
Coarse-Grain Parallel Programming in Jade

Monica S. Lam and Martin C. Rinard
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

This paper presents Jade, a language which allows a pro-
grammer to easily express dynamic coarse-grain paral-
lelism. Starting with a sequential program, a program-
mer augments those sections of code to be parallelized
with abstract data usage information. The compiler and
run-time system use this information to concurrently ex-
ecute the program while respecting the program’s data
dependence constraints. Using Jade can significantly re-
duce the time and effort required to develop and maintain
a parallel version of an imperative application with se-
rial semantics. The paper introduces the basic principles
of the language, compares Jade with other existing lan-
guages, and presents the performance of a sparse matrix
Cholesky factorization algorithm implemented in Jade.

1 Introduction

The goal of our research is to provide programming lan-
guage support for exploiting coarse-grain concurrency,
or concurrency in which each unit of serial computation
executes at least several thousand instructions. There
are two major reasons why automatic techniques that ex-
tract static parallelism from sequential programs cannot
fully exploit available coarse-grain concurrency. First,
only the programmer has the high-level knowledge nec-
essary to decompose his program into coarse-grain tasks.
This information is lost once the program is encoded in a
conventional programming language. Second, it is some-
times important to exploit irregular, data-dependent con-
currency available only as the program runs. The large
grain size often makes it possible to profitably amortize
the dynamic overhead required to exploit this last source
of concurrency.

This research was supported in part by DARPA contract N00014-87-
K-0828.

There have been several attempts to provide pro-
gramming language support for coarse-grain concur-
rency. Most of the proposed languages support an ex-
plicitly parallel programming paradigm. The program-
mer must therefore directly manage the concurrency us-
ing constructs that create and synchronize parallel tasks.
This management burden complicates the programming
process, making parallel programming a more time-
consuming, error-prone activity than programming in a
conventional sequential language.

This paper introduces a new programming language
called Jade, which supports coarse-grain concurrency
within the sequential imperative programming paradigm.
Jade programmers augment a sequential program with
high-level dynamic data usage information. The Jade
implementation uses this information to determine which
operations can be executed concurrently without violat-
ing the program’s sequential semantics. While the com-
piler can sometimes use this information to extract stat-
ically available concurrency, the Jade run time system
is capable of analyzing the data usage information and
extracting dynamically available concurrency. Because
the Jade implementation is responsible for managing the
parallel activity over the physical hardware, machine de-
pendent optimizations can be provided by tailoring the
implementation to different architectures. Thus Jade not
only simplifies programming by preserving the familiar
sequential imperative model of programming, but also
enhances portability by providing machine-specific opti-
mizations within the Jade implementation.

Because the power to abstract away from low-level de-
tails is critical in a language designed to support coarse-
grain concurrency, Jade allows the programmer to ex-
press the data usage information at a level of abstrac-
tion appropriate to the granularity of parallelism. The
programmer groups the units of serial execution astasks
and structures the data shared by multiple tasks asshared
data objects. The programmer can express each task’s
side effects in terms of high-level side effect specifica-
tion operations on shared data objects. The design of
these objects therefore determines the parallelization and
synchronization granularity.

The organization of the paper is as follows. We first
introduce the basic programming paradigm, illustrating
both how a programmer attaches simple data usage infor-

mation to a program’s tasks and how the Jade implemen-
tation uses that information to run the program in parallel.
In Section 3, we show that by providing more detailed
information about a task’s data usage, a Jade program-
mer can achieve more sophisticated concurrency patterns.
Section 4 describes how programmers build shared data
objects with high-level side effect specification opera-
tions. We then present a complete Jade programming
example, and close with a discussion and comparison
with other languages designed to express coarse-grain
concurrency.

2 Basic Programming Paradigm

In Jade, the programmer provides theprogram knowl-
edge required for efficient parallelization; the implemen-
tation combines itsmachineknowledge with this infor-
mation to map the computation efficiently onto the un-
derlying hardware. Here are the Jade programmer’s
responsibilities:

� Task Decomposition:The programmer starts with a
serial program and uses Jade constructs to identify
the program’s task decomposition.

� Side Effect Specification: The programmer pro-
vides a dynamically determined specification of the
side effects each task performs on the shared data
objects it accesses.

The Jade implementation performs the following ac-
tivities:

� Constraint Extraction:The implementation uses the
program’s serial execution order and the tasks’ side
effect specifications to extract the dynamic inter-task
dependence constraints that the parallel execution
must obey.

� Synchronized Parallel Execution:The implemen-
tation maps the tasks efficiently onto the hard-
ware while enforcing the extracted dependence con-
straints.

The programmer expresses his program’s task decom-
position and side effect specifications using extensions
to existing sequential languages. The Jade extensions in-
clude a data type used to define shared data objects, and
several additional language constructs. These extensions
have been implemented for C++, C and FORTRAN.

2.1 Shared Data Objects

All data accessed by multiple tasks must be identified
as shared data objects. Programmers declare tasks’ side
effects by applying side effect specification operations to
these shared data objects. For example, therd (read) op-
eration specifies that the task will read the given object,

the wr (write) operation specifies that the task will write
the given object, and therw (read-write) operation speci-
fies that the task will first read then write the given object.
It is the programmer’s responsibility to ensure that the
declared side effect specification operations correspond
to the way the task accesses the data. The Jade imple-
mentation provides several common shared data types
used to create shared data objects; Section 4 describes
how Jade programmers can define their own shared data
types.

