
Pointer Analysis for Multithreaded Programs �

Radu Rugina and Martin Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

frugina, rinardg@lcs.mit.edu

Abstract

This paper presents a novel interprocedural,
ow-sensitive,
and context-sensitive pointer analysis algorithm for multi-
threaded programs that may concurrently update shared
pointers. For each pointer and each program point, the algo-
rithm computes a conservative approximation of the mem-
ory locations to which that pointer may point. The algo-
rithm correctly handles a full range of constructs in multi-
threaded programs, including recursive functions, function
pointers, structures, arrays, nested structures and arrays,
pointer arithmetic, casts between pointer variables of di�er-
ent types, heap and stack allocated memory, shared global
variables, and thread-private global variables.

We have implemented the algorithm in the SUIF com-
piler system and used the implementation to analyze a siz-
able set of multithreaded programs written in the Cilk multi-
threaded programming language. Our experimental results
show that the analysis has good precision and converges
quickly for our set of Cilk programs.

1 Introduction

The use of multiple threads of control is quickly becoming a
mainstream programming practice. Programmers use multi-
ple threads for many reasons | to increase the performance
of programs such as high-performance web servers that exe-
cute on multiprocessors, to hide the latency of events such as
fetching remote data, for parallel programming on commod-
ity SMPs, to build sophisticated user interface systems [19],
and as a general structuring mechanism for large software
systems [13].

But multithreaded programs present a challenging prob-
lem for a compiler or program analysis system: the inter-
actions between multiple threads make it di�cult to extend
traditional program analysis techniques developed for se-
quential programs to multithreaded programs. A straight-
forward adaptation of these techniques, which would analyze
all possible interleavings of statements from parallel threads,

�This research was supported in part by NSF Grant CCR-9702297.

fails because of a combinatorial explosion in the number of
potential program paths.

One of the most important program analyses is pointer
analysis, which extracts information about the memory lo-
cations to which pointers may point. Potential applications
of pointer analysis for multithreaded programs include: the
development of sophisticated software engineering tools such
as race detectors and program slicers; memory system op-
timizations such as prefetching and moving computation to
remote data; automatic batching of long latency �le system
operations; and to provide information required to apply
traditional compiler optimizations such as constant propa-
gation, common subexpression elimination, register alloca-
tion, code motion and induction variable elimination to mul-
tithreaded programs. The di�culty of applying traditional
optimizations to multithreaded programs is well known [17];
we believe that the algorithm presented in this paper will
move the �eld much closer to being able to successfully op-
timize such programs.

The key di�culty associated with pointer analysis for
multithreaded programs is the potential for interference be-
tween parallel threads. Two threads interfere when one
thread writes a pointer variable that another thread may
access. Interference between threads increases the set of
locations to which pointers may point. Any pointer anal-
ysis algorithm for multithreaded programs must therefore
characterize this interference if it is to generate correct in-
formation.

This paper presents a new interprocedural,
ow-sensitive,
and context-sensitive pointer analysis algorithm for multi-
threaded programs. For each program point, our algorithm
generates a points-to graph that speci�es, for each pointer,
the set of locations to which that pointer may point. To
compute this graph in the presence of multiple threads, the
algorithm extracts interference information in the form of
another points-to graph that captures the e�ect of pointer
assignments performed by parallel threads. The analysis is
adjusted to take this additional interference information into
account when computing the e�ect of each statement on the
points-to graph for the next program point.

We have developed a precise speci�cation, in the form
of data
ow equations, of the interference information and
its e�ect on the analysis, and proved that these data
ow
equations correctly specify a conservative approximation of
the actual points-to graph.1 We have also developed an

1Conservative in the sense that the points-to graph generated by
our algorithm includes the points-to graph generated by �rst using
the standard
ow-sensitive algorithm for serial programs to analyze
all possible interleaved executions, then merging the results.

e�cient �xed-point algorithm that runs in polynomial time
and solves these data
ow equations.

We have implemented this algorithm in the SUIF com-
piler infrastructure and used the system to analyze pro-
grams written in Cilk, a multithreaded extension of C [10].
The implemented algorithm handles a full range of con-
structs in multithreaded programs, including function point-
ers, recursive functions, pointers to structures and arrays,
pointer arithmetic, casts between pointer variables of di�er-
ent types, heap allocated memory, stack allocated memory,
shared global variables, and thread-private global variables.
Our experimental results show that the analysis has good
overall precision and converges quickly.

This paper makes the following contributions:

� Algorithm: It presents a novel
ow-sensitive, context-
sensitive, interprocedural pointer analysis algorithm
for multithreaded programs. This algorithm is, to our
knowledge, the �rst
ow-sensitive pointer analysis al-
gorithm for multithreaded programs.

� Theoretical Properties: It presents several impor-
tant properties of the algorithm that characterize its
correctness and e�ciency. In particular, we show that
the algorithm computes a conservative approximation
to the result obtained by applying the standard
ow-
sensitive algorithm to all possible interleaved execu-
tions, and runs in polynomial time with respect to the
size of the program.

� Experimental Results: It presents experimental re-
sults for a sizable set of multithreaded programs writ-
ten in Cilk. These results show that the analysis has
good overall precision and converges quickly for our
set of Cilk programs.

The rest of the paper is organized as follows. Section 2
presents an example that illustrates the additional complex-
ity that multithreading can cause for pointer analysis. Sec-
tion 3 presents the analysis framework and algorithm, and
Section 4 presents the experimental results. Section 5 dis-
cusses some potential uses of the information that pointer
analysis provides. We present related work in Section 6, and
conclude in Section 7. Appendix A contains a proof that the
algorithm is correct.

2 Example

Consider the simple multithreaded program in Figure 1.
This program �rst initializes the variables, then, at line 4,
uses the par construct to create two parallel threads, which
execute the statements in lines 5 and 6. Any interleaved
execution of these statements may occur when the program
runs, and they must both complete before execution pro-
ceeds beyond the par construct.

The �rst thread (in line 5) writes a 1 into the memory
location to which p points. At the beginning of the par
construct, p points to x, and it may still point to x when
the statement *p = 1 from line 5 executes. But because q
points to p, if the statement *q = &y from the thread in
line 6 executes before the statement *p = 1 from line 5, p
may point to y when *p = 1 executes. Any further analysis
or optimization of this program must take both possibilities
into account.

When both threads complete, execution proceeds beyond
the end of the par construct at line 7. At this point, the
statement *q = &y from line 6 has executed, so p de�nitely

int x, y;
int *p, **q;

main() {
1: x = y = 0;
2: p = &x;
3: q = &p;
4: par {
5: { *p = 1; }
6: { *q = &y; }
7: }
8: *p = 2;
}

Figure 1: Example Multithreaded Program

points to y. The statement *p=2 at line 8 therefore assigns
y to 2.

This example illustrates how interference between pointer
assignments and uses in parallel threads can a�ect the mem-
ory locations that the threads access. In particular, in-
terference increases the set of memory locations to which
pointers may point, which in turn increases the set of mem-
ory locations that pointer dereferences may access. Any
sound pointer analysis algorithm must conservatively char-
acterize the e�ect of this interference on the points-to rela-
tion.

3 The Algorithm

This section presents the pointer analysis algorithm for mul-
tithreaded programs. It �rst describes the basic framework
for the analysis, then presents the data
ow equations for ba-
sic pointer assignment statements and par constructs. Fi-
nally, it describes the extensions for private global variables,
interprocedural analysis, recursive functions, and function
pointers.

3.1 Points-To Graphs and Location Sets

The algorithm represents the points-to relation using a points-
to graph [8]. Each node in the graph represents a set of
memory locations; there is a directed edge from one node
to another node if one of the memory locations represented
by the �rst node may point to one of the memory locations
represented by the second node. Each node in the graph is
implemented with a location set [26], which is a triple of the
form hname, o�set, stridei consisting of a variable name that
describes a memory block, an o�set within that block and
a stride that characterizes the recurring structure of data
vectors. A location set hn, o, si corresponds to all sets of
locations fo + is j i 2 Ng within block n. The location set
for a scalar variable v is therefore hv; 0; 0i ; for a �eld f in a
structure s is hs; f; 0i (here f is the o�set of the �eld within
the structure); for a set of array elements a[i] is ha; 0; si
(here s is the size of an element of a); and for a set of �elds
a[i].f is ha; f; si (here f is the o�set of f within the struc-
ture and s is the size of an element of a). Each dynamic
memory allocation site has its own name, so the location set
that represents a �eld f in a structure dynamically allocated
at site s is hs; f; 0i .

The analysis assumes that if two location sets have dif-
ferent memory block names, they represent disjoint sets of
memory locations. This assumption is valid if programs do

not violate the array bounds. The analysis also assumes that
there are no assignments from integers to pointer variables.

There is a special location set unk, which represents the
unknown memory location. All pointer variables initially
point to the unknown memory location. Dereferencing the
unknown location set gives the unknown location set itself,
and the assignment of pointer values to the unknown loca-
tion set through store statements is ignored by the analysis
after it issues a warning message. The use of the unknown
location set allows us to easily di�erentiate between de�-
nite pointers and possible pointers. If there is only one edge
x ! y from the location set x, x de�nitely points to y. If
x may point to y or it may be uninitialized, there are two
edges from x: x! y and x! unk.

Each program de�nes a set L of location sets. We rep-
resent points-to graphs as a set of edges C � L � L, and
order points-to graphs using the set inclusion order �. This
partial order de�nes a lattice whose meet operation is [.

3.2 Basic Pointer Assignment Statements

To simplify the presentation of the algorithm, we assume
that the program is preprocessed to a standard form where
each pointer assignment statement is of one of the four basic
pointer assignment statements in Figure 2:

x = &y Address-of Assignment
x = y Copy Assignment
x = *y Load Assignment
*x = y Store Assignment

Figure 2: Basic Pointer Assignment Statements

More complicated pointer assignments can be reduced to
one or more statements of these basic types. In the above
basic statements, x and y denote location sets, hence an
assignment like s.f = v[i] of the element i of the array v
to the �eld f of the structure s is considered to be a copy
assignment since both s.f and v[i] can be expressed as
location sets.

Our data
ow analysis algorithm computes a points-to
graph for each program point in the current thread. It
uses an interference graph to characterize the interference
between the current thread and other parallel threads. The
interference graph represents the set of edges that the other
threads may create; the analysis of the current thread takes
place in the context of these edges. As part of the analysis
of the current thread, the algorithm extracts the set of edges
that the thread creates. This set will be used to compute
the interference graph for the analysis of other threads that
may execute in parallel with the current thread.

