
ACM Conference on Programming Language Design and Implementation (PLDI), June 2003

Ownership Types for Safe Region-Based Memory
Management in Real-Time Java

Chandrasekhar Boyapati, Alexandru Sălcianu, William Beebee, Jr., Martin Rinard
MIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139

{chandra,salcianu,wbeebee,rinard}@lcs.mit.edu

Abstract

The Real-Time Specification for Java (RTSJ) allows a pro-
gram to create real-time threads with hard real-time con-
straints. Real-time threads use region-based memory man-
agement to avoid unbounded pauses caused by interference
from the garbage collector. The RTSJ uses runtime checks
to ensure that deleting a region does not create dangling ref-
erences and that real-time threads do not access references
to objects allocated in the garbage-collected heap. This pa-
per presents a static type system that guarantees that these
runtime checks will never fail for well-typed programs. Our
type system therefore 1) provides an important safety guar-
antee for real-time programs and 2) makes it possible to
eliminate the runtime checks and their associated overhead.

Our system also makes several contributions over previ-
ous work on region types. For object-oriented programs, it
combines the benefits of region types and ownership types
in a unified type system framework. For multithreaded pro-
grams, it allows long-lived threads to share objects without
using the heap and without memory leaks. For real-time
programs, it ensures that real-time threads do not interfere
with the garbage collector. Our experience indicates that
our type system is sufficiently expressive and requires lit-
tle programming overhead, and that eliminating the RTSJ
runtime checks using a static type system can significantly
decrease the execution time of real-time programs.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs;
D.2.4 [Software Engineering]: Program Verification;
C.3 [Special-Purpose Systems]: Real-time Systems

General Terms

Languages, Verification, Theory

This research was supported by DARPA/AFRL Contract F33615-
00-C-1692, NSF Grant CCR-0086154, NSF Grant CCR-0073513,
NSF Grant CCR-0209075, and the Singapore-MIT Alliance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

Keywords

Ownership Types, Regions, Encapsulation, Real-Time

1. Introduction
The Real-Time Specification for Java (RTSJ) [8] provides

a framework for building real-time systems. The RTSJ al-
lows a program to create real-time threads with hard real-
time constraints. These real-time threads cannot use the
garbage-collected heap because they cannot afford to be in-
terrupted for unbounded amounts of time by the garbage
collector. Instead, the RTSJ allows these threads to use ob-
jects allocated in immortal memory (which is never garbage
collected) or in regions [42]. Region-based memory manage-
ment systems structure memory by grouping objects in re-
gions under program control. Memory is reclaimed by delet-
ing regions, freeing all objects stored therein. The RTSJ
uses runtime checks to ensure that deleting a region does
not create dangling references and that real-time threads do
not access heap references.

This paper presents a static type system for writing real-
time programs in Java. Our system guarantees that the
RTSJ runtime checks will never fail for well-typed programs.
Our system thus serves as a front-end for the RTSJ platform.
It offers two advantages to real-time programmers. First, it
provides an important safety guarantee that a program will
never fail because of a failed RTSJ runtime check. Second, it
allows RTSJ implementations to remove the RTSJ runtime
checks and eliminate the associated overhead.

Our approach is applicable even outside the RTSJ context;
it could be adapted to provide safe region-based memory
management for other real-time languages as well.

Our system makes several important technical contribu-
tions over previous type systems for region-based memory
management. For object-oriented programs, it combines re-
gion types [16, 23, 34, 42] and ownership types [10, 11, 14,
18, 19] in a unified type system framework. Region types
statically ensure that programs never follow dangling refer-
ences. Ownership types statically enforce object encapsula-
tion and enable modular reasoning about program correct-
ness in object-oriented programs.

Consider, for example, a Stack object s that is imple-
mented using a Vector subobject v. To reason locally about
the correctness of the Stack implementation, a programmer
must know that v is not directly accessed by objects outside
s. With ownership types, a programmer can declare that s

owns v. The type system then statically ensures that v is
encapsulated within s.

1

In an object-oriented language that only has region types
(e.g., [16]), the types of s and v would declare that they are
allocated in some region r. In an object-oriented language
that only has ownership types, the type of v would declare
that it is owned by s. Our type system provides a simple
unified mechanism to declare both properties. The type of
s can declare that it is allocated in r and the type of v can
declare that it is owned by s. Our system then statically
ensures that both objects are allocated in r, that there are
no pointers to v and s after r is deleted, and that v is en-
capsulated within s. Our system thus combines the benefits
of region types and ownership types.

Our system extends region types to multithreaded pro-
grams by allowing explicit memory management for objects
shared between threads. It allows threads to communicate
through objects in shared regions in addition to the heap.
A shared region is deleted when all threads exit the region.
However, programs in a system with only shared regions
(e.g., [33]) will have memory leaks if two long-lived threads
communicate by creating objects in a shared region. This
is because the objects will not be deleted until both threads
exit the shared region. To solve this problem, we introduce
the notion of subregions within a shared region. A subregion
can be deleted more frequently, for example, after each loop
iteration in the long-lived threads.

Our system also introduces typed portal fields in subre-
gions to serve as a starting point for inter-thread communi-
cation. Portals also allow typed communication, so threads
do not have to downcast from Object to more specific types.
Our approach therefore avoids any dynamic type errors as-
sociated with these downcasts. Our system introduces user-
defined region kinds to support subregions and portal fields.

Our system extends region types to real-time programs
by statically ensuring that real-time threads do not inter-
fere with the garbage collector. Our system augments re-
gion kind declarations with region policy declarations. It
supports two policies for creating regions as in the RTSJ. A
region can be an LT (Linear Time) region, or a VT (Vari-
able Time) region. Memory for an LT region is preallocated
at region creation time, so allocating an object in an LT
region only takes time proportional to the size of the object
(because all the bytes have to be zeroed). Memory for a VT
region is allocated on demand, so allocating an object in a
VT region takes variable time. Our system checks that real-
time threads do not use heap references, create new regions,
or allocate objects in VT regions.

Our system also prevents an RTSJ priority inversion prob-
lem. In the RTSJ, any thread entering a region waits if there
are threads exiting the region. If a regular thread exiting a
region is suspended by the garbage collector, then a real-
time thread entering the region might have to wait for an
unbounded amount of time. Our type system statically en-
sures that this priority inversion problem cannot happen.

Finally, we note that ownership-based type systems have
also been used for preventing data races [14] and dead-
locks [10], for supporting modular software upgrades in per-
sistent object stores [13], for modular specification of effects
clauses in the presence of subtyping [11, 14] (so they can be
used as an alternative to data groups [36]), and for program
understanding [3]. We are currently unifying the type sys-
tem presented in this paper with the above type systems [9].

The unified ownership type system requires little program-
ming overhead, its typechecking is fast and scalable, and it
provides several benefits. The unified ownership type system
thus offers a promising approach for making object-oriented
programs more reliable.

Contributions
To summarize, this paper makes the following contributions:

• Region types for object-oriented programs: Our
system combines region types and ownership types in a
unified type system framework that statically enforces
object encapsulation as well as enables safe region-
based memory management.

• Region types for multithreaded programs: Our
system introduces 1) subregions within a shared region,
so that long-lived threads can share objects without
using the heap and without memory leaks and 2) typed
portal fields to serve as a starting point for typed inter-
thread communication. It also introduces user-defined
region kinds to support subregions and portals.

• Region types for real-time programs: Our system
allows programs to create LT (Linear Time) and VT
(Variable Time) regions as in the RTSJ. It checks that
real-time threads do not use heap references, create
new regions, or allocate objects in VT regions, so that
they do not wait for unbounded amounts of time. It
also prevents an RTSJ priority inversion problem.

• Type inference: Our system uses a combination
of intra-procedural type inference and well-chosen de-
faults to significantly reduce programming overhead.
Our approach permits separate compilation.

• Experience: We have implemented several programs
in our system. Our experience indicates that our type
system is sufficiently expressive and requires little pro-
gramming overhead. We also ran the programs on our
RTSJ platform [6, 7]. Our experiments show that elim-
inating the RTSJ runtime checks using a static type
system can significantly speed-up programs.

The paper is organized as follows. Section 2 describes our
type system. Section 3 describes our experimental results.
Section 4 presents related work. Section 5 concludes.

2. Type System
This section presents our type system for safe region-based

memory management. Sections 2.1, 2.2, and 2.3 describe our
type system. Section 2.4 presents some of the important
rules for typechecking. The complete set of rules are in the
Appendix. Section 2.5 describes type inference techniques.
Section 2.6 describes how programs written in our system
are translated to run on our RTSJ platform.

2.1 Regions for Object-Oriented Programs
This section presents our type system for safe region-based

memory management in single-threaded object-oriented pro-
grams. It combines the benefits of region types [16, 23, 34,
42] and ownership types [10, 11, 14, 18, 19]. Region types
statically ensure that programs using region-based mem-
ory management are memory-safe, that is, they never fol-
low dangling references. Ownership types statically enforce

2

O1. The ownership relation forms a forest of trees.

O2. If region r ºo object x, then x is allocated in r.

O3. If object z ºo y but z 6ºo x, then x cannot access y.

Figure 1: Ownership Properties

R1. For any region r, heap º r and immortal º r.

R2. x ºo y =⇒ x º y.

R3. If region r1 ºo object o1, region r2 ºo object o2, and
r2 6º r1, then o1 cannot contain a pointer to o2.

Figure 2: Outlives Properties

object encapsulation. The idea is that an object can own
subobjects that it depends on, thus preventing them from
being accessible outside. (An object x depends on [35, 11]
subobject y if x calls methods of y and furthermore these
calls expose mutable behavior of y in a way that affects the
invariants of x.) Object encapsulation enables local reason-
ing about program correctness in object-oriented programs.