When executing a program in parallel, the Jade imple-
mentation preserves the program’s semantics by main-
taining the serial execution order for tasks with conflict-
ing side effect specifications. For example, two tasks
that write the same shared data object have conflicting
side effects, and must execute sequentially in the pro-
gram’s serial execution order. The Jade implementation
must also preserve the serial execution order between a
task that writes a shared data object and another task
that reads the same object. Of course, tasks accessing
disjoint sets of objects or reading the same object can
execute concurrently.

2.2 With and Only With

We now illustrate the basic Jade programming paradigm
by presenting thewithth (pronounced “with and only
with”) construct. Jade programmers use this construct
to declare that a piece of code will executewith andonly
with a specified set of side effects to shared data objects.

withth f side effect specificationg
(parameters for task body)f

task body
g

Operationally, the Jade implementation creates a task
when it executes awithth construct; the task body sec-
tion contains the serial code executed when the task runs.
When such a task executes it may reference certain vari-
ables from the enclosing environment which parameter-
ize its behavior. The programmer gives a list of these
variables in the parameters section. At task creation time
the Jade implementation preserves the values of these
variables by copying them into the task’s context.

The programmer uses the side effect specification sec-
tion to declare the side effects that the task will perform
on shared data objects. The specification itself is an arbi-
trary piece of code containing side effect specification op-
erations on these shared objects. Conceptually, the Jade
implementation determines the task’s side effects at task
creation time by executing this specification. Because the
specification can contain control flow constructs such as
conditionals, loops and function calls, the programmer
may use information available only at run time when
declaring a task’s side effects.

A Jade program’s concurrency pattern is completely
orthogonal to its procedural decomposition. As the fol-
lowing simple example illustrates, there is no require-
ment that concurrently executable tasks come from the
same procedure invocation.

Double v[n];
int index[m];
p()
f

for (int i = 0; i < m; i++) f
q(v, index[i]);

g
g

q(v, j)
Double v[];
int j;
f

/* modify v[j] */
...

g

This example repeatedly appliesq to elements ofv
accessed indirectly through the index arrayindex. We
assume thatq modifies v[j] and has no other side ef-
fect. Invocations ofq modifying different elements of
the array can execute concurrently; conversely, invoca-
tions modifying the same element must obey the code’s
original sequential order.

A programmer can code the parallel version of our
example in Jade as follows:

SharedDouble v[n];
int index[m];
p()
f

for (int i = 0; i < m; i++) f
q(v, index[i]);

g
g

q(v, j)
SharedDouble v[];
int j;
f

withth f v[j].rw(); g
(SharedDouble v[]; int j;)f

/* modify v[j]; */
...

g
g

Here the programmer identifies each invocation ofq
as a separate task. He therefore converts the objects that
q modifies into shared data objects, in this caseShared-
Doubles, and uses therw operation to declare that the
task will read then write its parameter.

We now describe this program’s operational interpre-
tation. As the program executes the loop sequentially,

the Jade implementation creates a new task for every in-
vocation ofq, copyingj and the address of the arrayv
into the new task’s context. The implementation then
analyzes the task’s side effect specification and infers
that the new task must not execute until all tasks from
preceding iterations that includev[j] in their side effect
specification have finished.

This example illustrates how simple Jade programs ex-
ecute: one processor runs the program serially, period-
ically creating tasks atwithth statements that the other
processors pick up and execute. The Jade implementa-
tion uses the serial task creation order to determine the
relative execution order of tasks with conflicting side ef-
fects.

In this simple model of parallel computation, synchro-
nization takes place only at task boundaries. A task can
run only when it acquires all of the shared data objects
it will access; it releases the acquired objects only upon
termination. Although it is possible to express the con-
currency patterns of many parallel applications using just
withth, some parallel applications have more complex
concurrency patterns requiring periodic inter-task syn-
chronization. In the next section we present the Jade
constructs that allow programmers to express these more
complex synchronization patterns.

3 Decoupling Parallelism and Syn-
chronization

The restricted form of synchronization thatwithth sup-
ports can unnecessarily serialize computation in two
cases: when a task’s first access to a shared data ob-
ject occurs long after the task starts running, and when
a task’s last access to a shared data object occurs long
before the task terminates. The following procedure pro-
vides a concrete example of both forms of unnecessary
serialization.

SharedDouble x, y;
p()
f

withth f x.wr(); g () f
x = f(1);

g
withth f y.rd(); x.rw(); g () f

Double s;
s = g(y);
x = h(x, s);

g
withth f y.wr(); g () f

y = f(2);
g

g

This procedure generates three tasks. The tasks must
execute sequentially to preserve the serial semantics. The

first unnecessary serialization comes from the fact that
the second task does not accessx until it finishes the
statements = g(y). Therefore, the statementx = f(1)
from the first task should be able to execute concurrently
with the statements = g(y) from the second task.

The second unnecessary serialization comes from the
fact that the second task never accessesy after the
statements = g(y) finishes. Therefore, the statement
x = h(x, s) from the second task should be able to ex-
ecute concurrently with the statementy = f(2) from the
third task. In the next two sections we show how to
eliminate both sources of unnecessary serialization.