De�nition 1 Let L be the set of location sets in the program
and P = 2L�L the set of all points-to graphs. The multi-
threaded points-to information MTI(p) at a program point
p of the parallel program is a triple hC; I; Ei 2 P 3 consisting
of:

� the current points-to graph C,

� the set I of interference edges created by all the other
concurrent threads,

� the set E of edges created by the current thread.

We use data
ow equations to de�ne the analysis of the
basic statements. These equations use the strong
ag which
speci�es if the analysis of the basic statement performs a
strong or weak update. Strong updates kill the existing
edges of the location set being written, while weak updates
leave the existing edges in place. Strong updates are per-
formed if the analysis can identify a single pointer variable
that is being written. If the analysis cannot identify such
a variable (this happens if there are multiple location sets
that denote the updated location or if one of the location
sets represents more than one memory location), the analy-
sis performs a weak update. Weak updates happen if there
is uncertainty caused by merges in the
ow of control, if the
statement writes an element of an array, or if the statement
writes a pointer in heap allocated memory.

If we denote by Stat the set of program statements, then
the data
ow analysis framework is de�ned, in part, by a
functional [[]] : Stat ! (P 3 ! P 3) that associates a trans-
fer function f 2 P 3 ! P 3 to every statement st in the
program. As Figure 3 illustrates, we de�ne this functional
for basic statements using the strong
ag and the kill/gen
sets. Basic statements do not modify the interference infor-
mation, the created edges are added to the set E of edges
created by the current thread and to the current points-to
graph C, and edges are killed in C only if the the strong

ag indicates a strong update. The equations maintain the
invariant that the interference information is contained in
the current points-to graph.

Figure 4 de�nes the gen and kill sets and the strong
ag
for basic statements; Figure 5 shows how existing edges in
the points-to graph (solid lines) interact with the basic state-
ments to generate new edges (dashed lines). The de�nitions
use the following dereference function (here 2L is the set of
all subsets of the set of location sets L).

deref : 2L � P ! 2L

deref(S;C) = fy 2 L j 9x 2 S : (x; y) 2 Cg

The partial order relation � of points-to graphs can be
easily extended to a partial order relation v over the multi-
threaded points-to information P 3 as follows:

hC1; I1; E1i v hC2; I2; E2i i�

C1 � C2 and I1 � I2 and E1 � E2

This partial order induces a lattice on P 3; the meet oper-
ation in this lattice is the merge operation for the intrapro-
cedural data
ow algorithm:

hC1; I1; E1i t hC2; I2; E2i = hC1 [C2; I1 [I2; E1 [E2i

It is easy to verify that the transfer functions for basic
statements are monotonic in this lattice. This completes
the de�nition of a full data
ow analysis framework for se-
quential programs. Our analysis therefore handles arbitrary
sequential control
ow constructs, including unstructured
constructs.

Finally, note that if the interference set of edges is empty,
i.e., I = ;, then the above algorithm reduces to the tradi-
tional
ow-sensitive pointer analysis algorithm for sequential
programs. Therefore, our algorithm for multithreaded pro-
grams may be viewed as a generalization of the algorithm
for sequential programs.

3.3 Parallel Constructs

The basic parallel construct is the par construct (also re-
ferred to as fork-join or cobegin-coend), in which a parent

[[st]] hC; I;Ei = hC0; I 0; E0i;where:

C0 =
n
(C � kill) [gen [I if strong
C [gen [I if not strong

I 0 = I
E0 = E [gen

Figure 3: Data
ow Equations for Basic Statements

x = &y kill = fxg � deref(fxg; C)
gen = fxg � fyg
strong = (x:stride = 0 and not heap(x)

x = y kill = fxg � deref(fxg; C)
gen = fxg � deref(fyg; C)
strong = (x:stride = 0 and not heap(x))

x = *y kill = fxg � deref(fxg; C)
gen = fxg � deref(deref(fyg; C); C)
strong = (x:stride = 0 and not heap(x))

*x = y kill = deref(fxg; C)� deref(deref(fxg; C); C)
gen = deref(fxg; C)� deref(fyg; C)

�funkg � L
strong = (deref(fxg; C) = fzg and

z:stride = 0 and not heap(z))

Figure 4: Data
ow Information for Basic Statements

Initial Basic New
Points-to Edges Statement Points-to Edge

x y x = &y x y-

x

y z-
x = y

x

y z-
-

x

y z

w

-
6 x = *y

x

y z

w

-
6

-

x

y z

w

-

-

*x = y

x

y z

w

-

-

?

Figure 5: New Points-To Edges for Basic Statements

thread starts the execution of several concurrent child threads
at the beginning of the par construct, then waits at the end
of the construct until all the child threads complete. It can
then execute the following statement.

We represent multithreaded programs using a parallel

ow graph hV; Ei. Like a standard
ow graph for a se-
quential program, the vertices of the graph represent the
statements of the program, while the edges represent the
potential
ow of control between vertices. There are also
parbegin and parend vertices. These come in corresponding
pairs and represent, respectively, the beginning and end of
the execution of a par construct. The analysis uses begin and
end vertices to mark the begin and end of threads. There
is an edge from each parbegin vertex to the begin vertex of
each of its parallel threads, and an edge from the end vertex
of each of its threads to the corresponding parend vertex.

We require there to be no edges between parallel threads,
no edges from a vertex outside a par construct into one of
its threads, and no edges from inside a thread to a vertex
outside its par construct.

3.4 Data
ow Equations for Parallel Constructs

Figure 6 presents the data
ow equations for par constructs.
The analysis starts with hC; I; Ei
owing into the par con-
struct and generates hC0; I; E0i
owing out of the par con-
struct. Appendix A presents a formal proof of the soundness
of these equations.

Figure 7 presents the parallel
ow graph for the example
in Figure 1. Selected program points in the
ow graph are
annotated with the results of the analysis. Each analysis
result is of the form hC; I; Ei, where C is the current points-
to graph, I is the interference information, and E is the set
of created edges.

Several points are worth mentioning. First, even though
the edge p ! y is not present in the points-to graph
owing
into the par construct, it is present in the
ow graph at the
beginning of the �rst thread. This re
ects the fact that the
assignment *q = &y from the second thread may execute
before any statement from the �rst thread. Second, even
though the edge p ! x is present in the
ow graph at the
end of the �rst thread, it is not present in the
ow graph
after the par construct. This re
ects the fact that the second
thread always makes p point to y instead of x.

[[parfft1g : : : ftngg]] hC; I;Ei = hC0; I;E0i, where

C
0 =

\
1�i�n

C
0
i

E
0 = E [

[
1�i�n

Ei

Ci = C [
[

1�j�n;j 6=i

Ej

Ii = I [
[

1�j�n;j 6=i

Ej

[[ti]] hCi; Ii; ;i = hC0i; Ii; Eii

Figure 6: Data
ow Equations for par Constructs

We next present an intuitive explanation of the data
ow
equations in Figure 6. Appendix A provides a formal proof
of the soundness of the equations.

Figure 7: Analysis Result for Example

3.4.1 Interference Information Flowing Into Threads

We �rst consider the appropriate set of interference edges Ii
for the analysis of the thread ti. Because the thread may
execute in parallel with any thread that executes in parallel
with the par construct, all of the interference edges I that

ow into the par statement should also
ow into the thread.
But the thread may also execute in parallel with all of the
other threads of the par construct. So any local edges Ej

created by the other threads should also be added into the
interference information
owing into the analyzed thread.
This reasoning determines the equation for the input inter-
ference edges
owing into thread ti: Ii = I[([1�j�n;j 6=iEj).

3.4.2 Points-To Information Flowing Into Threads

We next consider the current points-to graph Ci for the anal-
ysis of thread ti. Because the thread may execute as soon
as
ow of control reaches the par construct, all of the edges
in the current points-to graph C
owing into the par con-
struct should clearly
ow into the thread's input points-to
graph Ci. But there are other edges that may be present
when the thread starts its execution: speci�cally, any edges
Ej created by the execution of the other threads in the par
construct. These edges should also
ow into the thread's in-
put points-to graph Ci. This reasoning determines the equa-
tion for the current points-to graph that
ows into thread
ti: Ci = C [([1�j�n;j 6=iEj).

3.4.3 Points-To Information Flowing Out of par Constructs

We next consider the current points-to graph C0 that
ows
out of the par construct. The analysis must combine the
points-to graphs C0i
owing out of the par construct's threads
to generate C0. The points-to graph C0i
owing out of thread
ti contains all of the edges created by the thread that are
present at the end of its analysis, all of the edges ever cre-
ated by the other parallel threads in the par construct, and
all of the edges
owing into the par construct that were not
killed by strong updates during the analysis of the thread.

We argue that intersection is the correct way to com-
bine the points-to graphs C0i
owing out of the threads to
generate the �nal points-to graph C0
owing out of the par
construct. There are two kinds of edges that should be in C0:
edges that are created by one of the par construct's threads
and are still present at the end of that thread's analysis, and
edges that
ow into the par construct and are not killed by
a strong update during the analysis of one of the threads.
We �rst consider an edge created by a thread ti and still
present in the points-to graph C0i
owing out of ti. Because
all of the points-to graphs C0j
owing out of the other par-
allel threads contain all of the edges ever created during the
analysis of ti, the edge will be in the intersection.

We next consider any edge that
ows into the par con-
struct and is not killed by a strong update during the anal-
ysis of one of the threads. This edge will still be present at
the end of the analysis of all of the threads, and so will be
in the intersection.

Finally, consider an edge
owing into the par construct
that is killed by a strong update during the analysis of one
of the threads, say ti. This edge will not be present in C0i,
and will therefore not be present in the intersection.

3.4.4 Created Edges Flowing Out of par Constructs

The set of edges E0
owing out of the par construct will
be used to compute the interference information for threads
that execute in parallel with the par construct. Since all of
the par construct's threads can execute in parallel with any
thread that can execute in parallel with the par construct,
all of the edges Ej created during the analysis of the par
construct's threads should be included in E0. This reasoning
determines the equation E0 = E [([1�i�nEi).

3.5 The Fixed-Point Analysis Algorithm

The analysis algorithm uses a standard �xed-point approach
to solve the data
ow equations in the sequential parts of
code. There is a potential issue with analyzing par con-
structs. The data
ow equations for par constructs re
ect
the following circularity in the analysis problem: to perform
the analysis for one of the par construct's threads, you need
to know the analysis results from all of the other parallel
threads. To perform the analysis on the other threads, you
need the analysis results from the �rst thread.

