number that remain trapped inside.

We ran Search on four different inputs; the inputs vary
in the backscattering parameters, in particular in the num-

Optimized Standard Optimized Standard
Speedup, Speedup, Speedup, Speedup,
Random Random Natural Natural Balanced

Application Processors Input Scheduler Scheduler Scheduler Scheduler Speedup

Search 60 1 60.21 52.36 54.19 47.64 56.49
Search 80 1 81.09 67.43 71.56 60.22 73.85
Search 100 1 100.06 79.84 85.28 70.52 90.55
Search 120 1 125.09 94.69 104.37 81.91 106.62
Search 60 2 58.38 51.25 58.55 51.01 54.78
Search 80 2 76.99 65.06 78.87 65.69 70.95
Search 100 2 95.18 77.52 96.18 78.38 86.21
Search 120 2 116.69 90.66 122.16 92.93 100.65
Search 60 3 59.36 51.89 59.71 51.66 55.81
Search 80 3 79.06 66.80 81.01 66.88 72.69
Search 100 3 98.70 79.24 99.84 79.49 88.81
Search 120 3 121.22 92.79 127.09 95.48 104.21
Search 60 4 62.29 53.59 62.65 53.65 58.22
Search 80 4 84.30 69.60 86.04 70.01 76.85
Search 100 4 105.62 83.26 108.05 84.61 95.12
Search 120 4 132.24 98.39 139.53 101.46 113.03

Table 6. Performance Results for Search

d̂(x1)=0.005[±0.0002] + 0.11[±0.0007]x1

Figure 4. Distortion Model for Search

Actual Distortion, Actual Distortion, Predicted
Application Processors Input Random Scheduler Natural Scheduler Distortion

Search 60 1 0.0271 0.0253 0.0194[± 0.013]
Search 80 1 0.0314 0.0340 0.0243[± 0.013]
Search 100 1 0.0349 0.0353 0.0292[± 0.013]
Search 120 1 0.0389 0.0393 0.0341[± 0.013]
Search 60 2 0.0259 0.0260 0.0194[± 0.013]
Search 80 2 0.0267 0.0328 0.0243[± 0.013]
Search 100 2 0.0352 0.0348 0.0292[± 0.013]
Search 120 2 0.0399 0.0419 0.0341[± 0.013]
Search 60 3 0.0248 0.0293 0.0194[± 0.013]
Search 80 3 0.0263 0.0299 0.0243[± 0.013]
Search 100 3 0.0350 0.0373 0.0292[± 0.013]
Search 120 3 0.0395 0.0451 0.0341[± 0.013]
Search 60 4 0.0165 0.0178 0.0194[± 0.013]
Search 80 4 0.0192 0.0210 0.0243[± 0.013]
Search 100 4 0.0217 0.0267 0.0292[± 0.013]
Search 120 4 0.0263 0.0252 0.0341[± 0.013]

Table 7.
Distortion Results for Search

ber of electron paths that they simulate. The application cal-
culates and outputs a backscattering coefficient for 51 dif-
ferent solid/energy level pairs; this coefficient indicates the
percentage of the electrons that escape back out of the solid.
We take the resulting sequence of 51 backscattering coeffi-
cients as the output of the application.

4.4.1 Task Blocks and Criticality Testing

Search has one task block which uses a Monte-Carlo simula-
tion to trace the paths of the electrons through the solid. Our
criticality testing experiments revealed that this task block
is skippable since it produced a mean distortion of less than
0.1 when skipped at the target 10% rate during our criticality
testing runs.

4.4.2 Performance Results

Table 6 presents the performance results for Search running
with the Random and Natural schedulers, respectively. As
for String and Water, the speedups are comparable for both
schedulers. The results show that Search, like many Monte-
Carlo simulations, can benefit substantially from parallel
execution.

The Balanced Speedup numbers indicate that the perfor-
mance increase for early phase termination is split more or
less evenly between an improvement in the load balance and
reduction in the amount of work that the computation per-
forms. Note that the reduction in work associated with early
task termination causes some of the runs to exhibit superlin-
ear speedup.