One way to achieve full concurrency is to break the
second task up into two tasks. This solution is inferior
because the modification is not motivated by examining
the code of the second task itself. Moreover, this solu-
tion requires thats be made into a shared object. The
need to manage the two new serial tasks may also cause
extra overhead. The solution presented below bypasses
these problems by allowing tasks to synchronize as they
execute.

3.1 With and With Only

Analyzing thewithth construct, we observe that it simul-
taneously specifies two kinds of side effect information:
positiveside effect information andnegativeside effect
information. Thewithth construct specifies positive side
effect information by stating that the task body will carry
out the declared side effects. Therefore, the task must not
execute until it can perform these side effects without
violating the program’s serial semantics.Withth speci-
fies negative side effect information by stating that the
task body has no side effects except the declared side ef-
fects. The task can therefore run concurrently with any
other piece of code as long as their side effects do not
conflict. Operationally, positive side effect information
causessynchronization, while negative side effect infor-
mation creates opportunities forconcurrency.

By providing a construct (with) that specifies only pos-
itive side effect information and a construct (withonly)
that specifies only negative side effect information, we
allow the programmer to create tasks that incrementally
acquire shared data objects as they are accessed. The
general forms of thewith andwithonly constructs are:

with f side effect specificationg f
code body

g
withonly f side effect specificationg

(parameters for task body)f
task body

g

The with construct specifies side effects to shared data
objects that the code body will immediately perform. Be-
cause the code body must have access to the shared data

objects in the side effect specification section before it
can proceed, we say that thewith demands these objects.
Sincewith provides only positive side effect information,
the code body may declare additional side effects using
nested Jade constructs.

Operationally, the Jade implementation suspends ex-
ecution at awith statement until all previously created
tasks that have a dependence conflict with thewith state-
ment have completed.With constructs therefore create
synchronization, not concurrency.

Thewithonlyconstruct only specifies that the code has
no side effects besides the declared side effects. Before
performing any side effects to shared data, the task body
must declare the side effects using nestedwith or withth
constructs. Because the task body does not immediately
access the shared data objects in the side effect speci-
fication section, we say that thewithonly claims these
objects.

Operationally, when the Jade implementation executes
a withonly statement, it creates an immediately exe-
cutable task containing thewithonly’s code and contin-
ues to execute the code following thewithonly construct.
Any subsequently created task need not wait for thewith-
only to finish unless its side effect specification conflicts
with that of thewithonly.

Returning to our example, the programmer can use
with and withonly to make the second task demandx
and y as they are accessed, instead of at the beginning
of the task.

SharedDouble x, y;
p()
f

withth f x.wr(); g () f
x = f(1);

g
withonly f y.rd(); x.rw(); g () f

Double s;
with f y.rd(); g f

s = g(y);
g
with f x.rw(); g f

x = h(x, s);
g

g
withth f y.wr(); g () f

y = f(2);
g

g

The statementsx = f(1) and s = g(y)can now execute
concurrently. However, the second and third tasks will
still execute sequentially, because the second task will
hold the claim to ready until it terminates.

3.2 Without

To eliminate this last source of unnecessary serializa-
tion, the programmer must be able to specify that a task
has completed a declared side effect, and therefore no
longer needs to access the corresponding shared data ob-
ject. Jade provides the negative side effect specification
constructwithout for just this purpose. Here is the gen-
eral form of thewithout construct.

without f side effect specificationg

A without construct dynamically enclosed in a task
specifies that the task body’s remaining computation will
perform none of the side effects in thewithout’s side
effect specification. Programmers usewithout to reduce
the enclosing task’s specified set of side effects. This
reduction may eliminate conflicts between the enclosing
task and tasks occurring later in the sequential execution
order. The later tasks may therefore be able to execute as
soon as thewithoutexecutes. In the absence of thewith-
outthese tasks would have had to wait until the enclosing
task terminated.

In our example, the programmer can use awithout to
allow the statementsx = h(x, s)from the second task and
y = f(2) from the third task to execute concurrently.

SharedDouble x, y;
p()
f

withth f x.wr(); g () f
x = f(1);

g
withonly f y.rd(); x.rw(); g () f

Double s;
with f y.rd(); g f

s = g(y);
g
without f y.rd(); g
with f x.rw(); g f

x = h(x, s);
g

g
withth f y.wr(); g () f

y = f(2);
g

g

3.3 Hierarchical Concurrency

We have presentedwithonly as a way to delay a task’s
demands for shared data objects while maintaining the
underlying serial execution order on side effects to those
objects. Withonly can also be used to express hierar-
chically structured concurrency patterns. By enclosing
subtasks inwithonly constructs, a programmer can easily
create, execute and synchronize multiple parallel compu-
tations simultaneously. Consider the following example:

SharedDouble *x;
p()
f

withonly f x->wr(); g () f
SharedDouble *y, *z;
y = new SharedDouble;
z = new SharedDouble;
withth f y->wr(); g (SharedDouble *y;)f

*y = f(1);
g
withth f z->wr(); g (SharedDouble *z;)f

*z = f(2);
g
with f x->rw(); y->rd(); z->rd(); g f

*x = h(x,y,z);
g

g
g

Here thewithonly encloses a group of subtasks that
producex; the entire procedure itself can run concur-
rently with other parts of the program that do not need
the value ofx. This example illustrates that a task need
not specify all of its side effects, but just the externally
visible ones. Here thewithonly need not claimy andz
because they are not visible outside its task body. The
following two general rules define the legal use of claims
and demands:

� Every access to a shared data object must be (dy-
namically) enclosed in awith or withth construct
that declares that access, and

� Everywithonly or withth must declare all of its task
body’s accesses to externally visible shared data ob-
jects.

