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Abstract

As shared-memory multiprocessors become the dominant commod-
ity source of computation, parallelizing compilers must support
mainstream computations that manipulate irregular, pointer-based
data structures such as lists, trees and graphs. Our experience with
a parallelizing compiler for this class of applications shows that
their synchronization requirements differ significantly from those
of traditional parallel computations. Instead of coarse-grain bar-
rier synchronization, irregular computations require synchroniza-
tion primitives that support efficient fine-grain atomic operations.

The standard implementation mechanism for atomic operations
uses mutual exclusion locks. But the overhead of acquiring and
releasing locks can reduce the performance. Locks can also con-
sume significant amounts of memory. Optimisitic synchronization
primitives such asload linked/store conditionalare an attractive al-
ternative. They require no additional memory and eliminate the use
of heavyweight blocking synchronization constructs.

This paper presents our experience using optimistic synchro-
nization to implement fine-grain atomic operations in the context
of a parallelizing compiler for irregular object-based programs. We
have implemented two versions of the compiler. One version gener-
ates code that uses mutual exclusion locks to make operations exe-
cute atomically. The other version uses optimistic synchronization.
This paper presents the first published algorithm that enables com-
pilers to automatically generate optimistically synchronized paral-
lel code. The presented experimental results indicate that optimistic
synchronization is clearly the superior choice for our set of applica-
tions. Our results show that it can significantly reduce the memory
consumption and improve the overall performance.

1 Introduction

Parallelizing compilers have traditionally exploited a specific, re-
stricted form of concurrency: the concurrency available in loops
that access dense matrices using affine access functions [3]. The
generated parallel programs use a correspondingly restricted kind
of synchronization: coarse-grain barrier synchronization at the end
of each parallel loop.

As shared-memory multiprocessors become the dominant com-
modity source of computation, parallelizing compilers must sup-

port a wider class of computations. It will be especially impor-
tant to support irregular, object-based computations that access dy-
namic, pointer-based data structures such as lists, trees and graphs.
We have implemented a parallelizing compiler for this class of
computations [25]. Our experience using this compiler shows that
the automatically generated parallel computations exhibit a very
different kind of concurrency. Instead of parallel loops with coarse-
grain barrier synchronization, the computations are structured as
a set of lightweight threads that synchronize using fine-grained
atomic operations. The implementation of these atomic operations
has a critical impact on the performance and resource consumption
of the generated parallel code.

The standard implementation mechanism for atomic operations
usesmutual exclusion locks. In this approach, each piece of data
has an associated lock. To update a piece of data, an operation
first acquires the corresponding lock. It performs the update, then
releases the lock. Any other operation that attempts to acquire the
lock blocks until the first operation releases the lock.

Despite their popularity, mutual exclusion locks are far from an
optimal synchronization mechanism. One drawback is the memory
required to hold the state of the locks. Locks increase the amount
of memory that the program consumes, and can degrade the perfor-
mance of the memory hierarchy by occupying space in the caches.
The overhead of executing the acquire and release constructs may
also reduce the performance.

Locking the computation at a coarse granularity (by mapping
multiple pieces of data to the same lock) addresses these prob-
lems [7]. It reduces the impact on the memory system and may
allow the program to amortize the lock overhead over many updates
to different pieces of data. Unfortunately, a coarse lock granularity
may also introducefalse exclusion. False exclusion occurs when
multiple operations that access different pieces of data attempt to
acquire the same lock. The operations execute serially even though
they are independent and could, in principle, execute in parallel.
False exclusion can significantly degrade the performance by re-
ducing the amount of available parallelism.

Optimistic synchronizationis an attractive alternative to locks.
Atomic operations that use optimistic synchronization use aload
linkedprimitive to retrieve the initial value in an updated memory
location. They compute the new value, then use astore conditional
primitive to attempt to write the new value back into the memory
location. If no other operation wrote the location between the load
linked and the store conditional, the store conditional succeeds.
Otherwise, the store conditional fails, the new value is not written
into the location, and the operation typically retries the computa-
tion. Operations that use optimistic synchronization never block —
they avoid atomicity violations by nullifying and retrying compu-
tations. Optimistic synchronization imposes no memory overhead



and eliminates the use of heavyweight blocking synchronization
primitives. It is therefore especially appropriate for implementing
the fine-grain atomic operations characteristic of irregular parallel
computations.