The analysis algorithm breaks this circularity using a
�xed-point algorithm. It �rst initializes the points-to infor-
mation at each program point to h;; ;; ;i. The exception
is the program point before the parallel
ow graph's begin
vertex, which is initialized to hL � funkg; ;; ;i so that each
pointer is initially pointing to the unknown location. The
algorithm then uses a standard worklist approach: every
time a vertex's input information changes, the vertex is re-
analyzed with the new information. Eventually the analysis
converges on a �xed-point solution to the data
ow equa-
tions.

3.6 Complexity of Fixed-Point Algorithm

We derive the following complexity bound. All the location
sets that the algorithm manipulates appear in an instruction
in the program. The size of the points-to graphs is therefore
O(n2), where n is the number of instructions in the program.
Because there is one points-to information for each program
point, the maximum size of all of the points-to graphs put
together is O(n3). If the �xed-point algorithm processes
n vertices without adding an edge to one of the points-to
graphs, it terminates. The algorithm therefore analyzes at
most O(n4) vertices. In practice, we expect that the com-
plexity will be signi�cantly smaller, and our experimental
results support this expectation.

3.7 Precision of Analysis

We next discuss the precision of the algorithm relative to an
ideal algorithm that analyzes all interleavings of the state-
ments from parallel threads. The basic idea is to elimi-
nate parallel constructs from the
ow graph using a product
construction of the parallel threads, then use the standard
algorithm for sequential programs to analyze the resulting
interleaved sequential
ow graph. The key result is that if
there is no interference in the interleaved analysis, there is
no interference in the direct analysis of the multithreaded
program, and the two analyses generate the same result. In
this case, our analysis provides a safe, e�cient way to obtain
the precision of the ideal algorithm. Appendix B provides a
more detailed discussion.

3.8 Parallel Loops

Parallel loops execute, in parallel, a statically unbounded
number of threads that execute the same loop body. The
analysis of a parallel loop construct is therefore equivalent
to the analysis of a par construct that spawns an unknown
number of concurrent threads executing the same code. The
system of data
ow equations for the parallel loop construct
is therefore similar to the one for the par construct, but the
number of equations in the new system depends on the dy-
namic number n of concurrent threads. However, the iden-
tical structure of the threads allows simpli�cations in these
data
ow equations, as described below.

The analyses of the identical threads produce identical
results. In particular, the analyses will produce, for all
threads, the same �nal points-to information, C0i = C00; 1 �
i � n, and the same set of created edges, Ei = E0; 1 � i � n.
The interference points-to information is therefore the same
for all of the threads: Ii = I[

S
1�j�n;j 6=i

Ej = I[E0. Here

we conservatively assume that the loop creates at least two
concurrent threads.

The symmetry induced by the identical structure of the
concurrent threads produces identical data
ow equations for
the threads. The analysis can therefore solve the set of equa-
tions for one thread, with the analysis result valid for all
threads:

[[body]] hC [E0; I [E0; ;i = hC00; I [E0; E0i

The sets C00 and E0 de�ned by the above recursive equa-
tion are used to compute the information
owing out of the
parallel loop construct:

[[parfor(body)]] hC; I;Ei = hC00; I;E [E0i

These equations provide an easy and safe way to model
the behavior of the unknown number of concurrent threads
spawned by parallel loop constructs.

3.9 Private Global Variables

Multithreaded languages often support the concept of pri-
vate global variables. Conceptually, each executing thread
gets its own version of the variable, and can read and write
its version without interference from other threads. We han-
dle such variables in the analysis by saving and restoring
points-to information at thread boundaries. When the anal-
ysis propagates the points-to information from a parbegin
vertex to the begin vertex of one of its threads, it replaces
the points-to information
owing into the begin vertex as fol-
lows. All private global variables are initialized to point to
the unknown location, and all pointers to private global vari-
ables are reinitialized to point to the unknown location. At
the corresponding parend vertex, the analysis processes the
edges
owing out of the child threads to change occurrences
of private global variables to the unknown location (these oc-
currences correspond to the versions from the child threads).
The analysis then appropriately restores the points-to infor-
mation for the versions of the private global variables of the
parent thread.

3.10 Interprocedural Analysis

At each call site, the analysis must determine the e�ect of
the invoked procedure on the points-to information. Our
algorithm uses a generalization of a technique implemented
by Emami, Ghiya and Hendren [8]. It maps the current
points-to information into the name space of the invoked
procedure, analyzes the procedure, then unmaps the result
back into the name space of the caller. Like the analysis of
Wilson and Lam [26], our analysis caches the result every
time it analyzes a procedure. Before it analyzes a proce-
dure, it looks up the procedure and the analysis context in
the cache to determine if it has previously analyzed the pro-
cedure in the same context. If so, it uses the results of the
previous analysis instead of reanalyzing the procedure.

De�nition 2 Given a procedure p, a multithreaded input
context (MTC) is a pair hCp; Ipi consisting of an input
points-to graph Cp and a set of interference edges Ip. A
multithreaded partial transfer function (MT-PTF) of p is
a tuple hCp; Ip; C

0
p; E

0
p; r

0
pi that associates the input context

hCp; Ipi with an analysis result for p. This analysis result
consists of an output points-to graph C0p, a set E0p of edges
created by p, and a location set r0p that represents the return
value of the procedure.

As part of the mapping process, the analysis replaces all
location sets that are not in the naming environment of the
invoked procedure with anonymous placeholders called ghost
location sets, which are similar to the non-visible variables
and invisible variables used in earlier interprocedural anal-
yses [16, 8]. Ghost location sets serve two purposes: they
facilitate the caching of previous analysis results, and they
separate the parameters and local variables of the current
invocation of a recursive procedure from those of previous
invocations, which results in increased precision.

The algorithm sets up an analysis context for the analysis
of the invoked procedure as follows.

� The local variables and formal parameters of the cur-
rent procedure are represented using location sets. The
algorithm maps these location sets to new ghost loca-
tion sets.

� The actual parameters of the procedure call are also
represented using location sets. The algorithm maps

the actual parameters to the formal parameters of the
invoked procedure.

� The algorithm removes subgraphs that are not reach-
able from the global variables and formal parameters
of the invoked procedure.

� The algorithm adds the local variables from the in-
voked procedure to the points-to information. It ini-
tializes all of the local variables to point to the un-
known location set.

The algorithm analyzes the invoked procedure in this analy-
sis context to get a new context. It unmaps this new context
back into the name space of the calling procedure as follows:

� The algorithm maps all of the formal parameters and
local variables from the invoked procedure to the un-
known location set.

� The algorithm maps the return value from the invoked
procedure to the location set that represents the re-
turned result of the procedure.

� The algorithm unmaps the ghost location sets back to
the corresponding location sets that represent the local
variables and formal parameters.

� The algorithm adds the unreachable subgraphs removed
during the mapping process back into the graph.

The analysis continues after the procedure call with this
context.

3.10.1 Formal De�nition of Mapping and Unmapping

We formalize the mapping and unmapping process as fol-
lows. We assume a call site s in a current procedure c that
invokes the procedure p. The current procedure c has a set
Vc � L of local variables and a set Fc � L of formal pa-
rameters; the invoked procedure p has a set Vp � L of local
variables and a set Fp � L of formal parameters. There is
also a set G � L of ghost variables and a set V � L of global
variables. The call site has a set fa1; : : : ; ang = As of actual
parameter location sets; these location sets are generated
automatically by the compiler and assigned to the expres-
sions that de�ne the parameter values at the call site. The
set ff1; : : : ; fng = Fp represents the corresponding formal
parameters of the invoked procedure p. Within p, the spe-
cial location set rp represents the return value. The location
set rs represents the return value at the call site. Given a
points-to graph C, nodes(C) = fl j hl; l0i 2 C or hl0; li 2 Cg.

The mapping process starts with a points-to information
hC; I; Ei for the program point before the call site. It con-
structs a one-to-one mapping m : nodes(C) ! Fp [G [V
that satis�es the following properties:

� 8l 2 Vc [Fc:m(l) 2 G� nodes(C).

� 8l1; l2 2 Vc [Fc:l1 6= l2 implies m(l1) 6= m(l2).

� 8l 2 V [(G \ nodes(C)):m(l) = l.

� 81 � i � n:m(ai) = fi.

The following de�nition extends m to a mapping m̂ that
operates on points-to graphs.

m̂(C) = fhm(l1);m(l2)i j hl1; l2i 2 Cg

The analysis uses m̂ to construct a new analysis context
hCp; Ipi for the invoked procedure as de�ned below. For a set
S of nodes and a general points-to graph C, isolated(S;C)
denotes all subgraphs of C that are not reachable from S.

Cp=(m̂(C)� isolated(G [Fp; m̂(C))) [(Vp [frpg) � funkg
Ip =m̂(I)� isolated(G [Fp; m̂(I))

The algorithm must now derive an analysis result hC0p; E
0
p; r

0
pi

that re
ects the e�ect of the invoked procedure on the points-
to information. It �rst looks up the new analysis context in
the cache of previously computed analysis results for the in-
voked procedure p, and uses the previously computed result
if it �nds it. Otherwise, it analyzes p using hCp; Ip; ;i as
the starting points-to information. It stores the resulting
analysis result hC0p; E

0
p; r

0
pi in the cache.

The algorithm then unmaps the analysis result back into
the naming context at the call site. It constructs an un-
mapping u : nodes(C0p)! Vc [Fc [G [V that satis�es the
following conditions:

� 8l 2 Vp [Fp:u(l) = unk.

� 8l 2 nodes(C0p)� ((Vp [Fp) [frpg):u(l) = m�1(l).

� u(rp) = rs.

The following de�nition extends u to an unmapping û that
operates on points-to graphs. In the unmapping process
below, we use unmappings that map location sets to unk.
The de�nition of û removes any resulting edges from unk.

û(C) = fhu(l1); u(l2)i j hl1; l2i 2 Cg � funkg � L

The algorithm uses û to create an analysis context hC0; I 0; E0i
for the program point after the call site:

C0 = û(C0p) [û(isolated(G [Fp; m̂(C)))
I 0 = I
E0 = û(E0p) [E

3.10.2 Recursive Procedures

As described so far, this algorithm does not terminate for
recursive procedures. We use a �xed-point approach to elim-
inate this problem. The algorithm maintains a current best
analysis result for each context; each such result is initial-
ized to h;; ;; ;i. As the algorithm analyzes the program, the
nested analyses of invoked procedures generate a stack of
analysis contexts that models the call stack in the execution
of the program. Whenever an analysis context is encoun-
tered for the second time on the stack, the algorithm does
not reanalyze the procedure (this would lead to an in�nite
loop). It instead uses the current best analysis result and
records the analyses that depend on this result.