4 Applying Data Abstraction to Syn-
chronization

Jade tasks synchronize on the pieces of data that they ac-
cess. In the preceding examples, tasks accessed and syn-
chronized on fine-grain objects (i.e.Doubles). Coarse
grain tasks, however, access coarse pieces of data. For
example, many parallel matrix algorithms access a ma-
trix by rows or by columns. Because the unit of syn-
chronization should match the granularity of data access,
the shared data objects that these tasks use should sup-
port synchronization on the coarse pieces of data that the
tasks access.

Jade programmers build shared data objects using a
synchronization type called tokens. Each token func-
tions as a synchronization data abstraction by carrying
the dependence for a conceptual unit of data. We use the
C++ class notation to make this abstraction more appar-
ent. FORTRAN and C do not have the syntactic sugar

to bundle up the tokens with the data but the basic pro-
gramming ideas are the same.

Each token has three side effect specification opera-
tions: rd, wr, and rw specifying, respectively, the read
side effect, write side effect and read then write side ef-
fect. In the simplest case, the programmer augments a
data type with a token and side effect specification oper-
ations; theSharedDoubleused above is such an example:

class SharedDouble : public Doublef
private:

token token;
public:

void rd() f token.rd();g;
void wr() f token.wr();g;
void rw() f token.rw();g;

g

We now present an example which demonstrates how
Jade programmers use tokens to build complex shared
data objects. The following sparse matrix data structure
stores the compressed columns in a linear array. An in-
dex array gives each column’s starting location in the
linear array; another array gives each element’s row in-
dex. If the computation synchronizes on the matrix’s
columns, the programmer simply associates a token with
each column.

class Sparsef
public:

double Data[MAXELEMENTS];
int RowIndex[MAX ELEMENTS];
int ColumnIndex[MAX COLUMNS];
int NumColumns;

g
class SharedSparse : public Sparsef
private:

token token[MAX COLUMNS];
public:

void col rd(int col) f token[col].rd();g
void col wr(int col) f token[col].wr(); g
void col rw(int col) f token[col].rw(); g
void col cm(int col)f token[col].cm();g

g

SharedSparse *M;
ColMod() f

for (int i = 0; i < M->NumColumns; i++)f
withth f M->col rw(i); g (int i;) f

/* modify column i of M */
...

g
g

g

Here, each token carries the dependence for a column
in the sparse matrix, which consists of an arbitrary num-
ber of contiguous data elements. In general, a shared
data object’s synchronization granularity need not cor-
respond to any syntactic data declaration unit. Using

the token and its side effect operations as primitives, a
Jade programmer can define the object’s own side effect
specification operations to match the way the program
uses the data. In this example theColMod routine ac-
cesses the sparse matrix by columns, which matches the
SharedSparsetype’s side effect specification interface.
Expressing side effects in terms of tokens can clarify
the dependence structure. In this example, the clarified
structure makes it possible for a compiler to discover the
static independence ofColMod’s loop iterations.

We have described how Jade enforces the serial seman-
tics by maintaining the sequential order between writes
and other accesses to the same data. It is possible to fur-
ther relax the execution order by exploiting the higher
level semantics of user-defined operations. Consider
the histogram example. Because addition is commuta-
tive and associative, the histogram increments commute
with each other. Therefore, the implementation need not
enforce the individual read and write dependence con-
straints as long as the increments execute with mutual
exclusion. For another example of commuting, mutually
exclusive updates, see the sparse Cholesky factorization
algorithm presented in Section 5. Because many pro-
grams contain commuting updates, Jade tokens support
the commutative update (cm) side effect specification op-
eration in addition to the basicrd, wr andrw operations.

This view of synchronization smoothly generalizes
from individual memory locations with read and write
operations to abstract data types with associated side ef-
fect specification operations, each with its own synchro-
nization rules. The shared data object concept provides
an effective synchronization framework for concurrent
object-oriented programming.

5 A Programming Example

The current Jade implementation consists of a run-time
system and a preprocessor that translates Jade code to C,
C++ or FORTRAN code containing calls to this run-time
system. This implementation runs on an Encore Multi-
max and a Silicon Graphics IRIS 4D/240S. Implemented
applications include a sparse Cholesky factorization al-
gorithm due to Rothberg and Gupta [19], the Perfect
Club benchmark MDG [2], LocusRoute, a VLSI routing
system due to Rose [18], a parallel Make program, and
cyclic reduction, a column-oriented matrix algorithm.

To illustrate Jade with a more realistic example, we
now show how Rothberg and Gupta’s sparse Cholesky
factorization algorithm is implemented in Jade. The
factorization algorithm is based on supernodes[19], or
groups of adjacent columns with identical nonzero struc-
ture. For example, the supernodes of the matrix in Figure
1 are (1,2), (3), (4,5,6), (7,8,9) and (10, 11).