This paper describes our experience using optimistic synchro-
nization to implement atomic operations in the context of a paral-
lelizing compiler for object-based programs. The compiler accepts
an unannotated serial program written in a subset of C++ and au-
tomatically generates a parallel program that performs the same
computation [25]. The compiler is designed to parallelize irregular
computations that manipulate dynamic, pointer-based data struc-
tures such as lists, trees and graphs. Because it uses commutativity
analysis [25] as its primary analysis technique, the compiler views
the computation as consisting of a sequence ofoperationson ob-
jects. If all of the operations in a given computation commute (i.e.
generate the same result regardless of the order in which they ex-
ecute), the compiler can automatically generate parallel code. For
the parallel computation to execute correctly, each operation must
execute atomically.

We have implemented two versions of the compiler — one ver-
sion generates code that uses mutual exclusion locks to make oper-
ations execute atomically; the other generates code that uses opti-
mistic synchronization. A comparison characterizes the impact of
using optimistic synchronization instead of mutual exclusion locks.
Our results show that using optimistic synchronization instead of
locks can significantly improve the performance and reduce the
amount of memory required to execute the computation.

This paper provides the following contributions:

� Optimistic Synchronization: It identifies optimistic syn-
chronization as an effective synchronization mechanism for
atomic operations in the context of a parallelizing compiler
for object-based programs.

� Analysis Algorithms: It presents novel analysis and trans-
formation algorithms that enable a compiler to automatically
generate optimistically synchronized parallel code.

� Experimental Results: It presents a complete set of exper-
imental results that characterize the overall impact of using
optimistic synchronization instead of mutual exclusion locks.
These results show that optimistic synchronization can sub-
stantially reduce the amount of memory that the program
consumes and improve the performance of the automatically
generated parallel code.

To our knowledge, our compiler is the first compiler to automati-
cally generate optimistically synchronized code.

Although the algorithms presented in this paper are designed
for commodity multiprocessors, they are also useful for more ag-
gressive machines, such as Tera [1] or Monsoon [14], that augment
each word of memory with state bits. These machines provide a
synchronizing read instruction that suspends until a state bit is set,
then atomically reads the value in the word and clears the bit. The
corresponding synchronizing write instruction writes a value into
the word, then sets the bit. These machines provide exceptional
support for fine-grain atomic operations — each operation simply
uses a synchronizing read to obtain the current value, computes
the new value, then uses a synchronizing write to write the new
value back into the word. There is no additional memory overhead
(the lock bit for each word is already integrated into the machine)
and no instruction overhead (the computation simply uses synchro-
nizing read and write instructions in the place of normal read and
write instructions). The analysis algorithms presented in this pa-
per would enable the automatic generation of code that uses this

retry: ll $2,0($4) # load value
addiu $3,$2,1 # increment value
sc $3,0($4) # attempt to store

# new value
beq $3,0,retry # retry if failure

Figure 1: Atomic Increment Usingll andsc

efficient fine-grain synchronization mechanism for irregular com-
putations that access dynamic, pointer-based data structures.

The remainder of the paper is structured as follows. Section 2
presents the optimistic synchronization primitives that the com-
piler uses to implement fine-grain atomic operations. Section 3
presents an example that illustrates the use of optimistic synchro-
nization. Section 4 discusses how the differences between opti-
mistic and lock synchronization affect the computation. In Sec-
tion 5 we present the synchronization selection algorithm, which
enables the compiler to generate optimistically synchronized code.
Section 6 presents the experimental results. Section 7 discusses
related work. We conclude in Section 8.

2 Optimistic Synchronization Primitives

Only recently have modern RISC processors provided efficient im-
plementations of the hardware primitives required for optimistic
synchronization. In this section we focus on hardware primitives
available on MIPS processors such as the MIPS R4400 and R10000,
although primitives that provide similar functionality are available
in most modern processors [6, 15]. The two key instructions are
the load linked (ll ) and store conditional (sc ) instructions [16],
which can be used together to atomically update a memory loca-
tion as follows.