Ownership Relation Objects in our system are allocated
in regions. Every object has an owner. An object can be
owned by another object, or by a region. We write o1 ºo o2

if o1 directly or transitively owns o2 or if o1 is the same as
o2. The relation ºo is thus the reflexive transitive closure of
the owns relation. Our type system statically guarantees the
properties in Figure 1. O1 states that our ownership relation
has no cycles. O2 states that if an object is owned by a
region, then that object and all its subobjects are allocated
in that region. O3 states the encapsulation property of our
system, that if y is inside the encapsulation boundary of z
and x is outside, then x cannot access y.1 (An object x
accesses an object y if x has a pointer to y, or methods of x
obtain a pointer to y.) Figure 6 shows an example ownership
relation. We draw a solid line from x to y if x owns y. Region
r2 owns s1, s1 owns s1.head and s1.head.next, etc.

Outlives Relation Our system allows programs to create
regions. It also provides two special regions: the garbage
collected region heap, and the “immortal” region immortal.
The lifetime of a region is the time interval from when the
region is created until it is deleted. If the lifetime of a region
r1 includes the lifetime of region r2, we say that r1 outlives
r2, and write r1 º r2. The relation º is thus reflexive and
transitive. We extend the outlives relation to include ob-
jects. We define that x ºo y implies x º y. The extension
is natural: if object o1 owns object o2 then o1 outlives o2

because o2 is accessible only through o1. Also, if region r
owns object o then r outlives o because o is allocated in r.
Our outlives relation has the properties shown in Figure 2.
R1 states that heap and immortal outlive all regions. R2
states that the outlives relation includes the ownership re-
lation. R3 states our memory safety property, that if object
o1 in region r1 contains a pointer to object o2 in region r2,
then r2 outlives r1. R3 implies that there are no dangling
references in our system. Figure 6 shows an example outlives
relation. We draw a dashed line from region x to region y
if x outlives y. In the example, region r1 outlives region r2,

1Our system handles inner class objects specially to support
constructs like iterators. Details can be found in [11].

P ::= def ∗ e
def ::= class cn 〈formal+〉 extends c

where constr ∗ { field ∗ meth∗ }
formal ::= k fn

c ::= cn 〈owner+〉 | Object〈owner 〉
owner ::= fn | r | this | initialRegion | heap | immortal

field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) where constr ∗ { e }

constr ::= owner owns owner | owner outlives owner
t ::= c | int | RHandle〈r〉
k ::= Owner | ObjOwner | rkind

rkind ::= Region | GCRegion | NoGCRegion | LocalRegion
e ::= v | let v = e in { e } | v.fd | v.fd = v | new c |

v.mn 〈owner ∗〉(v∗) | (RHandle〈r〉 h) { e }
h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers

Figure 3: Grammar for Object Oriented Programs

1

Region

NoGCRegion GCRegion

user defined region kinds

Owner

2

ObjOwner

SharedRegionLocalRegion

Figure 4: Owner Kind Hierarchy: Section 2.1 uses
only Area 1. Sections 2.2 & 2.3 use Areas 1 & 2.

and heap and immortal outlive all regions. The following
lemmas follow trivially from the above definitions:

Lemma 1. If object o1 º object o2, then o1 ºo o2.

Lemma 2. If region r º object o, then there exists a unique
region r’ such that r º r ′ and r ′ ºo o.

Grammar To simplify the presentation of key ideas behind
our approach, we describe our type system formally in the
context of a core subset of Java known as Classic Java [28].
Our approach, however, extends to the whole of Java and
other similar languages. Figure 3 presents the grammar for
our core language. A program consists of a series of class
declarations followed by an initial expression. A predefined
class Object is the root of the class hierarchy.

Owner Polymorphism Every class definition is parame-
terized with one or more owners. (This is similar to para-
metric polymorphism [1, 15, 38] except that our parameters
are values, not types.) An owner can be an object or a re-
gion. Parameterization allows programmers to implement a
generic class whose objects can have different owners. The
first formal owner is special: it owns the corresponding ob-
ject; the other owners propagate the ownership information.
Methods can also declare an additional list of formal owner
parameters. Each time new formals are introduced, pro-
grammers can specify constraints between them using where

clauses [24]. The constraints have the form “o1 owns o2”
(i.e., o1 ºo o2) and “o1 outlives o2” (i.e., o1 º o2).

Each formal has an owner kind. There is a subkinding
relation between owner kinds, resulting in the kind hier-
archy from the upper half of Figure 4. The hierarchy is

3

rooted in Owner, that has two subkinds: ObjOwner (owners
that are objects; we avoid using Object because it is al-
ready used for the root of the class hierarchy) and Region.
Region has two subkinds: GCRegion (the kind of the garbage
collected heap) and NoGCRegion (the kind of other regions).
Finally, NoGCRegion has a single subkind, LocalRegion. (At
this point, there is no distinction between NoGCRegion and
LocalRegion. We will add new kinds in the next section.)

Region Creation The expression “(RHandle〈r〉 h) {e}”
creates a new region and introduces two identifiers r and h
that are visible inside the scope of e. r is an owner of kind
LocalRegion that is bound to the newly created region. h
is a runtime value of type RHandle〈r〉 that is bound to the
handle of the region r. The region name r is only a compile-
time entity; it is erased (together with all the ownership
and region type annotations) immediately after typecheck-
ing. However, the region handle h is required at runtime
when we allocate objects in region r (object allocation is
explained in the next paragraph). The newly created region
is outlived by all regions that existed when it was created;
it is destroyed at the end of the scope of e. This implies a
“last in first out” order on region lifetimes. As we mentioned
before, in addition to the user created regions, we have spe-
cial regions: the garbage collected region heap (with handle
h heap) and the “immortal” region immortal (with handle
h immortal). Objects allocated in the immortal region are
never deallocated. heap and immortal are never destroyed;
hence, they outlive all regions. We also allow methods to
allocate objects in the special region initialRegion, which
denotes the most recent region that was created before the
method was called. We use runtime support to acquire the
handle of initialRegion.

Object Creation New objects are created using the ex-
pression “new cn 〈o1..n〉”. o1 is the owner of the new object.
(Recall that the first owner parameter always owns the cor-
responding object.) If o1 is a region, the new object is allo-
cated there; otherwise, it is allocated in the region where the
object o1 is allocated. For the purpose of typechecking, re-
gion handles are unnecessary. However, at runtime, we need
the handle of the region we allocate in. The typechecker
checks that we can obtain such a handle (more details are
in Section 2.4). If o1 is a region r, the handle of r must be
in the environment. Therefore, if a method has to allocate
memory in a specific region that is passed to it as an owner
parameter, then it also needs to receive the corresponding
region handle as an argument.

A formal owner parameter can be instantiated with an in-
scope formal, a region name, or the this object. For every
type cn 〈o1..n〉 with multiple owners, our type system stati-
cally enforces the constraint that oi º o1, for all i ∈ {1..n}.
In addition, if an object of type cn 〈o1..n〉 has a method mn ,
and if a formal owner parameter of mn is instantiated with
an object obj , then our system ensures that obj º o1. These
restrictions enable the type system to statically enforce ob-
ject encapsulation and prevent dangling references.

Example We illustrate our type system with the exam-
ple in Figure 5. A TStack is a stack of T objects. It is
implemented using a linked list. The TStack class is param-
eterized by stackOwner and TOwner. stackOwner owns the
TStack object and TOwner owns the T objects contained in
the TStack. The code specifies that the TStack object owns

1 class TStack<Owner stackOwner, Owner TOwner> {
2 TNode<this, TOwner> head = null;
3
4 void push(T<TOwner> value) {
5 TNode<this, TOwner> newNode = new TNode<this, TOwner>;
6 newNode.init(value, head); head = newNode;
7 }
8
9 T<TOwner> pop() {

10 if(head == null) return null;
11 T<TOwner> value = head.value; head = head.next;
12 return value;
13 }
14 }
15
16 class TNode<Owner nodeOwner, Owner TOwner> {
17 T<TOwner> value;
18 TNode<nodeOwner, TOwner> next;
19
20 void init(T<TOwner> v, TNode<nodeOwner, TOwner> n) {
21 this.value = v; this.next = n;
22 }
23 }
24
25 (RHandle<r1> h1) {
26 (RHandle<r2> h2) {
27 TStack<r2, r2> s1;
28 TStack<r2, r1> s2;
29 TStack<r1, immortal> s3;
30 TStack<heap, immortal> s4;
31 TStack<immortal, heap> s5;
32 /* TStack<r1, r2> s6; illegal! */
33 /* TStack<heap, r1> s7; illegal! */
34 }}

Figure 5: Stack of T Objects

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

r2

immortalheap

r1

Figure 6: TStack Ownership and Outlives Relations

the nodes in the list; therefore the list nodes cannot be ac-
cessed from outside the TStack object. The program creates
two regions r1 and r2 such that r1 outlives r2. The pro-
gram declares several TStack variables: the type of TStack

s1 specifies that it is allocated in region r2 and so are the
T objects in s1; TStack s2 is allocated in region r2 but the
T objects in s2 are allocated in region r1; etc. Note that
the type of s6 is illegal. This is because s6 is declared as
TStack〈r1,r2〉, and r2 6º r1. (Recall that in any legal type
cn 〈o1..n〉 with multiple owners, oi º o1 for all i ∈ {1..n}.)
Figure 6 presents the ownership and the outlives relations
from this example (assuming the stacks contain two elements
each). We use circles for objects, rectangles for regions, solid
arrows for ownership, and dashed arrows for the outlives re-
lation between regions.

Safety Guarantees The following two theorems state our
safety guarantees. Part 1 of Theorems 3 and 4 state the
object encapsulation property. Note that objects owned by
regions are not encapsulated within other objects. Part 2 of
Theorem 3 states the memory safety property.