The serial computation processes the supernodes from
left to right. Each supernode generates one internal up-

Figure 2: A Sparse Matrix Task Graph

Factor (M)
SharedSparse *M;
f

for (all supernodes super in the matrix M
from left to right) f

CompleteSuperNode(M,super);
g

g

CompleteSuperNode(M,super)
SharedSparse *M;
int super;
f

withth f
for (all columns col in super)f

M->col rw(col);
g
M->superrw(super);

g (SharedSparse *M; int super;)f
InternalUpdate(M,super);

g

for (all columns col that super updates)f
withth f

M->superrd(super);
M->col cm(col);

g (SharedSparse *M; int super; int col;)f
ExternalUpdate(M,super,col);

g
g

g

Figure 3: Jade Sparse Cholesky Factorization

class definition from Section 4. The side effects to a
supernode are specified as column accesses before the
internal update, and as supernode accesses after the up-
date. To interface between the two, the internal update
claims the data in both column and supernode granular-
ities.

We compare the Jade version with Rothberg and
Gupta’s parallel version [20] implemented in the ANL
Macro package[16]. Each internal or external update is
also a task in Rothberg and Gupta’s program. Their
program explicitly spawns a thread for every proces-
sor. External updates are statically partitioned among
the threads, and internal updates are managed using a
task queue. Before the actual factorization begins, the
program precomputes the number of external updates to
each supernode. Every time an external update com-
pletes, the code decrements the external column’s super-
node count and checks if it is zero. If so, the code
explicitly enqueues that supernode’s internal update onto
the task queue. All threads are notified when the in-
ternal update is completed. This code has been highly
optimized, and has a minimal run-time overhead.

� ANL Macros
� Jade

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

 Encore Multimax Sparse Cholesky Factorization

 Number of Processors

 S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

�

�

�

�

�

�

�

�

�

�

Figure 4: Jade and ANL Macro Package Speedups

We compare the performance of both versions of the
algorithm in Figure 4. The performance is measured
as the speedup factor relative to the extremely efficient
serial sparse Cholesky factorization algorithm presented
in [19]. These speedup figures are for the factorization
phase of the computation only; the matrix is BCSSTK15
(the module of an offshore platform) from the Harwell-
Boeing Sparse Matrix Collection [7]. The factored ma-
trix has 3,948 columns, 647,274 nonzeros, 1,633 supern-
odes and generated 161,060 Jade tasks, with an average
of 1,024 floating point operations per task. These perfor-
mance numbers are collected from the Encore Multimax

Jade and ANL Macro package implementations.
We first observe that the performance of the optimized

ANL program running on a single processor is compa-
rable to that of the sequential program, indicating that
the ANL program has low overhead. On the other hand,
Jade’s general run-time system has a much higher over-
head. Fortunately, the Jade program scales reasonably,
with the 8-processor implementation running about 7
times faster than the uniprocessor Jade program. We
are currently working on optimizations that will improve
the performance of the Jade run-time system.

6 Discussion and Comparison with
Other Work

Jade is designed to support the parallel execution of com-
putations expressible as a sequential program. To suc-
cessfully parallelize a program using Jade, the program-
mer must ensure that it has enough inherent concurrency
to keep the target machine busy. In some cases, the
programmer will need to privatize some of the global
variables to eliminate unnecessary sequencing constraints
caused by data reuse. In other cases the programmer may
need to use different algorithms with more inherent con-
currency.

Jade was designed for machines with a single address
space, such as the large-scale DASH multiprocessor un-
der development at Stanford [13]. In such machines, the
long latency associated with remote data accesses makes
it important to reuse cached data whenever possible. The
current Jade implementation identifies tasks which access
the same tokens, and schedules these tasks on the same
processor. Tasks will therefore be able to reuse data
brought into the cache by the previously executed task.

The current implementation requires an underlying
shared address space. For Jade to run on a machine
with separate address spaces, the implementation must
generate the communication required to transfer shared
data between processors. The current language, how-
ever, does not explicitly associate tokens with the data
whose dependence they carry. Therefore, a Jade imple-
mentation cannot generate the communication because
it cannot know which actual pieces of data a task will
touch. We plan to extend the language so that tokens are
explicitly associated with the data they represent. This
association will make it possible to implement Jade on
machines with separate address spaces.

Jade has two design principles which together set it
apart from other programming languages. The first prin-
ciple is that Jade provides implicit concurrency and syn-
chronization by relaxing a sequential program’s execu-
tion order. Since the Jade implementation enforces the
data dependence constraints, the programmer can pre-
serve both the structure and the semantics of the serial

program in the parallel version. The second principle is
that Jade supports data abstraction in that Jade program-
mers specify side effect information using high-level op-
erations on shared data objects.

In the following section we examine the ramifications
of the first principle by comparing Jade to explicitly par-
allel programming languages. We then compare Jade
with other languages designed to express the concurrency
available in serial programs.

6.1 Explicit Concurrency and Synchro-
nization

A major issue in parallel programming language design
is the question of how to correctly synchronize coarse-
grain tasks. In this section we compare Jade with ap-
proaches that provide constructs to create and explicitly
synchronize parallel tasks.

6.1.1 Task Queue Model

One common way to synchronize coarse-grain parallel
computation is to use a threads package with thread cre-
ation and low-level synchronization primitives to imple-
ment an explicit task queue. The programmer first breaks
his program up into a set of tasks; a task is enabled (i.e.,
put onto the task queue) when all of its predecessors in
the dependence graph have terminated. Free processors
grab and run these enabled tasks.