The program first uses a load linked instruction to load the orig-
inal value from the memory location into a register. It computes
the new value into another register, then uses a store conditional
instruction to attempt to store the new value back into the mem-
ory location. If the memory location was not written between the
load linked and store conditional, the store conditional succeeds
and writes the new value into the memory location. If the memory
location was written between the load linked and the store condi-
tional, the store conditional fails and the new value is not written
into the memory location. A flag indicating the success or failure
of the store conditional is written into the register in the store con-
ditional instruction that held the new value. The computation typ-
ically retries the atomic update until it succeeds. Figure 1 presents
an assembly language sequence that uses thell andsc instruc-
tions to atomically increment an integer variable. Register 4 ($4)
contains a pointer to the variable to increment.

The standard implementation mechanism for load linked and
store conditional uses a reservation address register that holds the
address from the last load linked instruction and a reservation bit
that is invalidated when the address is written [22].

As implemented in the MIPS processor family,ll andsc di-
rectly support atomic operations only on 32 bit and 64 bit data
items. Although it is possible to use the instructions to synthesize
atomic operations on larger data items, the transformations may
impose substantial data structure modifications [12]. Because these
modifications may degrade the performance, the current compiler
uses optimistic synchronization only for updates to 32 or 64 bit data
items. Transactional memory [13] would support optimistically
synchronized atomic operations on larger objects, but no hardware
implementation of this mechanism currently exists.



3 An Example

We next provide an example that illustrates how the compiler can
use optimistic synchronization to implement atomic operations. The
program in Figure 2 implements a graph traversal. Thevisit op-
eration traverses a single node. It first adds the parameterp into the
running sum stored in thesum instance variable, then recursively
invokes the operations required to complete the traversal. The way
to parallelize this computation is to execute the two recursive in-
vocations in parallel. Our compiler is able to use commutativity
analysis to statically detect this source of concurrency [25]. But
because the data structure may be a graph, the parallel traversal
may visit the same node multiple times. The generated code must
therefore contain synchronization constructs that make each oper-
ation execute atomically with respect to all other operations that
access the same object.

class graph f
private:

int value, sum;
graph *left; graph *right;

public:
void visit(int);

g;
void graph::visit(int p) f

sum = sum + p;
if (left != NULL) left->visit(value);
if (right != NULL) right->visit(value);

g

Figure 2: Serial Graph Traversal

Figure 3 presents the code that the compiler generates when it
uses mutual exclusion locks to make operations execute atomically.
The compiler augments eachgraph object with a mutual exclu-
sion lockmutex. The automatically generatedparallel visit
operation, which performs the parallel traversal, uses this lock to
ensure that it executes atomically. It acquires the lock before it
updates thesum instance variable, then releases the lock after the
update.

The transitions from serial to parallel execution and from paral-
lel back to serial execution take place inside thevisit operation.
This operation first invokes theparallel visit operation, then
invokes thewait construct, which blocks until all parallel tasks
created by the current task or its descendant tasks finishes. The
parallel visit operation executes the recursive calls concur-
rently using thespawnconstruct, which creates a new task for each
operation. A straightforward application of lazy task creation [24]
can increase the granularity of the resulting parallel computation.

Figure 4 presents a high-level version of the code that the com-
piler generates when it uses optimistic synchronization. Unlike the
version that uses locks, there is no change to thegraph objects.
Instead of acquiring and releasing locks, theparallel visit
operation uses a load linked instruction to fetch the value ofsum.
It computes the new value, then uses a store conditional instruction
to attempt to store the new value back intosum. A loop retries the
update until it succeeds.