Whenever the algorithm �nishes the analysis of a proce-
dure and generates an analysis result, it merges the result
into the current best result for the analysis context. If the
current best result changes, the algorithm repeats all of the
dependent analyses. The process continues until it termi-
nates at a �xed point.

3.10.3 Linked Data Structures on the Stack

As described so far, the algorithm does not terminate for
programs that use recursive procedures to build linked data

structures of unbounded size on the call stack.2 It would
instead generate an unbounded number of analysis contexts
as it unrolls the recursion. We eliminate this problem by
recording the actual location sets from the program that
correspond to each ghost location set. Whenever the algo-
rithm encounters an analysis context with multiple ghost
location sets that correspond to the same actual location
set, it maps the ghost location sets to a single new ghost
location set. This technique maintains the invariant that
no analysis context ever has more ghost location sets than
there are location sets in the program, which ensures that
the algorithm generates a �nite number of analysis contexts.

3.10.4 Function Pointers

The algorithm uses a case analysis to analyze programs with
function pointers that may point to more than one func-
tion. This algorithm is a straightforward generalization of
an earlier algorithm used to analyze serial programs with
this property [8]. We also hardwire the behavior of stan-
dard library functions into the analysis.

3.11 Analysis of Cilk

Our target language, Cilk, provides two basic parallel con-
structs: the spawn and sync constructs. The spawn con-
struct enables the programmer to create a thread that exe-
cutes in parallel with the continuation of its parent thread.
The parent thread can then use the sync construct to block
until all outstanding threads complete.

Our compiler recognizes structured uses of these con-
structs. A sequence of spawn constructs followed by a sync
construct is recognized as a par construct. A sync construct
preceded by a loop whose body is a spawn construct is rec-
ognized as a parallel loop.

The primary di�culty that these constructs introduce,
however, is the possibility that a child thread may be cre-
ated on one path to a sync statement but not on another.
Our analysis handles this situation by adjusting the way
that the points-to graphs are combined at the synchroniza-
tion point. Before taking the intersection of the points-to
graphs from conditionally executed child threads, the anal-
ysis adds all of the edges killed during the analysis of each
conditionally executed child thread back into the points-to
graph
owing out of the child thread. This modi�cation en-
sures that the analysis correctly re
ects the possibility that
the child thread may not be created and executed.

4 Experimental Results

We have implemented the multithreaded analysis in the SUIF
compiler infrastructure. We built this implementation from
scratch starting with the standard SUIF distribution, using
no code from previous pointer analysis implementations for
SUIF. We also modi�ed the SUIF system to support Cilk,
and used our implementation to analyze a sizable set of Cilk
programs. Table 1 presents a list of the programs and sev-
eral of their characteristics.

2The pousse benchmark described in Section 4, for example, uses
recursion to build a linked list of unbounded size on the call stack.
The nodes in the linked list are stack-allocated C structures; a pointer
in each node points to a structure allocated in the stack frame of the
caller.

4.1 Benchmark Set

We would like to emphasize the challenging nature of our
benchmark set. It includes every benchmark program in
the Cilk distribution,3 as well as several larger applications
developed by researchers at MIT. The programs have been
heavily optimized by hand to extract the maximum perfor-
mance | in the case of pousse, for timed competition with
other programs.4 As a result, the programs heavily use low-
level C features such as pointer arithmetic and casts. Our
analysis handles all of these low-level features correctly.

Most of the programs use divide and conquer algorithms.
This approach leads to programs with recursively generated
concurrency; the parameters of the recursive functions typ-
ically use pointers into heap or stack allocated data struc-
tures to identify the subproblem to be solved. The paral-
lel sections in many of these programs manipulate sophis-
ticated pointer-based data structures such as octrees, ef-
�cient sparse-matrix representations, parallel hash tables,
and pointer-based representations of biological molecules.
This paper presents, to our knowledge, the �rst experimen-
tal results for the pointer analysis of programs with this
amount of recursion, sophisticated pointer-based data struc-
tures, and heavy use of pointer arithmetic and casts.

We next discuss the application data in Table 1. The
Thread Creation Sites column presents the number of thread
creation sites in the program; typically there would be sev-
eral thread creation sites in a par construct or one thread
creation site in a parallel loop. The Load and Store Instruc-
tions columns present, respectively, the number of load and
store instructions in the SUIF representation of the program.
The total number of load or store instructions appears �rst;
the number in parenthesis is the number of instructions that
access the value by dereferencing a pointer. Note that SUIF
generates load or store instructions only for array accesses
and accesses via pointers.

The Location Sets column presents the number of loca-
tion sets in the program. The total number of location sets
appears �rst; the number in parenthesis is the number of lo-
cation sets that represent pointer values. These location set
numbers include location sets that represent the formal pa-
rameters, local variables, and global variables. They do not
include any ghost location sets generated as part of the anal-
ysis. The number of pointer location sets gives some idea
of how heavily the programs use pointers. Bear in mind
that the location set numbers include variables de�ned in
standard include �les; this is why a small application like
�b has 451 total location sets and 17 pointer location sets.
These numbers should be viewed as a baseline from which
to calculate the number of additional location sets de�ned
by the Cilk program.

4.2 Precision Measurements

We measure the precision of each analysis by computing, for
each load or store instruction that dereferences a pointer, the
number of location sets that represent the memory locations
that the instruction may access. The fewer the number of
target location sets per instruction, the more precise the
analysis. We distinguish between potentially uninitialized
pointers, or pointers with the unknown location set unk in
the set of locations sets that represent the values to which
the pointer may point, and de�nitely initialized pointers, or
pointers without the unknown location set unk.

3Available at supertech.lcs.mit.edu/cilk.
4Pousse won the program contest associated with the ICFP '98

conference, and was undefeated in this contest.

Lines Thread Total(Pointer) Total(Pointer) Total(Pointer)
of Creation Load Store Location

Program Code Sites Instructions Instructions Sets Description
barnes 1149 5 352 (318) 161(125) 1289(395) Barnes-Hut N-body Simulation
block 342 19 140 (140) 9 (9) 546 (64) Blocked Matrix Multiply
cholesky 932 27 136 (134) 29 (29) 863(100) Sparse Cholesky Factorization
cilksort 499 11 28 (28) 14 (14) 569 (65) Parallel Sort
ck 505 2 85 (64) 49 (38) 571 (36) Checkers Program
�t 3255 48 461 (461) 335(335) 1883(103) Fast Fourier Transform
�b 53 3 1 (1) 0 (0) 451 (17) Fibonacci Calculation
game 195 2 9 (8) 9 (8) 508 (38) Simple Game
heat 360 6 36 (36) 12 (12) 632 (34) Heat Di�usion on Mesh
knapsack 122 3 14 (14) 6 (6) 444 (21) Knapsack, Branch and Bound
knary 114 3 4 (4) 0 (0) 473 (20) Synthetic Benchmark
lu 594 24 16 (16) 13 (13) 688 (87) LU Decomposition
magic 965 4 83 (83) 74 (74) 739(108) Magic Squares
mol 4478 33 1880(1448) 595(387) 2324(223) Viral Protein Simulation
notemp 341 17 136 (136) 6 (6) 546 (64) Blocked Matrix Multiply
pousse 1379 8 181 (161) 127(118) 905 (88) Pousse Game Program
queens 106 2 8 (8) 3 (3) 472 (23) N Queens Program
space 458 23 272 (272) 13 (13) 561 (70) Blocked Matrix Multiply

Table 1: Cilk Program Characteristics

The precision measurements are complicated by the fact
that each procedure may be analyzed in several di�erent
points-to contexts. In di�erent contexts, the load or store
instructions may require di�erent numbers of location sets
to represent the accessed memory location. We therefore
count, for each load or store instruction and each context
in which the load or store instruction's procedure was ana-
lyzed, the number of location sets required to represent the
accessed memory location.

We present the precision measures using histograms. For
each number of location sets, the corresponding histogram
bar presents the number of load or store instructions that
require exactly that number of location sets to represent
the accessed memory location. Each bar is divided into a
gray section and a white section. The gray section counts
instructions whose dereferenced pointer is potentially unini-
tialized; the white section counts instructions whose derefer-
enced pointer is de�nitely initialized. Figure 8 presents the
histogram for all contexts and all load instructions that use
pointers to accesss memory in the Cilk programs. Figure 9
presents the corresponding histogram for store instructions.

These histograms show that the analysis gives good pre-
cision: for the entire set of programs, no instruction in any
context requires more than four location sets to represent
the accessed location. Furthermore, for the vast majority of
the load and store instructions, the analysis is able to iden-
tify exactly one location set as the unique target, and that
the dereferenced pointer is de�nitely initialized. According
to the analysis, approximately one quarter of the instruc-
tions may dereference a potentially uninitialized pointer.

Arrays of pointers are one source of potentially unini-
tialized pointers. Because pointer analysis is not designed
to recognize when every element of an array of pointers has
been initialized, the analysis conservatively generates the re-
sult that each pointer in an array of pointers is potentially
uninitialized. In general, it may be very di�cult to remove
this source of imprecision. For our set of measured Cilk
programs, however, it would usually be straightforward to
extend the analysis to recognize the loops that completely
initialize the arrays of pointers.