4

Theorem 3. If objects o1 and o2 are allocated in regions r1
and r2 respectively, and field fd of o1 points to o2, then

1. Either owner of o2 ºo o1, or owner of o2 is a region.

2. Region r2 outlives region r1.

Proof. Suppose class cn〈f1..n〉{... T 〈x1, ...〉 fd ...} is the
class of o1. Field fd of type T 〈x1, ...〉 contains a reference
to o2. x1 must therefore own o2. x1 can be either 1) heap,
or 2) immortal, or 3) this, or 4) fi, a class formal. In the
first two cases, (owner of o2) = x1 is a region, and r2 = x1

º r1. In Case 3, (owner of o2) = o1 ºo o1, and r2 = r1 º
r1. In Case 4, we know that fi º f1, since all owners in a
legal type outlive the first owner. Therefore, (owner of o2)
= x1 = fi º f1 º this = o1. If (owner of o2) is an object,
we know from Lemma 1 that (owner of o2) ºo o1. This also
implies that r2 = r1 º r1. If the (owner of o2) is a region,
we know from Lemma 2 that there exists region r such that
(owner of o2) º r and r ºo o1. Therefore r2 = r º r1.

Theorem 4. If a variable v in a method mn of an object o1

points to an object o2, then

1. Either owner of o2 ºo o1, or owner of o2 is a region.

Proof. Similar to the proof of Theorem 3, except that now
we have a fifth possibility for the (owner of o2): a formal
method parameter that is a region or initialRegion (that
are not required to outlive o1). In this case, (owner of o2) is
a region. The other four cases are identical.

Most previous region type systems allow programs to cre-
ate, but not follow, dangling references. Such references
can cause a safety problem when used with copying collec-
tors. Our system therefore prevents a program from creating
dangling references in the first place. Part 2 of Theorem 3
prevents object fields from containing dangling references.
Even though Theorem 4 does not have a similar Part 2, we
can prove, using lexical scoping of region names, that local
variables cannot contain dangling references either.

2.2 Regions for Multithreaded Programs
This section describes how we support multithreaded pro-

grams. Figure 7 presents the language extensions. A fork

instruction spawns a new thread that evaluates the invoked
method. The evaluation is performed only for its effect; the
parent thread does not wait for the completion of the new
thread and does not use the result of the method call. Our
unstructured concurrency model (similar to Java’s model)
is incompatible with the regions from Section 2.1 whose life-
times are lexically bound. Those regions can still be used for
allocating thread-local objects (hence the name of the associ-
ated region kind, LocalRegion), but objects shared by mul-
tiple threads require shared regions, of kind SharedRegion.

Shared Regions “(RHandle〈rkind r〉 h) {e}” creates a
shared region (rkind specifies the region kind of r; region
kinds are explained later in this section). Inside expression
e, the identifiers r and h are bound to the region and the
region handle, respectively. Inside e, r and h can be passed
to child threads. The objects allocated inside a shared re-
gion are not deleted as long as some thread can still ac-
cess them. To ensure this, each thread maintains a stack of
shared regions it can access, and each shared region main-
tains a counter of how many such stacks it is an element of.
When a new shared region is created, it is pushed onto the

P ::= def ∗ srkdef ∗ e
srkdef ::= regionKind srkn 〈formal ∗〉 extends srkind

where constr ∗ { field ∗ subsreg∗ }
rkind ::= ... as in Figure 3 ... | srkind

srkind ::= srkn 〈owner ∗〉 | SharedRegion
subsreg ::= srkind rsub

e ::= ... as in Figure 3 ... |
fork v.mn 〈owner ∗〉(v∗) |
(RHandle〈rkind r〉 h) { e } |
(RHandle〈r〉 h = [new]opt h.rsub) { e } |
h.fd | h.fd = v

srkn ∈ shared region kind names
rsub ∈ shared subregion names

Figure 7: Extensions for Multithreaded Programs

region stack of the current thread and its counter is initial-
ized to one. A child thread inherits all the shared regions
of its parent thread; the counters of these regions are incre-
mented when the child thread is forked. When the scope
of a region name ends (the names of the shared regions are
still lexically scoped, even if the lifetimes of the regions are
not), the corresponding region is popped off the stack and
its counter is decremented. When a thread terminates, the
counters of all the regions from its stack are decremented.
When the counter of a region becomes zero, the region is
deleted. The typing rule for a fork expression checks that
objects allocated in local regions are not passed to the child
thread as arguments; it also checks that local regions and
handles to local regions are not passed to the child thread.

Subregions and Portals Shared regions provide the basis
for inter-thread communication. However, in many cases,
they are not enough. E.g., consider two long-lived threads,
a producer and a consumer, that communicate through a
shared region in a repetitive way. In each iteration, the
producer allocates some objects in the shared region and
the consumer subsequently uses the objects. These objects
become unreachable after each iteration. However, these
objects are not deleted until both threads terminate and
exit the shared region. To prevent this memory leak, we
allow shared regions to have subregions. In each iteration,
the producer and the consumer can enter a subregion of the
shared region and use it for communication. At the end of
the iteration, both the threads exit the subregion and the
reference count of the subregion goes to zero—the objects
in the subregion are thus deleted after each iteration.

We must also allow the producer to pass references to ob-
jects it allocates in the subregion in each iteration to the
consumer. Note that storing the references in the fields of
a “hook” object is not possible: objects allocated outside
the subregion cannot point to objects in the subregion (oth-
erwise, those references would result in dangling references
when objects in the subregion are deleted), and objects al-
located in the subregion do not survive between iterations
and hence cannot be used as “hooks”. To solve this prob-
lem, we allow (sub)regions to contain portal fields. A thread
can store the reference to an object in a portal field; other
threads can then read the portal field to obtain the reference.

Region Kinds In practice, programs can declare several
shared region kinds. Each such kind extends another shared
region kind and can declare several portal fields and subre-
gions (see grammar rule for srkdef in Figure 7). The result-
ing shared region kind hierarchy has SharedRegion as its
root. The owner kind hierarchy now includes both Areas 1
and 2 from Figure 4. Similar to classes, shared region kinds

5

1 regionKind BufferRegion extends SharedRegion {
2 BufferSubRegion b;
3 }
4
5 regionKind BufferSubRegion extends SharedRegion {
6 Frame<this> f;
7 }
8
9 class Producer<BufferRegion r> {

10 void run(RHandle<r> h) {
11 while(true) {
12 (RHandle<BufferSubRegion r2> h2 = h.b) {
13 Frame<r2> frame = new Frame<r2>;
14 get_image(frame);
15 h2.f = frame;
16 }
17 ... // wake up the consumer
18 ... // wait for the consumer
19 }}}
20
21 class Consumer<BufferRegion r> {
22 void run(RHandle<r> h) {
23 while(true) {
24 ... // wait for the producer
25 (RHandle<BufferSubRegion r2> h2 = h.b) {
26 Frame<r2> frame = h2.f;
27 h2.f = null;
28 process_image(frame);
29 }
30 ... // wake up the producer
31 }}}
32
33 (RHandle<BufferRegion r> h) {
34 fork (new Producer<r>).run(h);
35 fork (new Consumer<r>).run(h);
36 }

Figure 8: Producer Consumer Example

can be parameterized with owners; however, unlike objects,
regions do not have owners so there is no special meaning
attached to the first owner.

Expression “(RHandle〈r2〉 h2 = [new]opt h1.rsub) {e}”
evaluates e in an environment where r2 is bound to the sub-
region rsub of the region r1 that h1 is the handle of, and h2

is bound to the handle of r2. In addition, if the keyword new

is present, r2 is a newly created subregion, distinct from the
previous rsub subregion.

If h is the handle of region r, the expression “h.fd ” reads
r’s portal field fd , and “h.fd = v” stores a value into that
field. The rule for portal fields is the same as that for object
fields: a portal field of a region r is either null or points to
an object allocated in r or in a region that outlives r.

Flushing Subregions When all the objects in a subregion
become inaccessible, the subregion is flushed, i.e., all objects
allocated inside it are deleted. We do not flush a subregion
if its counter is positive. Furthermore, we do not flush a
subregion r if any of its portal fields is non-null (to allow
some thread to enter it later and use those objects) or if
any of r’s subregions has not been flushed yet (because the
objects in those subregions might point to objects in r).
Recall that subregions are a way of “packaging” some data
and sending it to another thread; the receiver thread looks
inside the subregion (starting from the portal fields) and
uses the data. Therefore, as long as a subregion with non-
null portal fields is reachable (i.e., a thread may obtain its
handle), the objects allocated inside it can be reachable even
if no thread is currently in the subregion.

Example Figure 8 contains an example that illustrates
the use of subregions and portal fields. The main thread cre-
ates a shared region of kind BufferRegion and then starts

meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ {e}
effects ::= accesses owner ∗

owner ::= ... as in Figure 3 ... | RT
subsreg ::= srkind :rpol tt rsub

rpol ::= LT(size) | VT
tt ::= RT | NoRT
k ::= ... as in Figure 3 ... | rkind :LT
e ::= ... as in Figure 7 ... |

(RHandle〈rkind :rpol r〉 h) { e } |
RT fork v.mn 〈owner ∗〉(v∗)

Figure 9: Extensions for Real-Time Programs

two threads, a producer and a consumer, that communicate
through the shared region. In each iteration, the producer
enters subregion b (of kind BufferSubRegion), allocates a
Frame object in it, and stores a reference to the frame in
subregion’s portal field f. Next, the producer exits the sub-
region and waits for the consumer. The subregion is not
flushed because the portal field f is non-null. The consumer
then enters the subregion, uses the frame object pointed to
by its portal field f, sets f to null, and exits the subregion.
Now, the subregion is flushed (because its counter is zero
and all its fields are null) and a new iteration starts. In this
paper, we do not discuss synchronization issues; we assume
synchronization primitives similar to those in Java.

2.3 Regions for Real-Time Programs
A real-time program consists of a set of real-time threads,

a set of regular threads, and a special garbage collector
thread. (This is a conceptual model; actual implementa-
tions might differ.) A real-time thread has strict deadlines
for completing its tasks.2

Figure 9 presents the language extensions to
support real-time programs. The expression
“RT fork v.mn 〈owner ∗〉(v∗)” spawns a new real-time
thread to evaluate mn . Such a thread cannot afford to
be interrupted for an unbounded amount of time by the
garbage collector—the rest of this section explains how our
type system statically ensures this property.