4.4.3 Distortion Model

Figure 4 presents the distortion model for Search. The F
value for this model is in the tens of thousands, the corre-
sponding p value is less than 0.0001, and theR2 value is
above 96%, which indicates that the model explains over
96% of the variation in the data. The maximum upper 95%
confidence bound for any sampled task block skip pointx1 is
0.0136. An appropriate bound on the distortion at, for exam-
ple, a 25% task skip rate is therefore approximately 0.039.

The coefficientc1 is relatively small, which indicates that
the distortion increases relatively slowly as the computation
skips more tasks. In particular, a 10% skip rate for task block
1 results in approximately0.01 increase in the estimated
distortion. The application is therefore relatively resilient to
skipping tasks.

4.4.4 Distortion Results

Table 7 presents the distortion results for Search running
with the Random and Natural schedulers. Unlike String and
Water, the choice of scheduler has no impact on the distor-
tion. This makes sense since the tasks differ only in the ran-
dom numbers that they use to drive their part of the Monte-
Carlo simulation. One would therefore expect there to be no
correlation between the position of the task in the natural ex-

ecution order and the effect of the task on the computation.
The experimental results are consistent with this expectation.

The actual distortions closely track the predicted distor-
tions, the accuracy bounds are reasonably tight, and the dis-
tortion is always small. In particular, it is always smaller than
the distortion of approximately 0.08 that results from simply
changing the random number seed for the Monte-Carlo sim-
ulation. It is possible to use early phase termination for this
application for all numbers of processors in our experiments.

4.5 Discussion

In retrospect, it is possible to reconstruct the reasons why
early task terminations cause the applications in our study
to behave the way they do. The skippable tasks in Water,
Search, and String all either compute a set of contributions
that are combined to obtain a final result, or combine these
contributions to produce the final result. Although the appli-
cations themselves perform complex, detailed computations,
it is possible to come up with a relatively simple high-level
characterization of the behavior of each application that ex-
plains the observed results.

At a high level, the tasks in Search essentially sample a
population of electron paths. The net effect of skipping a
task is to discard the samples that the task would have per-
formed. The net effect of performing fewer samples is that
the resulting estimate of the property of interest in the pop-
ulation may be somewhat less accurate. The coefficientc1

in Search’s distortion model indicates that skipping half the
tasks (in effect, sampling half of the points in the sample
space) can cause a distortion of around 0.06. To place this
loss of accuracy in perspective, consider that simply chang-
ing the random number seed that drives the Monte Carlo
simulation in Search can cause a distortion of 0.08 in the
standard computation.

At a high level, the skippable tasks in String either sample
a population of rays projected through the velocity model of
the geology between two oil wells or combine the results
of this sampling process. Skipping tasks therefore has the
effect of discarding projected rays. Because the combination
operator averages the contributions, there is no bias and early
task terminations have little effect on the accuracy of the
final computation.

At a high level, Water essentially computes sums of pos-
itive numbers. The net effect of terminating tasks early is
to remove some of the positive numbers from the sums. On
average, the resulting relative reduction in the values of the
sums will be roughly proportional to the percentage of num-
bers removed from the sums. The coefficients in the distor-
tion model capture the relative contribution of each partial
sum to the final output total energy of the system of water
molecules. Because all of the summed numbers are positive,
it is possible to model the bias as a linear function of the
task skip rates and apply that bias to correct the output. One
can view the resulting computation as selecting a subset of
the numbers to sum, computing the sum of that subset, then

using the size of the subset to extrapolate the partial sum to
obtain an estimate of the sum of all of the numbers.

4.5.1 Redundancy

One of the reasons that our computations work well with
early phase termination is that they have some inherent re-
dundancy. In String, the redundancy comes from the multi-
ple rays that it traces through the velocity model — if the
computation loses some rays, the remaining rays usually
cover enough of the velocity model to deliver an acceptable
result. If Search loses some traced electrons, the remaining
electrons usually cover enough of the possible interactions
with the solid for the computation to deliver an acceptable
result.