0

3000

6000

9000

12000

1 2 3 4

Number of Target Location Sets

N
um

be
r

of
 L

oa
d

In
st

ru
ct

io
ns

Definitely Initialized

Potentially Uninitialized

Figure 8: Location Set Histogram for Load Instructions

0

1000

2000

3000

4000

1 2 3 4

Number of Target Location Sets

N
um

be
r

of
 S

to
re

 In
st

ru
ct

io
ns

Definitely Initialized

Potentially Uninitialized

Figure 9: Location Set Histogram for Store Instructions

Load Instructions Store Instructions
Number of Read Location Sets Number of Written Location Sets

Program 1 2 3 4 1 2 3 4
barnes 715 (79) 376(199) 2 (2) 147(147) 306 (7) 65 (39) - 20(20)
block 276 (2) - - - 18 (0) - - -
cholesky 94 (68) 624(624) - - 143 (20) 90 (90) - -
cilksort 40 (1) - - - 19 (0) - - -
ck 121 (3) - - - 78 (0) - - -
�t 1761 (1) 1 (0) - - 1287 (0) - - -
�b 1 (1) - - - - - - -
game 16 (0) - - - 17 (0) - - -
heat 103 (16) 33 (28) 5 (5) - 21 (15) 30 (30) - -
knapsack 14 (0) - - - 6 (0) - - -
knary 4 (4) - - - - - - -
lu 15 (0) 1 (1) - - 13 (0) - - -
magic 114 (2) - - - 82 (0) - - -
mol 5549(1141) 871(871) 58(36) - 1470(128) 265(265) 53(0) -
notemp 136 (2) - - - 7 (0) - - -
pousse 765 (40) 14 (14) 3 (3) - 578 (40) - - -
queens 13 (3) 3 (3) - - 12 (0) - - -
space 788 (2) 12 (0) - - 14 (0) 20 (0) - -

Table 2: Per-Program Counts of the Number of Location Sets Required to Represent an Accessed Location { Separate
Contexts, with Ghost Location Sets

NULL pointers are another source of potentially unini-
tialized pointers. In our analysis, NULL points to the un-
known location set. In some cases, NULL is passed as an
actual parameter to a procedure containing conditionally ex-
ecuted code that dereferences the corresponding formal pa-
rameter. Although this code does not execute if the param-
eter is NULL, the algorithm does not perform the control-

ow analysis required to realize this fact. The result is that,
in contexts with the formal parameter bound to NULL, in-
structions in the conditionally executed code are counted as
dereferencing potentially uninitialized pointers.

Table 2 breaks the counts down for each application.
Each column is labeled with a number n; the data in the
column is the sum over all procedures p and all analyzed
contexts c of the number of load or store instructions in p
that, in context c, required exactly n location sets to rep-
resent the accessed location. The number in parenthesis
tells how many of the instructions dereference potentially
uninitialized pointers. In barnes, for example, 715 load in-
structions in all the analyzed contexts require exactly one
location set to represent the stored value; of these 715, only
79 used a potentially uninitialized pointer.

4.3 Analysis Measurements

To give some idea of the complexity in practice of the analy-
sis, we measured the total number of parallel construct anal-
yses and the number of iterations required for each analy-
sis to reach a �xed point. The use of parallel loops and
continuation threads (see Section 3.11) complicates the ac-
counting. Here we count each synchronization point in the
program as a parallel construct unless the synchronization
point waits for only one thread. There is a synchronization
point at the end of each par construct and each parallel
loop, as well as the synchronization points that wait for
continuation threads. Table 3 presents these numbers. This
table includes the total number of analyses of parallel con-
structs, the mean number of iterations required to reach a
�xed point for that parallel construct, and the mean num-

ber of threads analyzed each time. These numbers show that
the algorithm converges quickly, with the mean number of
iterations always less than or equal to 2.25. We note that it
is possible for the analysis to converge in one iteration if the
parallel threads create local pointers, use these pointers to
access data, but never modify a pointer that is visible to an-
other parallel thread. The mapping and unmapping process
that takes place at procedure boundaries ensures that the
algorithm correctly models this lack of external visibility.

Total
Number of Mean Mean
Parallel Number of Number of
Construct Iterations per Threads per

Program Analyses Analysis Analysis
barnes 12 2.00 2.00
block 13 1.00 3.85
cholesky 109 1.83 4.11
cilksort 8 1.00 2.50
ck 3 1.00 2.00
�t 182 1.73 3.50
�b 1 1.00 2.00
game 3 1.00 2.00
heat 8 1.62 2.00
knapsack 1 1.00 2.00
knary 1 1.00 2.00
lu 10 1.00 2.80
magic 24 1.00 2.00
mol 99 1.18 2.27
notemp 15 1.00 2.53
pousse 9 1.22 3.33
queens 8 2.25 2.00
space 15 1.00 6.80

Table 3: Analysis Measurements

Load Instructions Store Instructions
Number of Read Location Sets Number of Written Location Sets

Program 1 2 3 4 12 1 2 3 4 6
barnes 146 (10) 114 (26) 2 (2) 53(47) 3(0) 92 (2) 25 (6) - 8(8) -
block 136 (2) 4 (0) - - - - 9 (0) - - -
cholesky 2 (0) 132(132) - - - 7 (0) 22(22) - - -
cilksort 16 (1) 12 (0) - - - 9 (0) 5 (0) - - -
ck 53 (3) 11 (0) - - - 19 (0) 19 (0) - - -
�t 144 (1) - - 317 (0) - 18 (0) - - 317(0) -
�b 1 (1) - - - - - - - - -
game 5 (0) 3 (0) - - - 4 (0) 4 (0) - - -
heat 7 (2) 17 (0) 12(12) - - 2 (0) 5 (5) 5(5) - -
knapsack 14 (0) - - - - 6 (0) - - - -
knary 4 (4) - - - - - - - - -
lu 15 (0) 1 (1) - - - 13 (0) - - - -
magic 67 (2) 16 (0) - - - 61 (0) 13 (0) - - -
mol 1113(163) 316(315) 19(12) - - 310(37) 61(58) 6(0) 6(0) 4(0)
notemp 136 (2) - - - - 5 (0) 1 (0) - - -
pousse 101 (8) 56 (2) 1 (0) 3 (3) - 64 (8) 44 (0) 10(0) - -
queens 3 (3) 3 (1) 2 (2) - - 1 (0) 2 (0) - - -
space 264 (2) 8 (0) - - - - 13 (0) - - -

Table 4: Per-Program Counts of the Number of Location Sets Required to Represent an Accessed Location | Merged
Contexts, Ghost Location Sets Replaced By Corresponding Actual Location Sets

4.4 Comparison with Sequential Analysis

Ideally, we would evaluate the precision in practice of the
algorithm presented in this paper, the Multithreaded algo-
rithm, by comparing its results with those of the Interleaved
algorithm, which uses the standard algorithm for sequential
programs to analyze all interleavings of statements from par-
allel threads. But the intractability of the Interleaved algo-
rithm makes it impractical to use this algorithm even for
comparison purposes.

We instead developed a tractable but unsound extension
of the standard
ow-sensitive, context-sensitive algorithm
for sequential programs, the Sequential algorithm. This al-
gorithm ignores parbegin and parend vertices; the threads
of the parbegin and parend are analyzed sequentially in the
order in which they appear in the program text. In e�ect,
parallel threads are analyzed as if they execute sequentially.
Although this analysis is unsound, it generates a less con-
servative result than the Interleaved algorithm and therefore
provides an upper bound on the achievable precision.

It is important to realize that the appropriate precision
metric depends on the intended use of the pointer analy-
sis information. For example, if the information is used to
verify statically that parallel calls are independent, appro-
priate precision metrics use analysis results from only those
analysis contexts that appear at the parallel call sites. All
other analysis contexts are irrelevant, because they do not
a�ect the success or failure of the analysis that veri�es the
independence of parallel calls.

But if the analysis is used to optimize the generated code,
and the compiler does not generate multiple specialized ver-
sions of the procedures, the optimization must take into ac-
count results from all of the analysis contexts. The MIT
RAW compiler, for example, uses our pointer analysis algo-
rithm in an instruction scheduling system [2]. It uses the
pointer analysis information to �nd instructions that access
memory from di�erent memory modules. The success of the
optimization depends on the addresses of the potentially ac-
cessed memory locations from all of the contexts.

We present a precision metric that is appropriate for
optimizations, such as the instruction scheduler mentioned
above, that use all of the contexts in each procedure. We
instrumented the analysis to record, for each ghost loca-
tion set, the actual location sets in the program that were
mapped to the ghost location set. This information allows
us to compute, for each load or store instruction that uses
a pointer to access memory, the number of actual location
sets required to represent the accessed memory location. Ta-
ble 4 presents this data for the Multithreaded algorithm.
Like Table 2, this table provides parenthesized counts of the
number of instructions that dereference a potentially unini-
tialized pointer. There are two di�erences between the data
in these two tables:

� Table 2 counts the location sets for each instruction
multiple times: once for each analysis context. Table 4
merges the analysis contexts, then counts the location
sets once for each instruction.

� If a ghost location set represents the accessed memory
location, Table 2 counts the ghost location set. Table 4
counts the actual location sets that were mapped to
that ghost location set during the analysis.

Even though the Sequential and Multithreaded analy-
sis algorithms generate di�erent analysis contexts, they pro-
duce virtually identical location set counts after the contexts
are merged and the ghost location sets are replaced by the
corresponding actual location sets. In fact, the counts are
identical for all applications except pousse. For pousse, the
counts di�er slightly because of the handling of private vari-
ables in the Multithreaded analysis. We conclude that, at
least by this metric, the Sequential and Multithreaded anal-
yses provide virtually identical precision. Recall that the
Sequential analysis provides an upper bound on the preci-
sion attainable by the Interleaved algorithm. We therefore
conclude that the Multithreaded algorithm and Interleaved
algorithms provide virtually identical precision, at least for
this metric and this set of benchmark programs.

Sequential Multithreaded
Analysis Analysis

Program Times Times
barnes 496.73 509.91
blockedmul 11.21 13.89
cholesky 86.40 229.65
cilksort 3.56 3.99
ck 2.7 2.90
�b 0.08 0.11
�t 50.52 142.48
game 1.59 1.74
heat 4.40 8.97
knapsack 0.32 0.34
knary 0.17 0.24
lu 6.36 7.63
magic 26.29 29.35
mol 1540.70 1823.37
notempmul 6.36 8.96
pousse 45.52 67.34
queens 1.17 2.47
space 22.63 27.70

Figure 10: Analysis Times for Sequential and Multithreaded
Analysis Algorithms

4.5 Analysis Times

Table 10 presents the analysis times for the Sequential and
Multithreaded algorithms. These numbers should give a
rough estimate of how much extra analysis time is required
for multithreaded programs. Although the Multithreaded
algorithm always takes longer, in most cases the analysis
times are roughly equivalent. There are a few outliers such
as cholesky and �t. In general, the di�erences in analysis
times are closely correlated with the di�erences in the num-
ber of contexts generated during the analysis.

5 Potential Uses

We foresee two primary uses for pointer analysis: to en-
able the optimization and transformation of multithreaded
programs, and to build software engineering and program
understanding tools.

5.1 Current and Immediately Envisioned Uses

To date, our pointer analysis algorithm has been used in
two projects: an instruction scheduling project and an auto-
matic parallelization project. The MIT RAW compiler uses
our analysis to disambiguate the targets of load and store
instructions [2]. The goal is to exploit instruction-level par-
allelism and to determine statically which memory modules
speci�c instructions may access.