Effects The garbage collector thread must synchronize
with any thread that creates or destroys heap roots, i.e.,
references to heap objects, otherwise it might end up collect-
ing reachable objects. Therefore, we must ensure that the
real-time threads do not read or overwrite references to heap
objects. (The last restriction is needed to support copying
collectors.) To statically check this, we allow methods to
declare effects clauses [37]. In our system, the effects clause
of a method lists the owners (some of them regions) that
the method accesses. Accessing a region means allocating
an object in that region. Accessing an object means read-
ing or overwriting a reference to that object or allocating
another object owned by that object. Note that we do not
consider reading or writing a field of an object as accessing
that object. If a method’s effects clause consists of owners
o1..n, then any object or region accessed by that method, the
methods it invokes, and the threads it spawns (transitively)
is guaranteed to be outlived by oi, for some i ∈ {1..n}.

The typing rule for an RT fork expression checks all the
constraints of a regular fork expression. In addition, it
checks that references to heap objects are not passed as
arguments to the new thread, and that the effects clause

2Our terminology is related, but not identical to the RTSJ
terminology. E.g., our real-time threads are similar to (and
more restrictive than) the RTSJ NoHeapRealtimeThreads.

6

of the method evaluated in the new thread does not contain
the heap region or any object allocated in the heap region. If
an RT fork expression typechecks, the new real-time cannot
receive any heap reference. Furthermore, it cannot create
a heap object, or read or overwrite a heap reference in an
object field—the type system ensures that in each of the
above cases, the heap region or an object allocated in the
heap region appears in the method effects.

Region Allocation Policies A real-time thread cannot
create an object if this operation requires allocating new
memory, because allocating memory requires synchroniza-
tion with the garbage collector. A real-time thread can,
however, create an object in a preallocated memory region.

Our system supports two allocation policies for regions.
One policy is to allocate memory on demand (potentially in
large chunks), as new objects are created in the region. Al-
locating a new object can take unbounded time or might not
even succeed (if a new chunk is needed and the system runs
out of memory). Flushing the region frees all the memory
allocated for that region. Following the RTSJ terminology,
we call such regions VT (Variable Time) regions.

The other policy is to allocate all the memory for a region
at region creation time. The programmer must provide an
upper bound for the total size of the objects that will be al-
located in the region. Allocating an object requires sliding
a pointer—if the region is already full, the system throws
an exception to signal that the region size was too small.
Allocating a new object takes time linear in its size: sliding
the pointer takes constant time, but we also have to set to
zero each allocated byte. Flushing the region simply resets
a pointer, and, importantly, does not free the memory allo-
cated for the region. We call regions that use this allocation
policy LT (Linear Time) regions. Once we have an LT sub-
region, threads can repeatedly enter it, allocate objects in
it, exit it (thus flushing it), and re-enter it without having
to allocate new memory. This is possible because flushing
an LT region does not free its memory. LT subregions are
thus ideal for real-time threads: once such a subregion is
created (with a large enough upper bound), all object cre-
ations will succeed, in linear time; moreover, the subregion
can be flushed and reused without memory allocation.

We allow users to specify the region allocation policy (LT
or VT) when a new region is created. The policy for sub-
regions is declared in the shared region kind declarations.
When a user specifies an LT policy, the user also has to
specify the size of the region (in bytes). An expression
“(RHandle〈rkind :rpol r〉 h) {e}” creates a region with al-
location policy rpol and allocates memory for all its (transi-
tive) LT (sub)regions (including itself). Our system checks
that a region has a finite number of transitive subregions.

If a method enters a VT region or a top level region
(i.e., a region that is not a subregion), the typechecker en-
sures that the method contains the heap region in its effects
clause. This is to prevent real-time threads from invoking
such methods. However, a method that does not contain the
heap region in its effects clause can still enter an existing LT
subregion, because no memory is allocated in that case.

Preventing the RTSJ Priority Inversion So far, we
presented techniques for checking that real-time threads do
not create or destroy heap references, create new regions, or
allocate objects in VT regions. However, there are two other
subtle ways a thread can interact with the garbage collector.

First, the garbage collector needs to know all locations
that refer to heap objects, including locations that are in-
side regions. Suppose a real-time thread uses an LT region
that contains such heap references (created by a non-real-
time thread). The real-time thread can flush the region (by
exiting it) thus destroying any heap reference that existed
in the region. If we use a copying garbage collector, the
real-time thread has to interact with the garbage collector
to inform it about the destruction of those heap references.
Therefore, we should prevent regions that can be flushed by
a real-time thread from containing any heap reference (even
if the reference is not explicitly read or overwritten by the
real-time thread). Note that this restriction is relevant only
for subregions: a real-time thread cannot create a top-level
region and hence cannot flush a top-level region either.

Second, when a thread enters or exits a subregion, it
needs to do some bookkeeping. To preserve the integrity of
the runtime region implementation, some synchronization is
necessary during this bookkeeping. E.g., when a thread exits
a subregion, the test that the subregion can be flushed and
the actual flushing have to be executed atomically, without
allowing any thread to enter the subregion “in between”.
If a regular thread exiting a subregion is suspended by the
garbage collector, then a real-time thread entering the sub-
region might have to wait for an unbounded amount of time.
This priority inversion problem occurs even in the RTSJ.

To prevent these subtle interactions, we impose the re-
striction that real-time threads and regular threads cannot
share subregions. Subregions used by real-time threads thus
cannot contain heap references, and real-time threads never
have to wait for unbounded amounts of time.

For each subregion, programmers specify in the region
kind definitions whether the subregion will be used only by
real-time threads (RT subregions) or only by regular threads
(NoRT subregions). Note that real-time and regular threads
can still communicate using top-level regions. Any method
that enters an RT subregion must contain the special effect
RT in its effects clause. Any method that enters a NoRT

subregion must contain the heap region in its effects clause.
The type system checks that no regular thread can invoke a
method that has an RT effect, and no real-time thread can
invoke a method that has a heap effect.

2.4 Rules for Typechecking
Previous sections presented the grammar for our core lan-

guage in Figures 3, 7, and 9. This section presents some
sample typing rules. The Appendix contains all the rules.

The core of our type system is a set of typing judgments of
the form P; E; X; rcr ` e : t. P, the program being checked,
is included to provide information about class definitions.
The typing environment E provides information about the
type of the free variables of e (t v, i.e., variable v has type t),
the kind of the owners currently in scope (k o, i.e., owner
o has kind k), and the two relations between owners: the
“ownership” relation (o2 ºo o1, i.e., o2 owns o1) and the
“outlives” relation (o2 º o1, i.e., o2 outlives o1). More
formally, E ::= ∅ | E, t v | E, k o | E, o2 ºo o1 | E, o2 º o1.
rcr is the current region. X must subsume the effects of e.
t is the type of the expression e.

A useful auxiliary rule is E ` X1 º X2, i.e., the effects X1

subsume the effects X2: ∀o ∈ X2, ∃g ∈ X1, s.t. g º o. To
prove constraints of the form g º o, g ºo o etc. in a specific
environment E, the checker uses the constraints from E,

7

and the properties of º and ºo: transitivity, reflexivity, ºo

implies º, and the fact that the first owner from the type
of an object owns the object.

The expression “(RHandle〈r〉 h) {e}” creates a local re-
gion and evaluates e in an environment where r and h are
bound to the new region and its handle respectively. The
associated typing rule is presented below:

[EXPR LOCAL REGION]

E2 = E, LocalRegion r, RHandle〈r〉 h, (re º r)∀re∈Regions(E)
P `env E2 P; E2; X, r; r ` e : t E ` X º heap

P; E; X; rcr ` (RHandle〈r〉 h) {e} : int

The rule starts by constructing an environment E2 that ex-
tends the original environment E by recording that r has
kind LocalRegion and h has type RHandle〈r〉. As r is
deleted at the end of e, all existing regions outlive it; E2

records this too (Regions(E) denotes the set of all regions
from E). e should typecheck in the context of the environ-
ment E2 and the permitted effects are X, r (the local region
r is a permitted effect inside e). Because creating a region
requires memory allocation, X must subsume heap. The ex-
pression is evaluated only for its side-effects and its result is
never used. Hence, the type of the entire expression is int.

The rule for a field read expression “v.fd ” first finds the
type cn 〈o1..n〉 for v. Next, it verifies that fd is a field of class
cn ; let t be its declared type. The rule obtains the type of
the entire expression by substituting in t each formal owner
parameter fni of cn with the corresponding owner oi:

[EXPR REF READ]

P; E; X; rcr ` v : cn 〈o1..n〉 P ` (t fd) ∈ cn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn]

((t′ = int) ∨ (t′ = cn′〈o′1..m〉 ∧ E ` X º o′1))
P; E; X; rcr ` v.fd : t′

The last line of the rule checks that if the expression reads
an object reference (i.e., not an integer), then the list of
effects X subsumes the owner of the referenced object.

For an object allocation expression “new cn 〈o1..n〉”, the
rule first checks that class cn is defined in P:

[EXPR NEW]

class cn 〈(ki fni)i∈{1..n}〉 ... where constr1..c ... ∈ P
∀i = 1..m, (E `k oi : k ′i ∧ P ` k ′i ≤k ki ∧ E ` oi º o1)

∀i = 1..c, E ` constri[o1/fn1]..[om/fnm]
E ` X º o1 E `av RH(o1)

P; E; X; rcr ` new cn 〈o1..n〉 : cn 〈o1..n〉

Next, it checks that each formal owner parameter fni of cn
is instantiated with an owner oi of appropriate kind, i.e., the
kind k ′i of oi is a subkind of the declared kind ki of fni. It also
checks that in E, each owner oi outlives the first owner o1,
and each constraint of cn is satisfied. Allocating an object
means accessing its owner; therefore, X must subsume o1.
The new object is allocated in the region o1 (if o1 is a region)
or in the region that o1 is allocated in (if o1 is an object).
The last part of the precondition, E `av RH(o1), checks that
the handle for this region is available. To prove facts of this
kind, the type system uses the following rules:

[AV HANDLE]

E = E1, RHandle〈r〉 h, E2
E `av RH(r)

[AV THIS]

E `av RH(this)

[AV TRANS1]

E ` o1 ºo o2 E `av RH(o2)
E `av RH(o1)

[AV TRANS2]

E ` o1 ºo o2 E `av RH(o1)
E `av RH(o2)

The rule [AV HANDLE] looks for a region handle in the envi-
ronment. The environment always contains handles for heap
and immortal; in addition, it contains all handle identifiers
that are in scope. The rule [AV THIS] reflects the fact that
our runtime is able to find the handle of the region where an
object (this in particular) is allocated. The last two rules
use the fact that all objects are allocated in the same region
as their owner. Therefore, if o1 ºo o2 and the region handle
for one of them is available, then the region handle for the
other one is also available. Note that these rules do signif-
icant reasoning, thus reducing annotation burden; e.g., if a
method allocates only objects (transitively) owned by this,
it does not need an explicit region handle argument.