Water has a different kind of redundancy — different
molecules have correlated interactions. This correlation
makes it possible to sample some of the interactions, then
extrapolate to obtain an accurate estimate of the final result.
The distortion results from the Natural scheduler highlight
the importance of choosing an appropriate unbiased set of
sampled interactions.

In all of these applications, redundancy comes with in-
creased computation — String traces more rays, Water com-
putes more interactions, and Search traces more electrons
than they need to generate acceptable results. Note that early
phase termination, by dropping some of these subcomputa-
tions, consumes some of this redundancy. One may very well
wonder if this is the best way to exploit this redundancy.
One could instead, for example, simply change the program
or its input to reduce the amount of computation up front.
An advantage of early phase termination is that it dynam-
ically tailors its consumption of redundancy to the specific
characteristics of the executing parallel computation. It can
therefore maximize the delivered performance benefit — in
addition to reducing the amount of computation, it also elim-
inates the idle time associated with load imbalances in the
underlying computation. Our results show that, for our set
of benchmarks, the phenomena have comparable effects on
the performance. And early phase termination has the addi-
tional benefit that it can eliminate the possibility of incurring
very substantial performance decreases if anomalies such as
slow processors or unequal assignments of computation to
tasks cause drastic load imbalances.

4.5.2 User Acceptance

We anticipate that two different aspects of our approach will
affect user acceptance. First, the presence of the probabilis-
tic distortion model will enable users to quantitatively eval-
uate the impact of early phase termination on the results that
their parallel computations produce. Most scientific compu-
tations are designed to produce only an approximate solution
to a complex set of equations; users typically understand and
accept the imprecision inherent in the underlying computa-
tional model and method. We anticipate that the distortion
model will allow users to quantitatively evaluate the magni-

tude of any additional imprecision, and that in many cases
the result will remain acceptably accurate.

Second, we anticipate that many users will develop a
qualitative understanding of the effect of early phase termi-
nation on their computation, and that this understanding will
make it easier for them to accept the result that the computa-
tion produces. Both String and Search, for example, have an
inherent precision versus execution time tradeoff. For String,
tracing more rays through the geological medium between
the oil wells takes more time but delivers a more precise
result. For Search, simulating more electron paths requires
more time but, once again, delivers a more precise result.
Both of these applications accept configuration files that al-
low users to control either the number of traced rays (String)
or simulated electron paths (Search). Users routinely manip-
ulate their configuration files to manage the execution time,
understanding that reducing the number of traced rays or
simulated electron paths may change the overall precision
of the result that the computations produce.

Note that early phase termination has basically the same
overall effect on the computation as using the configuration
file to change the number of traced rays or simulated electron
paths. For String, terminating tasks early reduces the number
of traced rays. For Search, terminating tasks early reduces
the number of simulated electron paths. And the benefit
(a reduction in the execution time) is the same. Moreover,
early phase termination provides the additional benefit of
terminating precisely those tasks that deliver the greatest
improvement in the execution time while minimizing the
amount of discarded computation.

Based on our experience with the developers and users of
String and Search [17], we believe that the probabilistic dis-
tortion models would, by themselves, provide enough infor-
mation for users to accept the use of early phase termination
for their production runs. Moreover, once the users under-
stood the overall effect of early phase termination on their
computations, we believe they would actually welcome its
use for the production runs.

For Water, the use of early phase termination in combi-
nation with bias compensation has the effect of converting a
full computation of all interactions into a randomized com-
putation that samples a (usually large) subset of the interac-
tions, then uses extrapolation to compute an approximation
of the final result. Given the resulting small distortions and
tight accuracy bounds for this application, we anticipate that
the probabilistic accuracy models would enable users to ac-
cept the results. The results also suggest that random sam-
pling plus extrapolation may be a worthwhile general tech-
nique for reducing computation times in other computations.