The programmer must enforce the inter-task data de-
pendence constraints by inserting synchronization primi-
tives into tasks that touch the same data. This direct man-
agement code becomes distributed throughout the pro-
gram text, encoding the global synchronization pattern
in terms of the provided low-level synchronization prim-
itives. This synchronization code creates new explicit
connections between parts of the program that access
the same data, making the program harder to create and
modify. If the program’s concurrency pattern changes,
the programmer must go through the program modifying
the distributed pieces of synchronization code.

Programmers can use Jade as a high-level interface to
the task queue model of computation. Jade programmers
provide local data usage information which the Jade im-
plementation uses to extract and implement the global
task dependence graph. Because Jade programmers do
not manage the synchronization, they add no new ex-
plicit connections between pieces of code. Therefore,
Jade programs are easier to modify and maintain than
the corresponding task queue versions. The major ad-
vantage of a direct task queue implementation is effi-
ciency: the programmer can control the machine at a
fairly low level and use special-purpose synchronization
strategies tailored to the application at hand. Jade’s gen-
eral purpose synchronization strategy may therefore be

less efficient, although the difference will be negligible
for computations with a large enough grain size.

6.1.2 Explicit Communication Operations

Many proposed parallel programming languages provide
explicit communication operations to move data between
parallel tasks. Programmers insert these operations into
their tasks at data production and consumption points
to synchronize the computation. For example, languages
such as CSP [11], Ada [17] and Occam [14] provide syn-
chronous message passing operations. One major prob-
lem with this approach is that producers and consumers
must agree on the order and relative time of data transfer.

Linda supports a less tightly coupled programming
style by providing a global tuple space with asynchronous
operations to insert, read and remove data [4]. Tuple
spaces support mutual exclusion and asynchronous pro-
ducer/consumer synchronization based on the presence
or absence of data. Tuple spaces also support some
less frequently used synchronization mechanisms such
as counting semaphores. Although these mechanisms
easily synchronize some restricted dependence patterns,
they do not support the synchronization patterns required
to enforce general dependence constraints. As in the
task queue model, programmers implementing applica-
tions with such general dependence constraints must di-
rectly encode the program’s global synchronization pat-
tern using the provided synchronization mechanisms as
low-level primitives. For example, the Linda sparse
Cholesky factorization application directly implements
the task graph’s synchronization pattern using counting
semaphores [3].

6.1.3 Global Control Languages

Another approach is to use a control language to directly
express an application’s global concurrency pattern. For
reasons of efficiency and programming convenience, the
actual pieces of code that the control language invokes to
carry out the computation are written in a serial, impera-
tive language such as FORTRAN or C. Here we present
a brief list of some of the approaches.

SCHEDULE allows programmers to give the system
a set of tasks and an explicit specification of the task
dependence graph [6]. SCHEDULE then executes the
tasks while obeying the given dependence constraints.
Programmers using coarse-grain dataflow languages such
as LGDF [1] and TDFL [21] express concurrency and
synchronization with dataflow graphs. Execution of the
dataflow graph provides synchronized concurrency. A
Strand programmer expresses his program’s global con-
currency structure in the committed-choice concurrent
logic programming paradigm [8]. Suspension on un-
bound logic variables provides synchronization, while si-
multaneous goal satisfaction provides concurrency.

While these languages centralize the synchronization
instead of distributing it throughout the program, the
programmer must still directly implement his program’s
global synchronization structure. These approaches also
burden the programmer with an additional programming
paradigm, and force the programmer to use the alterna-
tive paradigm down to the lowest level of granularity.

6.1.4 Function and Method Modifiers

Some languages augment the semantics of function
invocation to provide concurrency and synchroniza-
tion. For example, Multilisp futures enforce the pro-
ducer/consumer sequence constraint between a func-
tion creating data and its caller consuming the return
value [9]. Because this mechanism works well for syn-
chronizing returns from asynchronously invoked func-
tions or methods, concurrent object-oriented languages
such as COOL [5] and ConcurrentSmalltalk [22] also
provide the future synchronization mechanism.

Futures, however, are not designed to synchronize the
multiple updates to mutable shared data that are a cen-
tral feature of object-oriented programming. Therefore,
concurrent object-oriented languages also let a program-
mer specify that a method must have mutually exclusive
access to the receiver before it can run.

It is sometimes possible to parallelize a COOL or Con-
currentSmalltalk application by adding a few future or
mutual exclusion modifiers to a sequential program. But
to implement applications with general dependence con-
straints, programmers resort to using futures and mutual
exclusion as low-level concurrency and synchronization
primitives. For example, the COOL sparse Cholesky
factorization algorithm is synchronized by counting com-
pleted column updates.

6.1.5 Jade

In all of the languages presented above, programmers
must directly manage the program’s global concurrency
structure to implement applications with general depen-
dence constraints. A Jade programmer, however, can
simply express these parallel applications within an im-
plicitly parallel paradigm. Both the structure and the se-
mantics of the original sequential program are preserved
in the parallel version. In Jade, a programmer need only
provide local data usage information; the Jade implemen-
tation is responsible for directly managing the program’s
global concurrency structure.

In Jade programs synchronization and data flow uni-
directionally from tasks occurring earlier in the sequen-
tial execution order to tasks occurring later. This uni-
directional flow allows the Jade implementation to sup-
press spawning in the face of excess concurrency with-
out risking deadlock. But, this also means that Jade
cannot express parallel algorithms requiring bidirectional

task communication. Our Jade design therefore sacrifices
generality in order to fully support the sequential imper-
ative programming paradigm.