We end this section with the typing rule for fork. The
rule first checks that the method call is well-typed. (see rule
[EXPR INVOKE] in Appendix B). Note that mn cannot
have the RT effect: a non-real-time thread cannot enter a
subregion that is reserved only for real-time threads.

[EXPR FORK]

P; E; X \ {RT}; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t

NonLocal(k)
def
= (P ` k ≤k SharedRegion) ∨ (P ` k ≤k GCRegion)
E ` RKind(rcr)=kcr NonLocal(kcr)

P; E; X; rcr ` v0 : cn 〈o1..n〉
∀i = 1..m, (E ` RKind(oi)=ki ∧ NonLocal(ki))
P; E; X; rcr ` fork v0.mn 〈o(n+1)..m〉(v1..u) : int

The rule checks that the new thread does not receive any lo-
cal region or objects allocated in a local region. It uses the
following observation: the only owners that appear in the
types of the method arguments are: initialRegion, this,
the formals for the method and the formals for the class the
method belongs to. Therefore, the arguments passed to the
method mn from the fork instruction may be owned only
by the current region at the point of the fork, by the owners
o1..n that appear in the type of the object v0 points to, or
by the owners o(n+1)..m that appear explicitly in the fork

instruction. For each such owner o, our system uses the rule
E ` RKind(o)=k to extract the kind k of the region it stands
for (if it is a region), or of the region it is allocated in (if
it is an object). The rule next checks that k is a subkind
of SharedRegion or GCRegion. The rules for inferring state-
ments of the form E ` RKind(oi)=ki (see Appendix B) are
similar to the previously explained rules for checking that a
region handle is available. The key idea they exploit is that
a subobject is allocated in the same region as its owner.

2.5 Type Inference
Although our type system is explicitly typed in principle,

it would be onerous to fully annotate every method with the
extra type information that our system requires. Instead, we
use a combination of type inference and well-chosen defaults
to significantly reduce the number of annotations needed in
practice. Our system also supports user-defined defaults to
cover specific patterns that might occur in user code. We
emphasize that our approach to inference is purely intra-
procedural and we do not infer method signatures or types
of instance variables. Rather, we use a default completion
of partial type specifications in those cases. This approach
permits separate compilation.

The following are some defaults currently provided by our
system. If owners of method local variables are not spec-
ified, we use a simple unification-based approach to infer
the owners. The approach is similar to the ones in [14,

8

null

w2

Subregions

m

Portal

Memory space for region m

w1

Objects
allocated

in m

fields
Portal

Figure 10: Translation of a Region With Three
Fields and Two Subregions.

10]. For parameters unconstrained after unification, we use
initialRegion. For unspecified owners in method signa-
tures, we use initialRegion as the default. For unspecified
owners in instance variables, we use the owner of this as
the default. For static fields, we use immortal as the default.
Our default accesses clauses contain all class and method
owner parameters and initialRegion.

2.6 Translation to Real-Time Java
Although our system provides significant improvements

over the RTSJ, programs in our language can be translated
to RTSJ reasonably easily, by local translation rules. This
is mainly because we designed our system so that it can
be implemented using type erasure (region handles exist
specifically for this purpose). Also, RTSJ has mechanisms
that are powerful enough to support our features. RTSJ
offers LTMemory and VTMemory regions where it takes lin-
ear time and variable time (respectively) to allocate objects.
RTSJ regions are Java objects that point to some memory
space. In addition, RTSJ has two special regions: heap and
immortal. A thread can allocate in the current region using
new. A thread can also allocate in any region that it en-
tered using newInstance, which requires the corresponding
region object. RTSJ regions are maintained similarly to our
shared regions, by counting the number of threads executing
in them. RTSJ regions have one portal, which is similar to
a portal field except that its declared type is Object. Most
of the translation effort is focused on providing the missing
features: subregions and multiple, typed portal fields. We
discuss the translation of several important features from
our type system; the full translation is discussed in [40].

We represent a region r from our system as an RTSJ re-
gion m plus two auxiliary objects w1 and w2 (see Figure 10).
m points to a memory area that is pre-allocated for an LT

region, or grown on-demand for a VT region. m also points
to an object w1 whose fields point to the representation of
r’s subregions. (We subclass LT/VTMemory to add an extra
field.) In addition, m’s portal points to an object w2 that
serves as a wrapper for r’s portal fields. w2 is allocated in
the memory space attached to m, while m and w1 are allocated
in the region that was current at the time m was created.

The translation of “new cn 〈o1..n〉” requires a reference to
(i.e., the handle of) the region we allocate in. If this is
the same as the current region, we use the more efficient
new. The type rules already proved that we can obtain
the necessary handle, i.e., E `av RH(o1); we presented the
relevant type rules in Section 2.4. Those rules “pushed”
the judgment E `av RH(o) up and down the ownership re-
lation until we obtained an owner whose region handle was
available: immortal, heap, this, or a region whose region
handle was available in a local variable. RTSJ provides

Program Lines of Code Lines Changed
Array 56 4
Tree 83 8
Water 1850 31
Barnes 1850 16
ImageRec 567 8
http 603 20
game 97 10
phone 244 24

Figure 11: Programming Overhead

Execution Time (sec)
Program Static Dynamic Overhead

Checks Checks
Array 2.24 16.2 7.23
Tree 4.78 23.1 4.83
Water 2.06 2.55 1.24
Barnes 19.1 21.6 1.13
ImageRec 6.70 8.10 1.21

load 0.667 0.831 1.25
cross 0.014 0.014 1.0
threshold 0.001 0.001 1
hysteresis 0.005 0.006 1
thinning 0.023 0.026 1.1
save 0.617 0.731 1.18

Figure 12: Dynamic Checking Overhead

mechanisms for retrieving the handle in the first three cases:
ImmortalArea.instance(), HeapArea.instance(), and Me-

thodArea.getMethodArea(Object), respectively. In the last
case, we simply use the handle from the local variable.

3. Experience
To gain preliminary experience, we implemented several

programs in our system. These include two micro bench-
marks (Array and Tree), two scientific computations (Water
and Barnes), several components of an image recognition
pipeline (load, cross, threshold, hysteresis, and thinning), and
several simple servers (http, game, and phone, a database-
backed information sever). In our implementations, the pri-
mary data structures are allocated in regions (i.e., not in the
garbage collected heap). In each case, once we understood
how the program worked and decided on the memory man-
agement policy to use, adding the extra type annotations
was fairly straightforward. Figure 11 presents a measure of
the programming overhead involved. It shows the number
of lines of code that needed type annotations. In most cases,
we only had to change code where regions were created.

We also used our RTSJ implementation to measure the
execution times of these programs both with and without
the dynamic checks specified in the Real-Time Specifica-
tion for Java. Figure 12 presents the running times of the
benchmarks both with and without dynamic checks. Note
that there is no garbage collection overhead in any of these
running times because the garbage collector never executes.
Our micro benchmarks (Array and Tree) were written specif-
ically to maximize the checking overhead—our development
goal was to maximize the ratio of assignments to other com-
putation. These programs exhibit the largest performance
increases—they run approximately 7.2 and 4.8 times faster,
respectively, without checks. The performance improve-
ments for the scientific programs and image processing com-
ponents provide a more realistic picture of the dynamic

9

checking overhead. These programs have more modest per-
formance improvements, running up to 1.25 times faster
without the checks. For the servers, the running time is
dominated by the network processing overhead and check
removal has virtually no effect. We present the overhead of
dynamic referencing and assignment checks in this paper.
For a detailed analysis of the performance of a full range of
RTSJ features, see [21, 22].

4. Related Work
The seminal work in [43, 42] introduces a static type sys-

tem for region-based memory management for ML. Our sys-
tem extends this to object-oriented programs by combining
the benefits of region types and ownership types in a unified
type system framework. Our system extends region types
to multithreaded programs by allowing long-lived threads
to share objects without using the heap and without having
memory leaks. Our system extends region types to real-time
programs by ensuring that real-time threads do not interfere
with the garbage collector.

One disadvantage with most region-based management
systems is that they enforce a lexical nesting on region life-
times; so objects allocated in a given region may become
inaccessible long before the region is deleted. [2] presents
an analysis that enables some regions to be deleted early,
as soon as all of the objects in the region are unreachable.
Other approaches include the use of linear types to control
when regions are deleted [23, 25]. None of these approaches
currently support object-oriented programs and the conse-
quent subtyping, multithreaded programs with shared re-
gions, or real-time programs with real-time threads (although
it should be possible to extend them to do so). Conversely, it
should also be possible to apply these techniques to our sys-
tem. In fact, existing systems already combine ownership-
based type systems and unique pointers [20, 14, 3].

RegJava [16] has a region type system for object-oriented
programs that supports subtyping and method overriding.
Cyclone [34] is a dialect of C with a region type system.
Our work improves on these two systems by combining the
benefits of ownership types and region types in a unified
framework. An extension to Cyclone handles multithreaded
programs and provides shared regions [33]. Our work im-
proves on this by providing subregions in shared regions
and portal fields in subregions, so that long-lived threads
can share objects without using the heap and without hav-
ing memory leaks. Other systems for regions [29, 30] use
runtime checks to ensure memory safety. These systems are
more flexible, but they do not statically ensure safety.