4.5.3 Implications for Other Programs

In general, we anticipate that many computations will turn
out to have the same general pattern as String, Water, and
Search. Many computer graphics computations have this
high-level pattern [14], as do information retrieval computa-

tions [7]. And of course other scientific computations share
this pattern [3]. We anticipate that our technique can be ap-
plied to eliminate barrier idling in these kinds of computa-
tions as well as the scientific computations discussed in this
paper.

We applied early phase termination to existing parallel
programs that already had, at the cost of some development
effort, been engineered to balance the load more or less
evenly across modest numbers of processors. The integra-
tion of early phase termination into the initial development
of other parallel programs may make it possible to obtain
an acceptable load balance with less engineering effort. For
both existing and new applications, another benefit is the
protection early phase termination can provide against ex-
treme imbalances caused either by an anomalously uneven
distribution of work across tasks or by computing environ-
ment effects such as heterogeneous processors with different
computing speeds.

5. Related Work
Asynchronous iteration [9] relaxes standard ordering con-
straints in iterative solvers to allow parallel processors to
proceed without synchronization, typically as they operate
on different regions of the problem that potentially share bor-
der elements. The lack of synchronization introduces nonde-
terminism into the computation as different processors asyn-
chronously read and write the same (typically border) el-
ements. Our technique, in contrast, completely eliminates
some computations rather than running computations asyn-
chronously at variable execution rates.

Barrier idling has been long recognized as an issue in
parallel computing. Fuzzy barriers [11] address this problem
by identifying additional instructions that an otherwise idle
processor can execute while it is waiting at a barrier. To
work well, fuzzy barriers require the availability of enough
additional instructions to hide the load imbalance otherwise
responsible for the barrier idling. Early phase termination
differs in that it is appropriate for arbitrarily unbalanced
computations and may change the result that the program
produces.

Several existing systems obtain additional robustness in
the face of errors by discarding problematic tasks. MapRe-
duce discards records that cause the record processing task
to fail multiple times [7]. We know of a graphics rendering
algorithm that discards computations associated with prob-
lematic triangles instead of including complex special-case
code that attempts to render the triangle into the scene [14].
These systems differ from ours in that 1) the motivation is
primarily robustness, not performance improvements, and 2)
they provide no indication of the effect of discarding com-
putations on the resulting outputs.

We initially developed our distortion models to provide
accuracy bounds for programs that tolerate hardware or soft-
ware failures by discarding tasks [20]. In addition to the dis-

tortion models, we also developed timing models. Together,
the distortion and timing models can help users success-
fully apply strategies that purposefully discard tasks to re-
duce the amount of work that the computation performs (and
hence the amount of time it takes to perform the computa-
tion) while keeping the resulting distortion within acceptable
bounds. The technique presented in this paper also accepts
bounded distortion in return for better performance. But the
primary purpose of the technique presented in this paper is
to eliminate barrier idling, not to reduce the total amount of
work that the computation performs (although it may have
this effect in practice).

6. Conclusion
Barrier idling can impair the scalability and performance
of parallel computations. We have presented a technique,
early phase termination, that can completely eliminate bar-
rier idling at the cost of some distortion in the result that
the application produces. If this distortion is small enough
and predictable enough, users may be willing to accept the
distortion in return for the performance increase.

Our results with several benchmark applications show
that early phase termination can improve the scalability of
the computation. Moreover, when the computation inter-
acts well with early phase termination, the resulting distor-
tion is small and predictable — our distortion models accu-
rately predict the distortion and provide reasonable accuracy
bounds. These models therefore enable users to 1) determine
if early phase termination is appropriate for their computa-
tion and satisfies their accuracy needs, and 2) if so, to confi-
dently determine when a computation that uses early phase
termination has produced an acceptable result.

Finally, we have identified a computation pattern that
explains why our applications work well with early phase
termination. Given that other classes of applications share
this pattern, it may very well prove to be fruitful to explore
the use of this technique (as well as other techniques that
leverage the ability to tolerate subcomputation failures) more
widely.

7. Acknowledgements
I would like to thank Gilbert Rinard for drawing my attention
to the necessary presence of redundancy in computations
that can sustain failures and still produce accurate outputs.