In the absence of static optimizations or hierarchically
structured concurrency, the Jade implementation creates
tasks sequentially. This serial task creation may cause
a significant performance loss if the grain size is small.
To drive down the minimum grain size for which Jade is
applicable, we are currently investigating the use of static
analysis to detect simple, common parallel structures and
substitute the general parallelization and synchronization
approaches with specialized solutions.

6.2 Parallelizing Serial Programs

We now compare Jade with other approaches designed to
parallelize programs written in sequential programming
languages.

6.2.1 Control Concurrency

One direct way to endow a sequential language with
synchronized concurrency is to augment the language
with explicit control constructs such as fork/join,
par begin/parend, or doall statements. These constructs
allow the programmer to spawn several independent pro-
cesses; the program then blocks until all the spawned
processes terminate. It is the programmer’s responsibil-
ity to ensure that there are no race conditions, so that the
serial and parallel semantics are identical.

There are two major drawbacks to this control-oriented
approach. First, these parallel constructs can express nei-
ther irregular task dependence patterns nor common par-
allel idioms requiring periodic intertask synchronization.
Second, they force the programmer to destroy the pro-
gram structure by moving concurrently executable pieces
of code to the same artificial spawn point. Consequently,
the program may be harder to understand, and the need
for code transformations may discourage the programmer
from exploiting all possible sources of parallelism within
the program.

Jade, on the other hand, allows programmers to pre-
serve the structure of the original program in the paral-
lel version. Jade programmers need not move concur-
rently executable pieces of code to a common invocation
point; the Jade constructs make it easy and even natu-
ral to exploit synchronized concurrency across module
and procedure boundaries. Jade’s dynamic side effect
specification capabilities support the creation of irregular
data-dependent concurrency.

6.2.2 Data Usage Concurrency

There are several languages which, like Jade, allow the
programmer to express concurrency with side effect spec-
ification constructs. In FX-87 [15], memory locations are

partitioned into a finite, statically determined set of re-
gions. The programmer declares the regions of memory
that a function touches as part of the function’s type. The
FX-87 implementation then uses a static type checking
algorithm to verify the correspondence between a proce-
dure’s declared and actual side effects. The implemen-
tation can use this information to execute parts of the
program with no conflicting side effects concurrently.

While the finite set of regions determined at compile-
time enables the FX-87 type checker to verify the correct-
ness of the specification, it also severely limits the scope
of the supported concurrent behavior. First, it means
that some of the dynamically created variables must be
mapped to the same static region; this reduces opportuni-
ties for concurrency. More importantly, each aggregate,
such as an array, must be in a single region. This side
effect specification imprecision dramatically reduces the
amount of expressible concurrency, especially for pro-
grams whose main source of concurrency is tasks that
access disjoint regions of an array [10].

Refined C’sdisjoint statement allows the program-
mer to create a set of access-restricted aliases that break
an array up into disjoint pieces [12]. A programmer
can then refer to the data via these aliases to indicate
the lack of dependence between accesses using different
aliases. Compiler analysis may be used to disambiguate
between references of the same alias names. The disjoint
statements are dynamic; that is, different views can be
adopted at different times of the computation.

6.2.3 Jade

Jade differs from FX-87 and Refined C in its unique
support for abstraction. First, the programmer need only
describe the side effects of entire tasks, not individual
functions. This not only simplifies programming but also
gives the system valuable information on a suitable de-
composition of the computation into parallel tasks. Sec-
ond, the side effect specification is abstract, in terms
of user-defined functions on user-defined objects. The
Jade implementation therefore sees the computation per-
formed at the same conceptual level of abstraction as the
programmer. Furthermore, instead of enforcing the in-
dividual read and write ordering of individual memory
locations, higher semantic knowledge can be used to re-
lax the sequential execution order; commutative updates
are a common example. The usage information is in a
form such that both static and dynamic forms of paral-
lelism can be detected and exploited.

Unlike FX-87 and Refined C, the programmer, not the
implementation, is responsible for ensuring that a task’s
side effect specification correctly summarizes its actual
side effects. In the presence of an explicit association
between tokens and the data they represent, Jade can
statically check the correctness whenever possible, and,
if necessary, insert dynamic checks to ensure that the

specification is correct. If the overhead of such safety
checks is intolerable in production mode, the program-
mer can use them only during the program debugging
stage. Since Jade only needs to check that every ref-
erence is included in the side effect specification of the
task, each debugging run checks that the program is cor-
rect with respect to a set of input data. This correctness
is independent of the timing of the parallel execution.

7 Conclusion

Jade supports the exploitation of coarse-grain concur-
rency within the sequential imperative programming
paradigm. Jade programmers augment a sequential pro-
gram with high-level dynamic data usage information;
the Jade implementation then uses this information to
concurrently execute the program while respecting the
data dependence constraints. Jade therefore provides im-
plicit concurrency, freeing the programmer from the bur-
den of explicit concurrency management.

Jade programmers use thewithth construct to express
simple concurrency patterns in which synchronization
takes place only at task boundaries.Withth can be used
as a high-level interface to the task queue model of com-
putation. Thewith, withonly andwithoutconstructs sup-
port more complicated concurrency structures requiring
periodic inter-task synchronization.