To our knowledge, ours is the first static type system for
memory management in real-time programs. [26, 27] auto-
matically translates Java code into RTSJ code using off-line
dynamic analysis to determine the lifetime of an object. Un-
like our system, this system does not require type annota-
tions. It does, however, impose a runtime overhead and it
is not safe because the dynamic analysis might miss some
execution paths. Programmers can use this dynamic anal-
ysis to obtain suggestions for region type annotations. We
previously used escape analysis [39] to remove RTSJ run-
time checks [41]. However, the analysis is effective only for
programs in which no object escapes the computation that
allocated it. Our type system is more flexible: we allow a
computation to allocate objects in regions that may outlive
the computation.

Real-time garbage collection [5, 4] provides an alterna-
tive to region-based memory management for real-time pro-
grams. It has the advantage that programmers do not have
to explicitly deal with memory management. The basic idea
is to perform a fixed amount of garbage collection activity
for a given amount of allocation. With fixed-size allocation
blocks and in the absence of cycles, reference counting can
deliver a real-time garbage collector that imposes no space
overhead as compared with manual memory management.
Copying and mark and sweep collectors, on the other hand,
pay space to get bounded-time allocation. The amount of
extra space depends on the maximum live heap size, the
maximum allocation rate, and other memory management
parameters. The additional space allows the collector to
successfully perform allocations while it processes the heap
to reclaim memory. To obtain the real-time allocation guar-
antee, the programmer must calculate the required mem-
ory management parameters, then use those values to pro-
vide the collector with the required amount of extra space.
In contrast, region-based memory management provides an
explicit mechanism that programmers can use to structure
code based on their understanding of the memory usage be-
havior of a program; this mechanism may enable program-
mers to obtain a smaller space overhead. The additional de-
velopment burden consists of grouping objects into regions
and determining the maximum size of LT regions [31, 32].

5. Conclusions
The Real-Time Specification for Java (RTSJ) allows pro-

grams to create real-time threads and use region-based mem-
ory management. The RTSJ uses runtime checks to ensure
memory safety. This paper presents a static type system
that guarantees that these runtime checks will never fail for
well-typed programs. Our type system therefore 1) provides
an important safety guarantee and 2) makes it possible to
eliminate the runtime checks and their associated overhead.
Our system also makes several contributions over previous
work on region types. For object-oriented programs, it com-
bines the benefits of region types and ownership types in
a unified type system framework. For multithreaded pro-
grams, it allows long-lived threads to share objects without
using the heap and without having memory leaks. For real-
time programs, it ensures that real-time threads do not in-
terfere with the garbage collector. Our experience indicates
that our type system is sufficiently expressive and requires
little programming overhead, and that eliminating the RTSJ
runtime checks using a static type system can significantly
decrease the execution time of real-time programs.

Acknowledgments
We are grateful to Viktor Kuncak, Darko Marinov, Karen
Zee, and the anonymous referees for their comments.

6. References
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type

parameterization to the Java language. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1997.

[2] A. Aiken, M. Fähndrich, and R. Levien. Better static
memory management: Improving region-based analysis of
higher-order languages. In Programming Language Design
and Implementation (PLDI), June 1995.

10

[3] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
annotations for program understanding. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), November 2002.

[4] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent
utilization. In Principles of Programming Languages
(POPL), January 2003.

[5] H. G. Baker. List processing in real-time on a serial
computer. Communications of the ACM, 21(4):280–94,
1978.

[6] W. Beebee, Jr. Region-based memory management for
Real-Time Java. MEng thesis, Massachusetts Institute of
Technology, September 2001.

[7] W. Beebee, Jr. and M. Rinard. An implementation of
scoped memory for Real-Time Java. In First International
Workshop on Embedded Software (EMSOFT), October
2001.

[8] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specification
for Java. Addison-Wesley, 2000. Latest version available
from http://www.rtj.org.

[9] C. Boyapati. Ownership types for safe object-oriented
programming. PhD thesis, Massachusetts Institute of
Technology. In preparation.

[10] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), November 2002.

[11] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. In Principles of Programming
Languages (POPL), January 2003.

[12] C. Boyapati, B. Liskov, and L. Shrira. Ownership types and
safe lazy upgrades in object-oriented databases. Technical
Report TR-858, MIT Laboratory for Computer Science,
July 2002.

[13] C. Boyapati, B. Liskov, L. Shrira, C. Moh, and S. Richman.
Lazy modular upgrades in persistent object stores.
Submitted for publication, March 2003.

[14] C. Boyapati and M. Rinard. A parameterized type system
for race-free Java programs. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

[15] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity to
the Java programming language. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[16] M. V. Christiansen, F. Henglein, H. Niss, and P. Velschow.
Safe region-based memory management for objects.
Technical Report D-397, DIKU, University of Copenhagen,
October 1998.

[17] D. G. Clarke. Ownership and containment. PhD thesis,
University of New South Wales, Australia, July 2001.

[18] D. G. Clarke and S. Drossopoulou. Ownership,
encapsulation and disjointness of type and effect. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), November 2002.

[19] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types
for flexible alias protection. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[20] D. G. Clarke and T. Wrigstad. External uniqueness is
unique enough. In European Conference for
Object-Oriented Programming (ECOOP), July 2003.

[21] A. Corsaro and D. Schmidt. The design and performance of
the jRate Real-Time Java implementation. In International
Symposium on Distributed Objects and Applications
(DOA), October 2002.

[22] A. Corsaro and D. Schmidt. Evaluating Real-Time Java
features and performance for real-time embedded systems.

In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), September 2002.

[23] K. Crary, D. Walker, and G. Morrisett. Typed memory
management in a calculus of capabilities. In Principles of
Programming Languages (POPL), January 1999.

[24] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes
vs. where clauses: Constraining parametric polymorphism.
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 1995.

[25] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Programming Language
Design and Implementation (PLDI), June 2001.

[26] M. Deters and R. Cytron. Automated discovery of scoped
memory regions for Real-Time Java. In International
Symposium on Memory Management (ISMM), June 2002.

[27] M. Deters, N. Leidenfrost, and R. Cytron. Translation of
Java to Real-Time Java using aspects. In International
Workshop on Aspect-Oriented Programming and
Separation of Concerns, August 2001.

[28] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In Principles of Programming Languages (POPL),
January 1998.

[29] D. Gay and A. Aiken. Memory management with explicit
regions. In Programming Language Design and
Implementation (PLDI), June 1998.

[30] D. Gay and A. Aiken. Language support for regions. In
Programming Language Design and Implementation
(PLDI), June 2001.

[31] O. Gheorghioiu. Statically determining memory
consumption of real-time Java threads. MEng thesis,
Massachusetts Institute of Technology, June 2002.

[32] O. Gheorghioiu, A. Sălcianu, and M. C. Rinard.
Interprocedural compatibility analysis for static object
preallocation. In Principles of Programming Languages
(POPL), January 2003.

[33] D. Grossman. Type-safe multithreading in Cyclone. In
Workshop on Types in Language Design and
Implementation (TLDI), January 2003.

[34] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney. Region-based memory management in
Cyclone. In Programming Language Design and
Implementation (PLDI), June 2001.

[35] K. R. M. Leino and G. Nelson. Data abstraction and
information hiding. Research Report 160, Compaq Systems
Research Center, November 2000.

[36] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using
data groups to specify and check side effects. In
Programming Language Design and Implementation
(PLDI), June 2002.

[37] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Principles of Programming Languages (POPL),
January 1988.

[38] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized
types for Java. In Principles of Programming Languages
(POPL), January 1997.

[39] A. Sălcianu. Pointer analysis and its applications for Java
programs. MEng thesis, Massachusetts Institute of
Technology, September 2001.

[40] A. Sălcianu, C. Boyapati, W. Beebee, Jr., and M. Rinard.
A type system for safe region-based memory management
in Real-Time Java. Technical Report TR-869, MIT
Laboratory for Computer Science, November 2002.

[41] A. Sălcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. In Principles and Practice of
Parallel Programming (PPoPP), June 2001.

[42] M. Tofte and J. Talpin. Region-based memory management.
In Information and Computation 132(2), February 1997.

[43] M. Tofte and J. Talpin. Implementing the call-by-value
λ-calculus using a stack of regions. In Principles of
Programming Languages (POPL), January 1994.

11

P ::= def ∗ srkdef ∗ e
def ::= class cn 〈formal+〉 extends c

where constr ∗ { field ∗ meth∗ }
formal ::= k fn

c ::= cn 〈owner+〉 | Object〈owner 〉
owner ::= fn | r | this | initialRegion | heap | immortal | RT

field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ { e }

effects ::= accesses owner ∗

constr ::= owner owns owner | owner outlives owner
t ::= c | int | RHandle〈r〉

srkdef ::= regionKind srkn 〈formal ∗〉 extends srkind
where constr ∗ { field ∗ subsreg∗ }

subsreg ::= srkind :rpol tt rsub
srkind ::= SharedRegion | srkn 〈owner ∗〉
rkind ::= Region | NoGCRegion | GCRegion | LocalRegion |

srkind
k ::= Owner | ObjOwner | rkind | rkind :LT

rpol ::= LT(size) | VT
tt ::= NoRT | RT

e ::= v | let v = e in { e } |
v.fd | v.fd = v | v.mn 〈owner ∗〉(v∗) | new c |
fork v.mn 〈owner ∗〉(v∗) |
RT fork v.mn 〈owner ∗〉(v∗) |
(RHandle〈r〉 h) { e } |
(RHandle〈rkind :rpol r〉 h) { e } |
(RHandle〈r〉 h = [new]opt h.rsub) { e } |
h.fd | h.fd = v

h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers

srkn ∈ shared region kind names
rsub ∈ shared subregion names

Figure 13: Grammar

Appendix

A. The Type System
This section formally describes our type system. To sim-

plify the presentation of our key ideas, we describe our type
system in the context of a core subset of Java known as Clas-
sic Java [28]. Our approach, however, extends to the whole
of Java and other similar languages. Figure 13 presents the
grammar for our core language.