8. Support
This research was supported in part by the Singapore-MIT
Alliance, DARPA Cooperative Agreement FA 8750-04-2-
0254, NSF Grant CCR-0086154, NSF Grant CCR-0341620,
NSF Grant CCF-0209075, and NSF Grant CCR-0325283.

References
[1] C. Ananian and M. Rinard. Efficient object-based software

transactions. InProceedings of the Workshop on Synchro-
nization and Concurrency in Object-Oriented Languages,
San Diego, CA, Oct. 2005.

[2] C. S. Ananian. Architectural and Compiler Support for
Strongly Atomic Transactional Memory. PhD thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, May 2007.

[3] J. Barnes and P. Hut. A hierarchical O(NlogN) force
calculation algorithm.Nature, 324(4):446–449, Dec. 1986.

[4] W. Blume and R. Eigenmann. Performance analysis of
parallelizing compilers on the Perfect Benchmarks programs.
IEEE Transactions on Parallel and Distributed Systems,
3(6):643–656, Nov. 1992.

[5] R. Browning, T. Li, B. Chui, J. Ye, R. Pease, Z. Czyzewski,
and D. Joy. Empirical forms for the electron/atom elastic
scattering cross sections from 0.1-30keV.J. Appl. Phys.,
76(4):2016–2022, Aug. 1994.

[6] R. Browning, T. Li, B. Chui, J. Ye, R. Pease, Z. Czyzewski,
and D. Joy. Low-energy electron/atom elastic scattering
cross sections for 0.1-30keV.Scanning, 17(4):250–253,
July/August 1995.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. InProceedings of the 6th Sym-
posium on Operating Systems Design and Implementation,
San Francisco, CA, Dec. 2004.

[8] R. Freund and R. Littell.SAS System for Regression. SAS
Publishing, 2000.

[9] A. Frommer and D. Szyld. On asynchronous iterations.

[10] J. Goodman.Chemical Applications of Molecular Modeling.
Royal Society of Chemistry, 2007.

[11] R. Gupta. The fuzzy barrier: A mechanism for high speed
synchronization of processors. InProceedings of the
3rd International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston,
MA, Apr. 1989.

[12] J. Harris, S. Lazaratos, and R. Michelena. Tomographic string
inversion. InProceedings of the 60th Annual International
Meeting, Society of Exploration and Geophysics, Extended
Abstracts, pages 82–85, 1990.

[13] M. Herlihy and J. Moss. Transactional memory: architectural
support for lock-free data structures. InProceedings of the
20th International Symposium on Computer Architecture,
San Diego, CA, May 1993.

[14] T. Kay and J. Kajiya. Ray tracing complex scenes.Computer
Graphics (Proceedings of SIGGRAPH ’86), 20(4):269–78,
Aug. 1986.

[15] C. Moler. Numerical Computing with Matlab. Society for
Industrial and Applied Mathematics, 2004.

[16] J. Nieh and M. Levoy. Volume rendering on scalable shared-
memory MIMD architectures. Technical Report CSL-TR-92-
537, Computer Systems Laboratory, Stanford Univ., Stanford,
Calif., Aug. 1992.

[17] M. Rinard. The Design, Implementation and Evaluation of
Jade, a Portable, Implicitly Parallel Programming Language.
PhD thesis, Dept. of Computer Science, Stanford Univ.,
Stanford, Calif., 1994.

[18] M. Rinard. Effective fine-grain synchronization for automat-
ically parallelized programs using optimistic synchronization
primitives. ACM Transactions on Computer Systems, 19(4),
Nov. 1999.

[19] M. Rinard. Exploring the acceptability envelope. In2005
ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications Companion
(OOPSLA ’05 Companion) Onwards! Session, Oct. 2005.

[20] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. InProceedings of the 2006
ACM International Conference on Supercomputing, Cairns,
Australia, June 2006.

[21] D. Scales and M. S. Lam. Transparent fault tolerance
for parallel applications on networks of workstations. In
Proceedings of the 1996 Usenix Technical Conference, Jan.
1996.