We have used the pointer analysis results as a foundation
for the symbolic analysis and parallelization of divide and
conquer algorithms [21]. For e�ciency reasons, these pro-
grams often access memory using pointers and pointer arith-
metic. Our analysis algorithm provides the pointer analysis
information required to symbolically analyze such pointer-
intensive code.

Both of these projects use the pointer analysis algorithm
only on sequential programs. In the near future, we plan
to build a static race detector and symbolic array bounds
checker for multithreaded implementations of divide and

conquer algorithms. This project will use the algorithm on
multithreaded programs.

5.2 Software Engineering Uses

We believe that the software engineering uses will be espe-
cially important. Multithreaded programs are widely be-
lieved to be much more di�cult to build and maintain than
sequential programs. Much of the di�culty is caused by
unanticipated interference between concurrent threads. In
the worst case, this interference can cause the program to
fail nondeterministically, making it very di�cult for pro-
grammers to reproduce and eliminate bugs.

Understanding potential interactions between threads is
the key to maintaining and modifying multithreaded pro-
grams. So far, the focus has been on dynamic tools that
provide information about interferences in a single execution
of the program [22, 5]. Problems with these tools include
signi�cant run-time overhead and results that are valid only
for a single test run. Nevertheless, they provide valuable
information that programmers �nd useful.

Accurate pointer analysis of multithreaded programs en-
ables the construction of tools that provide information about
all possible executions, not a single run. The tool could use
the pointer analysis information to generate, for each read or
write, the set of potentially accessed memory locations. Cor-
relating loads and stores from parallel threads would quickly
identify statements that could interfere. Programmers could
use the information to understand the interactions between
threads, identify all of the pieces of code that could modify a
given variable, and rule out some hypothesized sources of er-
rors. Such a tool would make it much easier to understand,
modify and debug multithreaded programs.

5.3 Program Transformation Uses

Accesses via unresolved pointers prevent the compiler from
applying standard optimizations such as constant propaga-
tion, code motion, register allocation and induction variable
elimination. The basic problem is that all of these opti-
mizations require precise information about which variables
program statements access. But an access via an unresolved
pointer could, in principle, access any variable or memory
location. Unresolved pointer accesses therefore prevent the
integrated optimization of the surrounding code. Pointer
analysis is therefore required for the e�ective optimization
of multithreaded programs.

It is also possible to use pointer analysis to optimize mul-
tithreaded programs that use graphics primitives, �le oper-
ations, database calls, network or locking primitives, or re-
mote memory accesses. Each such operation typically has
overhead from sources such as context switching or commu-
nication latency. It is often possible to eliminate much of this
overhead by batching sequences of operations into a single
larger operation with the same functionality [7, 3, 11, 27].
Ideally, the compiler would perform these batching trans-
formations automatically by moving operations to become
adjacent, then combining adjacent operations. Information
from pointer analysis is crucial to enabling the compiler to
apply these transformations to code that uses pointers.

Finally, we intend to apply pointer analysis to prob-
lems from distributed computing. Programs in such sys-
tems often distribute data over several machines. Informa-
tion about how parts of the computation access data could
be used to determine if data is available locally, and if not,
whether it is better to move data to computation or com-
putation to data [4]. Pointer analysis could also be used to

help characterize how di�erent regions of the program ac-
cess data, enabling the application of consistency protocols
optimized for that access pattern [9].

6 Related Work

We discuss two areas of related work: pointer analysis for
sequential programs, and the analysis of multithreaded pro-
grams.

6.1 Pointer Analysis for Sequential Programs

Pointer analysis for sequential programs is a relatively ma-
ture �eld [23, 24, 20, 26, 1, 8, 6, 16]. We classify analyses
with respect to two properties:
ow sensitivity and con-
text sensitivity. Flow-sensitive analyses take the statement
ordering into account, and typically use data
ow analysis
to produce a points-to graph or set of alias pairs for each
program point [20, 26, 8, 6, 16]. Flow-insensitive analyses,
as the name suggests, do not take statement ordering into
account, and typically use some form of constraint-based
analysis to produce a single points-to graph that is valid
across an entire analysis unit [1, 24, 23, 18]. The analysis
unit is typically the entire program, although it is possible
to use �ner analysis units such as the computation rooted
at a given call site. Researchers have proposed several
ow-
insensitive pointer analysis algorithms with di�erent degrees
of precision. In general,
ow-sensitive analyses provide a
more precise result than
ow-insensitive analyses [25], al-
though it is unclear how important this di�erence is in prac-
tice. Finally,
ow-insensitive analyses extend trivially from
sequential programs to multithreaded programs. Because
they are insensitive to the statement order, they trivially
model all of the interleavings of the parallel executions.

Roughly speaking, context-sensitive analyses produce an
analysis result for each di�erent calling context of each pro-
cedure. Context-insensitive analyses, on the other hand,
produce a single analysis result for each procedure, typically
by merging information from di�erent call sites into a single
analysis context. This approach may lose precision because
of interactions between information from di�erent contexts,
or because information
ows between call sites in a way
that does not correspond to realizable call/return sequences.
Context-sensitive versions of
ow-sensitive analyses are gen-
erally considered to be more accurate but less e�cient than
corresponding context-insensitive versions, although it is not
clear if either belief is true in practice [20, 26].

A speci�c kind of imprecision in the analysis of recursive
procedures makes many pointer analysis algorithms unsuit-
able for our purposes. We intend to use our analysis as
a foundation for race detection and symbolic array bounds
checking of multithreaded programs with recursively gener-
ated concurrency. This application requires an analysis that
is precise enough to recognize independent calls to recursive
procedures, even when the procedures write data allocated
on the stack frame of their caller. To our knowledge, the
only published analyses that satisfy this requirement even
for sequential programs are both
ow sensitive and use some
variant of the concept of invisible variables [16, 8, 26]. Other
context-sensitive analyses merge information from recursive
call sites in a way that destroys the distinction between
multiple instantiations of the same variable in a recursive
procedure [18], although a
ow-insensitive, constraint-based
analysis with polymorphic recursion may be able to generate
su�ciently precise results.

6.2 Analysis of Multithreaded Programs

Unlike pointer analysis of sequential programs, the analysis
of multithreaded programs is a relatively unexplored �eld.
There is an awareness that multithreading signi�cantly com-
plicates program analysis [17], but a full range of standard
techniques have yet to emerge. Grunwald and Srinivasan
present a data
ow analysis framework for reaching de�ni-
tions for explicitly parallel programs [12], and Knoop, Stef-
fen and Vollmer present an e�cient data
ow analysis frame-
work for bit-vector problems such as liveness, reachability
and available expressions, but neither framework applies to
pointer analysis [15]. In fact, the application of these frame-
works for programs with pointers would require pointer anal-
ysis information. Zhu and Hendren present a set of com-
munication optimizations for parallel programs that use in-
formation from their pointer analysis; this analysis uses a

ow-insensitive analysis to detect pointer variable interfer-
ence between parallel threads [27]. Hicks also has developed
a
ow-insensitive analysis speci�cally for a multithreaded
language [14].

7 Conclusion

This paper presents a new
ow-sensitive, context-sensitive,
interprocedural pointer analysis algorithm for multithreaded
programs. This algorithm is, to our knowledge, the �rst

ow-sensitive pointer analysis algorithm for multithreaded
programs that takes potential interference between threads
into account.

We have shown that the algorithm is correct, runs in
polynomial time, and, in the absence of interference, pro-
duces the same result as the ideal (but intractable) algo-
rithm that analyzes all interleavings of the program state-
ments. We have implemented the algorithm in the SUIF
compiler infrastructure and used it to analyze a sizable set
of Cilk programs. Our experimental results show that the
algorithm has good precision and converges quickly for this
set of programs. We believe this algorithm can provide the
required accurate information about pointer variables re-
quired for further analyses, transformations, optimizations
and software engineering tools for multithreaded programs.

References

[1] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994.

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Maps: A compiler-managed memory system for Raw
machines. In Proceedings of the 26th International Sym-
posium on Computer Architecture, Atlanta, GA, May
1999.

[3] P. Bogle and B. Liskov. Reducing cross-domain call
overhead using batched futures. In Proceedings of the
9th Annual Conference on Object-Oriented Program-
ming Systems, Languages and Applications, Portland,
OR, October 1994.

[4] M. Carlisle and A. Rogers. Software caching and com-
putation migration in Olden. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 29{38, Santa Barbara,
CA, July 1995. ACM, New York.

[5] G. Cheng, M. Feng, C. Leiserson, K. Randall, and
A. Stark. Detecting data races in Cilk programs that
use locks. In Proceedings of the 10th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, June
1998.

[6] J. Choi, M. Burke, and P. Carini. E�cient

ow-sensitive interprocedural computation of pointer-
induced aliases and side e�ects. In Conference Record of
the Twentieth Annual Symposium on Principles of Pro-
gramming Languages, Charleston, SC, January 1993.
ACM.

[7] P. Diniz and M. Rinard. Synchronization transforma-
tions for parallel computing. In Proceedings of the 24th
Annual ACM Symposium on the Principles of Program-
ming Languages, pages 187{200, Paris, France, January
1997. ACM, New York.

[8] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of the SIG-
PLAN '94 Conference on Program Language Design
and Implementation, pages 242{256, Orlando, FL, June
1994. ACM, New York.

[9] B. Falsa�, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill,
J. Larus, A. Rogers, and D. Wood. Application-speci�c
protocols for user-level shared memory. In Proceedings
of Supercomputing '94, pages 380{389, Washington,
DC, November 1994. IEEE Computer Society Press,
Los Alamitos, Calif.

[10] M. Frigo, C. Leiserson, and K. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In
Proceedings of the SIGPLAN '98 Conference on Pro-
gram Language Design and Implementation, Montreal,
Canada, June 1998.

[11] D. Gi�ord and R. Glasser. Remote pipes and proce-
dures for e�cient distributed communication. ACM
Transactions on Programming Languages and Systems,
6(3), August 1988.

[12] D. Grunwald and H. Srinivasan. Data
ow equations for
explicitly parallel programs. In Proceedings of the 4th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, San Diego, CA, May 1993.

[13] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and
M. Weiser. Using threads in interactive systems: A
case study. In Proceedings of the Fourteenth Sympo-
sium on Operating Systems Principles, Asheville, NC,
December 1993.

[14] J. Hicks. Experiences with compiler-directed storage
reclamation. In Proceedings of the 5th ACM Conference
on Functional Programming Languages and Computer
Architecture, pages 95{105, June 1993.