Jade supports the expression of the full range
of coarse-grain concurrency, including irregular data-
dependent concurrency available only as the program
runs. Jade’s support for the expression of concurrency
available across procedure boundaries allows Jade pro-
grammers to retain the structure of the original program
in the parallel version. Therefore, Jade programmers can
preserve program structure decisions made for reasons of
good design.

Jade’s token data type supports the creation of shared
data objects with high-level side effect specification op-
erations. Jade programmers can therefore express their
tasks’ side effect information at the same level of ab-
straction as the tasks access the shared data objects.

In the future we plan to extend Jade so that the to-
kens are explicitly associated with the data they repre-
sent. This association will allow us to implement Jade on
machines with separate address spaces. We will also in-
vestigate how to improve the performance of Jade using
compiler technology.

Acknowledgments

We would like to thank Jennifer Anderson and Dan
Scales for participating in many fruitful discussions on
Jade. Jennifer also wrote the Jade preprocessors; Dan im-
plemented the Jade versions of LocusRoute and Make.

We would also like to thank Edward Rothberg for his
help with the sparse Cholesky factorization code.

References

[1] R. G. Babb II, L. Storc, and W. C. Ragsdale. A
large-grain data flow scheduler for parallel process-
ing on cyberplus. InProceedings of the 1986 Inter-
national Conference on Parallel Processing, August
1986.

[2] M. Berry and et al. The perfect club benchmarks:
Effective performance evaluation of supercomput-
ers. International Journal of Supercomputer Appli-
cations, 3(3):5–40, 1989.

[3] N. Carriero and D. Gelernter. Applications Experi-
ence with Linda. InProceedings of the ACM Sym-
posium on Parallel Programming, pages 173–187,
New Haven, Conn., July 1988.

[4] N. Carriero and D. Gelernter. How to Write Parallel
Programs: A Guide to the Perplexed.ACM Com-
puting Surveys, 21(3):323–357, September 1989.

[5] R. Chandra, A. Gupta, and J. L. Hennessy.COOL:
A Language for Parallel Programming. In D. Gel-
ernter, A. Nicolau, and D. Padua, editors,Lan-
guages and Compilers for Parallel Computing,
pages 126–148. MIT Press, Cambridge, MA, 1990.

[6] J. J. Dongarra and D. C. Sorenson. A portable en-
vironment for developing parallel FORTRAN pro-
grams.Parallel Computing, (5):175–186, 1987.

[7] I. Duff, R. Grimes, and J. Lewis. Sparse Matrix
Test Problems.ACM Transactions on Mathematical
Software, 15(1):1–14, 1989.

[8] I. Foster and S. Taylor.Strand: New Concepts in
Parallel Programming. Prentice-Hall, Englewood
Cliffs, N.J., 1990.

[9] R. Halstead, Jr. Multilisp: A Language for Concur-
rent Symbolic Computation.ACM Transactions on
Programming Languages and Systems, 7(4):501–
538, October 1985.

[10] R. T. Hammel and D. K. Gifford. FX-87 Perfor-
mance Measurements: Dataflow Implementation.
Technical Report MIT/LCS/TR-421, MIT, Novem-
ber 1988.

[11] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, Englewood Cliffs, N.J., 1985.

[12] D. Klappholz, A. Kallis, and X. Kong. Refined
C - An Update. In D. Gelernter, A. Nicolau, and
D. Padua, editors,Languages and Compilers for

Parallel Computing, pages 331–357. MIT Press,
Cambridge, MA, 1990.

[13] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
and J. L. Hennessy. The directory-based cache co-
herence protocol for the DASH multiprocessor. In
Proceedings of the 17th Annual International Sym-
posium on Computer Architecture, May 1990.

[14] Inmos Ltd.Occam Programming Manual. Prentice-
Hall, Englewood Cliffs, N.J., 1984.

[15] J. M. Lucassen. Types and Effects: Towards the
Integration of Functional and Imperative Program-
ming. Technical Report MIT/LCS/TR-408, MIT,
August 1987.

[16] E. Lusk, R. Overbeek, et al.Portable Programs for
Parallel Processors. Holt, Rinehart and Winston,
Inc., 1987.

[17] United States Department of Defense.Reference
Manual for the Ada programming language. DoD,
Washington, D.C., January 1983. ANSI/MIL-STD-
1815A.

[18] J. S. Rose. LocusRoute: A Parallel Global Router
for Standard Cells. InProceedings of the 25th De-
sign Automation Conference, pages 189–195, June
1988.

[19] E. Rothberg and A. Gupta. Efficient sparse ma-
trix factorization on high-performance workstations
- exploiting the memory hierarchy. To appear in
ACM Transactions on Mathematical Software.

[20] E. Rothberg and A. Gupta. Techniques for im-
proving the performance of sparse matrix factoriza-
tion on multiprocessor workstations. InProceedings
of Supercomputing ’90, pages 232–241, November
1990.

[21] P. A. Suhler, J. Biswas, K. M. Korner, and J. C.
Browne. TDFL: A task-level dataflow language.
Journal of Parallel and Distributed Computing,
9:103–115, 1990.

[22] Y. Yokote and M. Tokoro. Concurrent Program-
ming in ConcurrentSmalltalk. In A. Yonezawa and
M. Tokoro, editors, Object-Oriented Concurrent
Programming, pages 129–158. MIT Press, Cam-
bridge, MA, 1987.