Throughout this section, we try to use the same notations
as in the grammar. To save space, we use o instead of owner
and f instead of formal . We also use g and a to range
over the set of owners. We assume the program source has
been preprocessed by replacing each constraint “o1 owns o2”
with the non-ASCII, but shorter form “o1 ºo o2” and each
constraint “o1 outlives o2” with “o1 º o2.”

The core of our type system is a set of typing judgments of
the form P; E; X; rcr ` e : t. P, the program being checked,
is included to provide information about class definitions.
The typing environment E provides information about the
type of the free variables of e (t v, i.e., variable v has type t),
the kind of the owners currently in scope (k o, i.e., owner
o has kind k), and the two relations between owners: the
“ownership” relation (o2 ºo o1, i.e., o2 owns o1) and the
“outlives” relation (o2 º o1, i.e., o2 outlives o1). More
formally, E ::= ∅ | E, t v | E, k o | E, o2 ºo o1 | E, o2 º o1.
rcr is the current region. X must subsume the effects of e.
t is the type of e.

Typing rule Meaning

` P : t Program P has type t.

P `def def def is a well formed class definition from pro-
gram P .

P `srkdef srkdef j srkdef j is a well formed shared region kind
definition from program P .

P; E; X; rcr ` e : t In program P, environment E, and current re-
gion rcr, expression e has type t. Its evalu-
ation accesses only objects (transitively) out-
lived by owners listed in the effects X.

P `env E E is a well formed environment with respect
to program P .

P; E `meth meth Method definition meth is well defined with
respect to program P and environment E.

P ` mbr ∈ c Class c defines or inherits “member” defini-
tion mbr . “Member” refers to a field or a
method: mbr = field | meth .

P ` rmbr ∈ rkind Shared region kind rkind defines or inher-
its “region member” definition rmbr . “Re-
gion member” refers to a field or a subregion:
rmbr = field | subsreg .

P; E `type t t is a well formed type with respect to program
P and environment E.

P ` t1 ≤ t2 In program P, t1 is a subtype of t2.

P; E `okind k k is a well formed owner kind, with respect to
program P and environment E.

P ` k1 ≤k k2 In program P, k1 is a subkind of k2.

E ` X2 º X1 Effect X1 is subsumed by effect X2, with re-
spect to environment E.

E ` constr In environment E, constr is well formed (i.e.,
the owners involved in it are well formed) and
satisfied.

E `k o : k In environment E, o is a well formed owner
with kind k.

E ` RKind(o)=k Owner o is either a region of kind k or an
object allocated in such a region.

E `av RH(o) The handle of the region o is allocated in (if o
is an object) or o stands for (if it is a region)
is available in the environment E.

E ` o2 ºo o1 In environment E, owner o2 (an object or
a region) owns owner o1 (which must be an
object).

E ` o2 º o1 In environment E, owner o2 outlives owner o1.

Figure 14: Typing Judgments

Predicate Meaning

WFClasses(P) No class is defined twice and there is no cycle
in the class hierarchy.

WFRegionKinds(P) No region kind is defined twice and there is
no cycle in the region kind hierarchy. In ad-
dition, no region kind has an infinite number
of (transitive) subregions.

MembersOnce(P) No class or region kind contains two fields
with the same name, either declared or in-
herited. Similarly, no class declares two
methods with the same name.

InheritanceOK (P) The constraints of a sub-class/kind are
included among the super-class/kind con-
straints. For overriding methods, in addition
to the usual subtyping relations between the
return/parameter types, the constraints of
the overrider are included among the con-
straints of the overridden method; a similar
relation holds for the effects.

Figure 15: Predicates Used in Type Checking Rules

Figure 14 presents our typing judgments. Appendix B
presents the rules for these judgments. Figure 15 presents
several auxiliary predicates that we use in our rules. Most of
these predicates are straightforward and we omit their defi-
nitions for brevity; the only exception is InheritanceOK (P),
which we define formally in the set of rules.

12

B. Rules for Type Checking
` P : t

[PROG]

WFClasses(P) WFRegionKinds(P)
MembersOnce(P) InheritanceOK (P)

P = def 1..n srkdef 1..r e
∀i = 1..n, P `def def i ∀i = 1..r, P `srkdef srkdef j

E = ∅, GCRegion heap, SharedRegion :LT immortal,
RHandle〈heap〉 h heap, RHandle〈immortal〉 h immortal

P; E; world; heap ` e : t
` P : t

P `def def

[CLASS DEF]

def = class cn 〈(ki fni)i=1..n〉 extends c
where constr1..p { field1..m meth1..q }

P = ...def ...
E = ∅, GCRegion heap, SharedRegion :LT immortal,

RHandle〈heap〉 h heap, RHandle〈immortal〉 h immortal,
(ki fni)i=1..n, constr1..p, cn 〈fn1..n〉 this, (fni º fn1)i=2..n

P `env E P; E `type c
∀j = 1..m, (fieldj = tj fdj ∧ P; E `type tj) ∀k = 1..q, P; E `meth methk

P `def def

P `srkdef srkdef

[REGION KIND DEF]

srkdef = regionKind srkn 〈(ki fni)i=1..n〉 extends r where constr1..c { field1..m subsreg1..s } P = ... srkdef ...
E = ∅, (ki fni)i=1..n, constr1..c, srkn 〈fn1..n〉 this, (fni º this)i=1..n P `env E P; E `okind r

∀j = 1..m, (fieldj = tj fdj ∧ P; E `type tj) ∀k = 1..s, (subsregk = srkindk :rpolk tt rsubk ∧ P; E `srkind srkindk)

P `srkdef srkdef

P `env E

[ENV ∅]

P `env ∅

[ENV v]

P `env E
v 6∈ Dom(E)
P; E `type t

P `env E, t v

[ENV OWNER]

P `env E
o 6∈ Dom(E)
P; E `okind k
P `env E, k o

[ENV ºo]

P `env E
E `k o1 : ObjOwner

E `k o2 : k
P `env E, o1 ºo o2

[ENV ¹]

P `env E
E `k o1 : k1
E `k o2 : k2

P `env E, o1 º o2

P; E `type t

[TYPE INT]

P; E `type int

[TYPE OBJECT]

E `k o : k
P; E `type Object〈o〉

[TYPE REGION HANDLE]

E `k r : k
P ` k ≤k Region

P; E `type RHandle〈r〉
[TYPE C]

P = ... def ...
def = class cn 〈(ki fni)i=1..n〉 ... where constr1..c ...
∀i = 1..n, (E `k oi : k ′i ∧ P ` k ′i ≤k ki ∧ E ` oi º o1)

∀i = 1..c, E ` constri[o1/fn1]..[on/fnn]
P; E `type cn 〈o1..n〉

P ` t1 ≤ t2

[SUBTYPE REFL]

P ` t ≤ t

[SUBTYPE TRANS]

P ` t1 ≤ t2
P ` t2 ≤ t3
P ` t1 ≤ t3

[SUBTYPE CLASS]

P `def class cn 〈(ki fni)i=1..n〉
extends cn2〈fn1 o∗〉 ...

P ` cn 〈o1..n〉 ≤ cn2〈fn1 o∗〉[o1/fn1]..[on/fnn]

P; E `okind k

[STANDARD OWNERS]

k ∈ {Owner, ObjOwner, Region, GCRegion,
NoGCRegion, LocalRegion, SharedRegion}

P; E `okind k

[LT REGIONS]

P; E `okind rkind
P; E `okind rkind :LT

[USER DECLARED SHARED REGION]

P `srkdef regionKind srkn 〈(ki fni)i=1..n〉 ... where constr1..c ...
∀i = 1..n, (E `k oi : k ′i P ` k ′i ≤k ki)
∀i = 1..c, E ` constri[o1/fn1]..[on/fnn]

P; E `okind srkn 〈o1..n〉
P ` k1 ≤k k2

[SUBKIND REFL]

P ` k ≤k k

[SUBKIND TRANS]

P ` k1 ≤k k2 P ` k2 ≤k k3
P ` k1 ≤k k3

[SUBKIND OWNER]

k ∈ {ObjOwner, Region}
P ` k ≤k Owner

[SUBKIND REGION]

k ∈ {GCRegion, NoGCRegion}
P ` k ≤k Region

[SUBKIND NOGCREGION]

k ∈ {LocalRegion, SharedRegion}
P ` k ≤k NoGCRegion

[SUBKIND VALUE]

P ` Value ≤k k

[SUBKIND SHARED REGION KIND]

P `srkdef regionKind srkn 〈(ki fni)i=1..n〉 extends r ...
P ` srkn 〈o1..on〉 ≤k r[o1/fn1]..[on/fnn]

[DELETE LT]

P ` rkind :LT ≤k rkind

[ADD LT]

P ` rkind1 ≤k rkind2
P ` rkind1 :LT ≤k rkind2 :LT

P; E `meth meth

[METHOD]

E′ = E, f1..n, constr1..c, (tj pj)j=1..p, Region initialRegion, RHandle〈initialRegion〉 hfresh

P `env E′ ∀i = 1..q, (E′ `k ai : ki ∨ ai = RT) P; E′; a1..q ; initialRegion ` e : t
P; E `meth t mn 〈f1..n〉((tj pj)j=1..p) accesses a1..q where constr1..c {e}

P ` mbr ∈ c, where mbr = field | meth

[DECLARED CLASS MEMBER]

P `def class cn 〈(ki fni)i=1..n〉 ... {... mbr ...}
P ` mbr ∈ cn 〈fn1..n〉

[INHERITED CLASS MEMBER]

P `def class cn2〈(ki fn′i)i=1..m〉 extends cn 〈o1..n〉... P ` mbr ∈ cn 〈fn1..n〉
P ` mbr [o1/fn1]..[on/fnn] ∈ cn2〈fn′1..m〉

P ` rmbr ∈ rkind , where rmbr = field | subsreg

[DECLARED REGION MEMBER]

P `srkdef regionKind srkn 〈(ki fni)i=1..n〉 ... { ... rmbr ... }
P ` rmbr ∈ srkn 〈fn1..n〉

[INHERITED REGION MEMBER]

P ` rmbr ∈ srkn 〈fn1..n〉
P `srkdef regionKind srkn 〈(ki fn′i)i=1..m〉 extends srkn 〈o1..n〉 ...