[15] J. Knoop, B. Ste�en, and J. Vollmer. Parallelism for
free: E�cient and optimal bitvector analyses for paral-
lel programs. ACM Transactions on Programming Lan-
guages and Systems, 18(3):268{299, May 1996.

[16] W. Landi and B. Ryder. A safe approximation algo-
rithm for interprocedural pointer aliasing. In Proceed-
ings of the SIGPLAN '92 Conference on Program Lan-
guage Design and Implementation, San Francisco, CA,
June 1992.

[17] S. Midki� and D. Padua. Issues in the optimization of
parallel programs. In Proceedings of the 1990 Interna-
tional Conference on Parallel Processing, pages II{105{
113, 1990.

[18] R. O'Callahan and D. Jackson. Lackwit: A program un-
derstanding tool based on type inference. In 1997 Inter-
national Conference on Software Engineering, Boston,
MA, May 1997.

[19] J. Reppy. Higher{order Concurrency. PhD thesis,
Dept. of Computer Science, Cornell Univ., Ithaca, N.Y.,
June 1992.

[20] E. Ruf. Context-insensitive alias analysis reconsidered.
In Proceedings of the SIGPLAN '95 Conference on Pro-
gram Language Design and Implementation, La Jolla,
CA, June 1995.

[21] R. Rugina and M. Rinard. Automatic parallelization
of divide and conquer algorithms. In Proceedings of
the 7th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Atlanta, GA, May
1999.

[22] S. Savage, M. Burrows, G. Nelson, P. Solbovarro, and
T. Anderson. Eraser: A dynamic race detector for
multi-threaded programs. In Proceedings of the Six-
teenth Symposium on Operating Systems Principles,
Saint-Malo, France, October 1997.

[23] M. Shapiro and S. Horwitz. Fast and accurate
ow-
insensitive points-to analysis. In Proceedings of the 24th
Annual ACM Symposium on the Principles of Program-
ming Languages, Paris, France, January 1997.

[24] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM Sympo-
sium on the Principles of Programming Languages, St.
Petersburg Beach, FL, January 1996.

[25] P. Stocks, B. Ryder, W. Landi, and S. Zhang. Com-
paring
ow and context sensitivity on the modi�ca-
tion side-e�ects problem. In 1998 International Sym-
posium on Software Testing and Analysis, Clearwater,
FL, March 1998.

[26] R. Wilson and M. Lam. E�cient context-sensitive
pointer analysis for C programs. In Proceedings of the
SIGPLAN '95 Conference on Program Language De-
sign and Implementation, La Jolla, CA, June 1995.
ACM, New York.

[27] H. Zhu and L. Hendren. Communication optimizations
for parallel C programs. In Proceedings of the SIG-
PLAN '98 Conference on Program Language Design
and Implementation, Montreal, Canada, June 1998.

A Formal Treatment

De�nition 3 A parallel
ow graph is a directed graph hV;Ei
of vertices V and edges E � V � V . The successor func-
tion succ : V ! V is de�ned by succ(v) = fu j (v; u) 2 Eg
and the predecessor function pred : V ! V is de�ned by
pred(v) = fu j (u; v) 2 Eg. A path p with �rst vertex v1 and
last vertex vn is a sequence of vertices v1; : : : ; vn such that
81�i<n(vi; vi+1) 2 E. Given two vertices u and v, [u; v] is
the set of all paths with �rst vertex u and last vertex v. A
vertex v is reachable from a vertex u if [u; v] 6= ;.

A parallel
ow graph hV;Ei can have �ve kinds of ver-
tices: statement vertices, begin vertices, end vertices, par-
begin vertices and parend vertices. Statement vertices rep-
resent pointer assignments. Begin vertices and end vertices
come in corresponding pairs and represent the begin and
end of threads. Parbegin and parend vertices come in corre-
sponding pairs and represent the begin and end of a parallel
statement block.

Formally, a thread is the set of all vertices between a
begin vertex and the corresponding end vertex. We require
that each thread be isolated by its begin and end vertices,
i.e., all edges from outside the thread into the thread point
to the thread's begin vertex, and all edges from inside the
thread to outside the thread point from the thread's end
vertex.

De�nition 4 A vertex v is between a vertex u and a vertex
w if there exists a path from u to w that includes v, i.e.
9p 2 [u;w]:v 2 p. A set of vertices s is isolated by two
vertices u and w if 8v1 2 s; v2 62 s:(v1; v2) 2 E implies v1 =
w and (v2; v1) 2 E implies v1 = u.

De�nition 5 Given a begin vertex vb with corresponding
end vertex ve, thread(vb) is the set of all vertices between vb
and ve. We require that thread(vb) be isolated by its begin
vertex vb and corresponding end vertex ve.

Each corresponding pair of parbegin and parend vertices
has a set of parallel threads. There is an edge from the
parbegin vertex to the begin vertex of each of its threads,
and an edge from the corresponding end vertex of the thread
to the corresponding parend vertex.

De�nition 6 Given a parbegin vertex vp with corresponding
parend vertex vd, 8vb 2 succ(vp):vb must be a begin vertex
and pred(vb) = fvpg and vb's corresponding end vertex ve
must be an element of pred(vd). Also, 8ve 2 pred(vd):ve
must be an end vertex and succ(ve) = fvdg and ve's corre-
sponding begin vertex vb must be an element of succ(vp).

De�nition 7 The set of threads of a parbegin vertex vp is
fthread(vb) j vb 2 succ(vp)g.

The parallel computation of a parbegin vertex vp with
corresponding parend vertex vd is the set of vertices between
vp and vd. We require that each parallel computation be
isolated by its parbegin and parend vertices.

Finally, we require that there be a distinguished begin
vertex vb with corresponding distinguished end vertex ve
such that all vertices v 2 V are between vb and ve, vb has
no predecessor vertices, and ve has no successor vertices. All
other begin vertices must have a unique parbegin predeces-
sor, and all other end vertices must have a unique parend
successor.

Observation 1 V is a thread.

Observation 2 Given two threads t1 and t2, either t1\t2 =
;, t1 � t2, or t2 � t1. Furthermore, there is a least (under
subset inclusion) thread t such that t1 � t and t2 � t.

A.1 Legal Executions

We model legal executions of a parallel
ow graph hV;Ei
using sets of sequences of vertices from V . We �rst de�ne
several operators on sequences, then extend these operators
to sets of sequences. Given two sequences s1 and s2, s1; s2
is the concatenation of s1 and s2, and s1jjs2 is the set of all
interleavings of s1 and s2.

We extend ; and jj to sets of sequences as follows. The
vertex v represents the singleton set of sequences with one
sequence v, S1;S2 = [s12S1 [s22S2 fs1; s2g, and S1jjS2 =
[s12S1[s22S2s1jjs2. We de�ne the legal execution sequences
of a thread t as follows:

De�nition 8 (Legal Executions) Given a thread t with begin
vertex vb and corresponding end vertex ve, the set of legal
executions of t is the smallest set of sequences that satis�es
the following recursive de�nition:

1. vb is a legal execution of t.

2. If s; v is a legal execution of t, u 2 succ(v), and v is not
a parbegin vertex, or a thread end vertex, then s; v;u
is a legal execution of t.

3. If s; vp is a legal execution of t, vp is a parbegin vertex
with corresponding parend vertex vd, and s1; : : : ; sl are
legal executions of the l threads of vp, then all of the
sequences in s; vp; (s1jj � � � jjsl); vd are legal executions
of t.

An augmentation of a sequence of vertices with respect to
a thread is derived by inserting additional vertices between
the vertices of the sequence. The �rst and last vertices of the
augmentation must be the same as in the original sequence.
As de�ned below, none of the additional vertices can be in
the thread.

� The only augmentation of v with respect to t is v.

� If sa is an augmentation of s with respect to t and
v1; : : : ; vn is any sequence of vertices not in t (for all
1 � i � n, vi 62 t), then v; v1; : : : ; vn; sa is an augmen-
tation of v; s with respect to t.

A.2 Representing Analysis Results

Our analysis represents memory locations using a set L of
location sets in the program. It represents points-to infor-
mation using points-to graphs C � L� L.

The analysis generates, for each program point p, a points-
to information tripleMTI(p) = hC; I;Ei. Here C � L�L is
the current points-to information, I � L�L is the set of in-
terference edges created by parallel threads, and E � L�L
is set of edges created by the current thread. We require
that I � C. For each vertex v in the
ow graph, there are
two program points: the point �v before v, and the point v�
after v.

We require that the analysis result satisfy the data
ow
equations in Figures 3 and 6.

A.3 Soundness

We de�ne soundness by comparing the results of the algo-
rithm presented in the paper with the results obtained by
applying the standard pointer analysis algorithm for sequen-
tial programs to sequences of vertices from the parallel
ow
graph. When the functional [[]] (which provides the abstract
semantics for statement vertices) is applied to sequences of
statement vertices, it generates the same result as the anal-
ysis for sequential programs. We therefore use [[]] in the
de�nition of soundness for the analysis for multithreaded
programs. To do so, however, we must trivially extend [[]] to
non-statement vertices as follows: [[v]] hC; I;Ei = hC; I;Ei
if v is not a statement vertex.

An analysis result is sound if it is least as conservative as
the result obtained by using the standard pointer analysis
algorithm for sequential programs on all interleavings of the
legal executions.

De�nition 9 (Soundness) An analysis result MTI for a

ow graph hV;Ei is sound if for all legal executions v1; : : : ; vn
of V , it is true that for all 1 � i � n, Cs

i � Ca
i and Cs

i�1 �
Cb
i , where C

s
0 = L�funkg, hCs

i ; I
s
i ; E

s
i i = [[v1; : : : ; vi]] (;; ;; ;),

hCb
i ; I

b
i ; E

b
i i =MTI(�vi), and hC

a
i ; I

a
i ; E

b
i i =MTI(vi�).

Note that in this de�nition, Cs
i is the result of the se-

quential analysis after analyzing the �rst i vertices, Cb
i is

the analysis result at the program point before vi, and Ca
i

is the analysis result at the program point after vi.

A.4 Proof of Soundness

We next prove that any solution to the set of data
ow equa-
tions presented in this paper is sound. The proof depends
crucially on two key lemmas: the Propagation Lemma, which
characterizes the propagation of edges between parallel threads,
and the Extension Lemma, which characterizes the propaga-
tion of edges into, through, and out of parallel computations.