P ` rmbr [o1/fn1]..[on/fnn] ∈ srkn2〈fn′1..m〉
E ` constr

[ENV CONSTR]

E = E1, constr , E2
E ` constr

[ºo world]

o 6= RT

E ` world º o

[ºo OWNER]

E = E1, cn 〈o1..n〉 this, E2
E ` o1 ºo this

[ºo REFL]

E ` o ºo o

[ºo TRANS]

E ` o1 ºo o2 E ` o2 ºo o3
E ` o1 ºo o3

[ºo → º]

E ` o1 ºo o2
E ` o1 º o2

[º heap/immortal]

o1∈{heap, immortal}
E ` o1 º o2

[º REFL]

E ` o º o

[º TRANS]

E ` o1 º o2 E ` o2 º o3
E ` o1 º o3

E ` X1 º X2

[X1 º X2]

∀o ∈ X1, ∃g ∈ X2, E ` o º g
E ` X1 º X2

E `k o : k

[OWNER THIS]

E = E1, cn 〈...〉 this, E2
E `k this : Owner

[OWNER FORMAL]

E = E1, k o, E2
E `k o : k

13

E `av RH(o)

[AV HANDLE]

E = E1, RHandle〈r〉 h, E2
E `av RH(r)

[AV THIS]

E = E1, cn 〈o1..n〉 this, E2
E `av RH(this)

[AV TRANS1]

E ` o1 ºo o2 E `av RH(o2)
E `av RH(o1)

[AV TRANS2]

E ` o2 ºo o1 E `av RH(o2)
E `av RH(o1)

E ` RKind(o)= k

[RKIND THIS]

E = E1, cn 〈o1..n〉 this, E2
E ` RKind(o1)=k

E ` RKind(this)=k

[RKIND FN1]

E `k fn : k
k 6∈ {Owner, ObjOwner}
E ` RKind(fn)=k

[RKIND FN2]

E `k fn : k k ∈ {Owner, ObjOwner}
E ` o ºo fn E ` RKind(o)=k2

E ` RKind(fn)=k

InheritanceOK(P)

[INHERITANCEOK PROG]

P = def 1..n srkdef 1..r e
∀i = 1..n, P ` InheritanceOK (def i)
∀i = 1..r, P ` InheritanceOK (srkdef i)

InheritanceOK (P)

[INHERITANCEOK REGION KIND]

srkdef = regionKind srkn 〈f1..n〉 extends srkn′〈o1..m〉 where constr1..q ...
srkdef ′ = regionKind srkn′〈(k ′i fn′i)i=1..m〉 extends srkind where constr ′1..s ...

P `srkdef srkdef ′ constr1..s[o1/fn′1]..[om/fn′m] ⊆ constr ′1..q

P ` InheritanceOK (srkdef)

[INHERITANCEOK CLASS]

def = class cn 〈(ki fni)i=1..n〉 extends cn 〈o1..m〉 where constr1..q ...
def ′ = class cn′〈(k ′i fn′i)i=1..m〉 extends c where constr ′1..u ...

P `def def ′ constr1..u[o1/fn′1]..[om/fn′m] ⊆ constr ′1..q

∀mn , (P ` meth ∈ def ∧ meth = tr mn 〈...〉(...) ... ∧
P ` meth′ ∈ def ′ ∧ meth = t′r mn 〈...〉(...) ...)

→ P ` OverridesOK (meth , meth′)
P ` InheritanceOK (def)

[OVERRIDESOK METHOD]

meth = tr mn 〈f1..n〉((ti pi)i=1..m) accesses a1..q

where constr1..r ...
meth′ = t′r mn 〈f1..n〉((t′i p′i)i=1..m) accesses a′1..s

where constr ′1..u ...
P ` t′r ≤ tr ∀i = 1..m, P ` ti ≤ t′i

a′1..q ⊆ a1..s constr ′1..r ⊆ constr1..u

P ` OverridesOK (meth , meth′)

P; E; X; rcr ` e : t

[EXPR VAR]

E = E1, t v, E2
P; E; X; rcr ` v : t

[EXPR LET]

P; E; X; rcr ` e1 : t1 E′ = E, t1 v
P `env E′ P; E′; X; rcr ` e2 : t2

P; E; X; rcr ` let v = e1 in e2 : t2

[EXPR NEW]

P; E `type c c = cn 〈o1..n〉
E `av RH(o1) E ` X º o1

P; E; X; rcr ` new c : c

[EXPR REF READ]

P; E; X; rcr ` v : cn 〈o1..n〉
P ` (t fd) ∈ cn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn]

(t′ = int) ∨
(t′ = cn′〈o′1..m〉 ∧ E ` X º o′1)

P; E; X; rcr ` v.fd : t′

[EXPR REF WRITE]

P; E; X; rcr ` v1 : cn 〈o1..n〉
P ` (t fd) ∈ cn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn]

P; E; X; rcr ` v2 : t2 P ` t2 ≤ t′

(t′ = int) ∨
(t′ = cn′〈o′1..m〉 ∧ E ` X º o′1)

P; E; X; rcr ` v1.fd = v2 : t′

[EXPR INVOKE]

P; E; X; rcr ` v : cn 〈o1..n〉 ∀i = (n + 1)..m, E ` oi º o1
P ` meth ∈ cn 〈fn1..n〉

meth = t mn 〈(ki fni)i=(n+1)..m〉 ((tj pj)j=1..u)

accesses Xm where constr1..c {e}
Rename(α)

def
= α[o1/fn1]..[om/fnm][rcr/initialRegion]

∀i = 1..u, (P; E; X; rcr ` vi : t′i ∧ P ` t′i ≤ Rename(ti))
∀i = (n + 1)..m, (E `k oi : k ′i ∧ P ` k ′i ≤k Rename(ki))
E ` X º Rename(Xm) ∀i = 1..c, E ` Rename(constri)

P; E; X; rcr ` v.mn 〈o(n+1)..m〉(v1..u) : Rename(t)

[EXPR REGION]

P; E `okind rkind rkind = srkn 〈〉
kr =

�
rkind :LT if rpol = LT(size)
rkind otherwise

E2 = E, kr r, RHandle〈r〉 h

E3 =

8<:E2, (re º r)∀re∈Regions(E)
ifP ` rkind ≤k LocalRegion

E2 otherwise
P `env E3 P; E3; X, r; r ` e : t E ` X º heap

P; E; X; rcr ` (RHandle〈rkind :rpol r〉 h) {e} : int

[EXPR SUBREGION]

P; E; X; rcr ` h2 : RHandle〈r2〉 E `k r2 : srkn2〈o1..n〉
P ` rkind3 :rpol tt rsub ∈ srkn2〈fn1..n〉
rkind = rkind3[o1/fn1]..[on/fnn][r2/this]

kr =

�
rkind :LT if rpol = LT(size)
rkind otherwise

E2 = E, kr r, RHandle〈r〉 h, r2 º r P `env E2
P; E2; X, r; r ` e : t

(new ∨ (rpol = V T) ∨ (tt = NoRT)) → E ` X º heap

(tt = RT) → E ` X º RT

P; E; X; rcr ` (RHandle〈r〉 h1 = [new]opt h2.rsub) {e} : int

Regions(E) is the set of all regions mentioned in E, defined as follows: Regions(∅) = ∅
Regions(E, rkind r) = Regions(E) ∪ {r}
Regions(E,) = Regions(E), otherwise

[EXPR LOCALREGION]

P; E; X; rcr ` (RHandle〈LocalRegion :VT r〉 h) {e} : int
P; E; X; rcr ` (RHandle〈r〉 h) {e} : int

[EXPR FORK]

P; E; X \ {RT}; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t

NonLocal(k)
def
= (P ` k ≤k SharedRegion) ∨ (P ` k ≤k GCRegion)
E ` RKind(rcr)=kcr NonLocal(kcr)

P; E; X; rcr ` v0 : cn 〈o1..n〉
∀i = 1..m, (E ` RKind(oi)=ki ∧ NonLocal(ki))
P; E; X; rcr ` fork v0.mn 〈o(n+1)..m〉(v1..u) : int

[EXPR RTFORK]

X′ = {o ∈ X | E ` RKind(o)=k ∧ P ` k ≤k SharedRegion :LT}
P; E; X′, RT; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t

P; E; X; rcr ` v0 : cn 〈o1..n〉
∀i = 1..m, (E ` RKind(oi)=ki ∧ P ` ki ≤k SharedRegion)

E ` RKind(rcr)=kcr P ` kcr ≤k SharedRegion

P; E; X; rcr ` RT fork v0.mn 〈o(n+1)..m〉(v1..u) : int

[EXPR GET REGION FIELD]

P; E; X; rcr ` h : RHandle〈r〉 E `k r : srkn 〈o1..n〉
P ` t fd ∈ srkn 〈fn1..n〉 t′ = t[o1/fn1]..[on/fnn][r/this]

((t′ = int) ∨ (t′ = cn 〈o′1..m〉 ∧ E ` X º o′1))
P; E; X; rcr ` h.fd : t′

[EXPR SET REGION FIELD]

P; E; X; rcr ` h : RHandle〈r〉 E `k r : srkn 〈o1..n〉
P ` t fd ∈ srkn 〈fn1..n〉 t′ = t[o1/fn1]..[on/fnn][r/this]

P; E; X; rcr ` v : t1 P ` t1 ≤ t′

((t′ = int) ∨ (t′ = cn 〈o′1..m〉 ∧ E ` X º o′1))
P; E; X; rcr ` h.fd = v : t′

14