Lemma 1 (Propagation) Let

� vp be a parbegin vertex with threads t1; : : : ; tn,

� v 2 ti be a vertex in one of the threads,

� hCb
v; I

b
v; E

b
vi =MTI(�v), hCa

v ; I
a
v ; E

a
v i =MTI(v�),

� hC; I; Ei be a points-to information triple, and

� e 2 L � L be a points-to edge such that c 62 C but
c 2 C0, where hC0; I 0; E0i = [[v]] (C; I; E).

Then C � Cb
v implies for all u 2 [1�j�n;j 6=itj , e 2 Cb

u and

e 2 Ca
u, where hC

b
u; I

b
u; E

b
ui = MTI(�u) and hCa

u; I
a
u; E

a
ui =

MTI(u�).

Proof: If e 62 C but e 2 C0, then e is in the gen set of v
for hC; I; Ei. Because the gen set of v does not get smaller
if the input points-to information gets larger, C � Cb

v im-
plies e is in the gen set of v for hCb

v; I
b
v; E

b
vi, which in turn

implies that e 2 Ea
v . The equations will therefore prop-

agate e in the set of edges created by the current thread
past sequential merges, through statement vertices, through
parallel computations, and past parend vertices to the end
vertex of every thread containing v. At each parbegin ver-
tex with a thread t containing v, the equations will therefore
propagate e into the incoming set of interference edges for
every thread that executes in parallel with t. The equations
will therefore propagate e to the current points-to graph for
every vertex in every thread that may execute in parallel
with a thread containing v. 2

Property 1 (Extension) A legal execution s of a thread t
has the extension property if for all augmentations v1; : : : ; vn
of s with respect to t, for all Cs

0 � Cb
1 and for all 0 � k <

j � n and edges e such that

� vj 2 t, and

� k 6= 0 implies vk 2 t and e 62 Cs
k�1, and

� 8k�i<j :e 2 Cs
i , and

� 8k�i<jC
s
i � Ca

i , and

� 8k�i<jC
s
i�1 � Cb

i ,

it is true that e 2 Cb
j , where for all 1 � i � n,

� hCb
i ; I

b
i ; E

b
i i =MTI(�vi),

� hCa
i ; I

a
i ; E

a
i i =MTI(vi�), and

� hCs
i ; I

s
i ; E

s
i i = [[v1; : : : ; vi]] (C

s
0 ; ;; ;).

Lemma 2 (Extension) All legal executions s of a thread t
have the extension property.

Proof: The proof is by structural induction on s; the cases
of the proof correspond to the cases in De�nition 8.

� Case 1: vb clearly has the extension property.

� Case 2: Assume s; v has the extension property, v
is not a parbegin or parend vertex, and u 2 succ(v).
Must show that s; v;u has the extension property. Let
v1; : : : ; vn be an augmentation of s; v; u with respect
to t such that v1; : : : ; vn together with Cs

0 , k, j, and e
satisfy the antecedent of the extension property. Let i
be the index of v in v1; : : : ; vn so that v = vi.

If vj 6= u, then we can apply the induction hypothesis
to the augmentation v1; : : : ; vi of s; v with respect to t
to get e 2 Cb

j . If vj = u, note that k � i < j, which

implies that e 2 Ca
i . Because u 2 succ(v), Ca

i � Cb
j ,

and e 2 Cb
j .

� Case 3: Assume s; vp has the extension property, vp
is a parbegin vertex with corresponding parend vertex
vd and l threads t1; : : : ; tl. Also assume that s1; : : : ; sl
are legal executions of the threads t1; : : : ; tl, and that
s1; : : : ; sl all have the extension property. Must show
that all sequences in s; vp; (s1jj � � � jjsl); vd have the ex-
tension property. Let v1; : : : ; vn be an augmentation
with respect to t of a sequence in s; vp; (s1jj � � � jjsl); vd
such that v1; : : : ; vn together with Cs

0 , k, j, and e sat-
isfy the antecedent of the extension property for s.
Must show that e 2 Cb

j . The proof is a case analysis
on the position of vk and vj .

{ k = 0 or vk in s; vp and vj in s; vp. Then e 2 Cb
j

by the induction hypothesis.

{ k = 0 or vk in s; vp and vj in one of the legal
executions of the threads of vp; assume without
loss of generality in s1. Let vb be the begin vertex
of thread t1. If vj = vb, then let i be the index
of vp in v1; : : : ; vn so that vi = vp. Note that
k � i < j and therefore e 2 Ca

i . By the data
ow
equations for parbegin vertices, Ca

i � Cb
j , which

implies e 2 Cb
j .

If vj 6= vb, we will apply the induction hypothesis
to s1. We must therefore �nd an augmentation,

a points-to graph, two integers and an edge that
satisfy the antecedent of the extension property.

Let i be the index in v1; : : : ; vn of the begin vertex
vb of t1 and let h be the index of the corresponding
end vertex ve. Note that k < i < j � h < n. By
the extension property, Cs

i�1 � Cb
i . The augmen-

tation vi; : : : ; vh of s1 with respect to t1, the inte-
gers 0 and j � i+1 (the index of vj in vi; : : : ; vh)
and the edge e together satisfy the antecedent of
the extension property for s1. By the induction
hypothesis, e 2 Cb

j .

{ k = 0 or vk in s; vp and vj = vd. Then all of the
end vertices vei of s1; : : : ; sl are between vk and vj
in v1; : : : ; vn. By de�nition of the extension prop-
erty, for all 1 � i � l, e 2 C, where hC; I; Ei =
MTI(vei �). By de�nition of the data
ow equa-
tions for parend vertices (which intersect the cur-
rent points-to graphs from the end vertices of the
parallel threads), e 2 Cb

j .

{ vk and vj both in the same legal execution of one
of the threads of vp; assume without loss of gen-
erality in s1. We will apply the induction hypoth-
esis to s1.

Let i be the index in v1; : : : ; vn of the begin vertex
vb of s1 and let h be the index of the correspond-
ing end vertex ve. Note that i � k < j � h < n.
We can then apply the induction hypothesis to
the augmentation vi; : : : ; vh of s1 with respect t1
to obtain e 2 Cb

j .

{ vk and vj in di�erent legal executions of the threads
of vp; assume without loss of generality in s1 and
s2. Then e is in the gen set of vk, and by the
Propagation Lemma e 2 Cb

j .

{ vk in one of the legal executions of the threads of
vp, assume without loss of generality in s1, and
vj = vd. Then e is in the gen set of vk. For all
1 � i � l, let vei be the end vertices of s1; : : : ; sl
and let hCi; Ii; Eii = MTI(vei �). By the Prop-
agation Lemma, for all 2 � i � l, e 2 Ci. ve1
is between vk and vj in v1; : : : ; vn, which implies
(by the de�nition of the extension property) that
e 2 C1. By the de�nition of the data
ow equa-
tions for parend vertices, e 2 Cb

j .

2.
We now prove the soundness theorem.

Theorem 1 (Soundness) The data
ow equations presented
in this paper are sound.

Proof: Given a
ow graph hV;Ei, consider any legal execu-
tion v1; : : : ; vn of V . Let Cs

i , C
b
i and Ca

i be as in De�nition
9. Will show by induction that for all 1 � j � n, it is true
that for all 1 � i � j, Cs

i � Ca
i and Cs

i�1 � Cb
i .

� Base Case: In the initial points-to information all
the edges point to unknown, so Cs

0 = Cb
1 = L�funkg.

Also, since v1 is a begin vertex, C
a
1 = Cb

1 and C
s
0 = Cs

1 .
Thus, Cs

0 = Cs
1 = Ca

1 = Cb
1 and therefore the inclusion

relations Cs
0 � Cb

0 and Cs
1 � Ca

1 are trivially satis�ed.

� Induction Step: Assume Cs
i � Ca

i and Cs
i�1 � Cb

i

for 1 � i < j. Must show Cs
j � Ca

j and Cs
j�1 �

Cb
j . Consider any edge e 2 Cs

j�1. Find the largest
k < j such that e 2 Cs

k but e 62 Cs
k�1. If no such k

exists, let k = 0. By the Extension Lemma applied to
v1; : : : ; vn, C

s
0 , k, j, and e, e 2 Cb

j , and Cs
j�1 � Cb

j .
By monotonicity of [[]] , Cs

j � Ca
j .

2.

B Precision of Analysis

We convert a parallel
ow graph to a sequential
ow graph
as follows. Given a par construct with n sequential threads
t1; : : : ; tn, �rst construct the product graph of the threads.
The vertices of this graph are compound vertices of the
form (v1; : : : ; vn), where vi is an element of ti; each edge
(v; u) in the original
ow graph generates an edge from
(v1; : : : ; vi�1; v; vi+1; : : : ; vn) to (v1; : : : ; vi�1; u; vi+1; : : : ; vn)
in the product graph. For each such edge, we construct a
new vertex vu, then replace the edge in the product graph
with two edges: one from (v1; : : : ; vi�1; v; vi+1; : : : ; vn) to vu,
and another from vu to (v1; : : : ; vi�1; u; vi+1; : : : ; vn). We
use the correspondence between vu and u to relate the pro-
gram points in the resulting interleaved graph to the pro-
gram points in the original graph.

The transfer function of the new vertex vu is the same as
the transfer function of u in the original graph; the transfer
function of the compound vertices is the identity. The inter-
leaved graph directly represents all possible interleavings of
statements from the n parallel threads. We can recursively
apply this construction to convert a parallel
ow graph to a
(potentially much larger) sequential
ow graph.

We de�ne interference in the analysis of the interleaved
graph as follows. For each vertex u in the original
ow graph,
�nd the minimal thread t containing u. There is a set of new
vertices vu in the interleaved graph that correspond to u;
during the analysis, label each of the edges in the gen set of
vu with the thread t and propagate these edge labels through
the analysis. We say that the analysis of a vertex uses an
edge e in the current points-to graph C if the presence of
an edge in the gen set as de�ned in Figure 4 depends on
the presence of e in C. We say that there is interference if
a vertex vu uses an edge e whose set of labels contain only
parallel threads of t. In this case, the only reason e is in
the gen set of vu is because some parallel thread created an
edge that, in turn, caused vu to generate e.

If there is no interference in the analysis of the interleaved
graph, then we can show that the analysis of each thread in
the original graph never uses any of the edges Ej created
by other parallel threads. In this case, the direct analysis of
par construct terminates in at most two iterations, none of
the points-to graphs change during the second iteration, and
the analysis result is generated by the interleaving that took
place during the �rst iteration. Since this interleaving is only
one of the many interleavings in the interleaved graph, the
direct analysis generates a result that is at least as precise
as the interleaved analysis.