class graph f
private:

lock mutex;
int value, sum;
graph *left; graph *right;

public:
void visit(int);
void parallel visit(int);

g;
void graph::visit(int p) f

this->parallel visit(p);
wait();

g
void graph::parallel visit(int p) f

mutex.acquire();
sum = sum + p;
mutex.release();
if (left != NULL)

spawn(left->parallel visit(value));
if (right != NULL)

spawn(right->parallel visit(value));
g

Figure 3: Parallel Traversal With Locks

class graph f
private:

int value, sum;
graph *left; graph *right;

public:
void visit(int);
void parallel visit(int);

g;
void graph::visit(int p) f

this->parallel visit(p);
wait();

g
void graph::parallel visit(int p) f

register int new sum;
do f

new sum = ll (sum);
new sum = new sum + p;

g while (! sc(new sum,sum));
if (left != NULL)

spawn(left->parallel visit(value));
if (right != NULL)

spawn(right->parallel visit(value));
g

Figure 4: Parallel Traversal With Optimistic Synchronization



4 Issues

We next discuss how the differences between optimistic and lock
synchronization affect the computation.

4.1 Memory System Effects

To generate code that uses mutual exclusion locks, the compiler
must augment the data structures with locks. Our experimental re-
sults indicate that using locks can significantly increase the amount
of memory required to run the program. The memory overhead as-
sociated with using locks is therefore an important potential prob-
lem. In many cases, it is desirable to run as large a problem as
possible, and the amount of available memory is the key factor that
limits the runnable problem size.

Locks can also have a negative impact on the performance of
the memory hierarchy. They occupy space in the data caches, which
reduces the amount of useful application data that the caches can
hold. They also increase the amount of space between useful ap-
plication data, which may reduce the spatial locality.1 If the lock
and its associated data are stored on different cache lines, a locked
update may generate extra cache misses — operations may incur
not only the cache misses required to perform the update, but also
an extra cache miss to acquire the lock.

Lock synchronization may also affect the performance of the
memory consistency protocol. To execute the program correctly,
the machine must globally order the execution of the locking con-
structs with respect to the memory accesses performed as part of
the atomic operation. Modern machines that implement relaxed
memory consistency models typically enforce this order by wait-
ing for all outstanding writes to complete globally before releasing
a lock [8]. But unlike lock synchronization, optimistic synchro-
nization imposes no additional order between accesses to different
memory locations. Although interactions between the caches, opti-
mistic synchronization and out of order execution complicate the
implementation on modern processors, in principle the machine
can use the same relaxed ordering constraints for optimistically
synchronized updates as it does for unsynchronized updates. The
fundamental performance differences between optimistically syn-
chronized and unsynchronized updates come primarily from the
need to acquire exclusive access to the memory location before a
store conditional can succeed and control dependences from the
branch that retries the update if it fails.

A significant advantage of optimistic synchronization is that it
imposes no memory, data cache or memory consistency overheads
— the serial and parallel programs have identical memory layouts,
identical memory access patterns and identical ordering constraints
between accesses to different memory locations.

4.2 Synchronization Granularity

As described in Section 2, existing optimistic synchronization prim-
itives support atomic operations only on individual data items. The
advantage of synchronizing at this fine granularity is that it mini-
mizes the possibility of false exclusion and maximizes the exposed
concurrency. But it may not always be desirable or even possible
to synchronize at this granularity. If an operation updates many
data items, it may be more efficient to acquire a lock, perform all
of the updates without additional synchronization, then release the
lock. Furthermore, atomic operations that perform multiple inter-
dependent updates to multiple data items cannot synchronize at the

1In principle, the additional instructions required to address, acquire and release the
lock may have a similar effect on the instruction cache. For optimistic synchronization,
the conditional branches that retry failed updates are the only additional instructions.

granularity of individual items — all of the updates must execute
atomically together as a group. In this case, the compiler must gen-
erate code that uses lock synchronization.

The experimental results in Section 6 suggest that neither of
these two potential problems may occur frequently in practice. The
compiler is able to correctly synchronize all of the benchmark ap-
plications using only optimistic synchronization. Furthermore, syn-
chronizing at the coarser granularity of objects instead of using op-
timistic synchronization does not significantly improve the overall
performance of any of our benchmark applications.

5 The Synchronization Selection Algorithm

This section presents the synchronization selection algorithm. This
algorithm chooses a synchronization mechanism for each opera-
tion, using optimistic synchronization whenever possible. We de-
scribe the model of computation for programs that the algorithm
is designed to analyze, present the program representation that the
synchronization selection algorithm uses, and discuss the require-
ments that the synchronization selection algorithm must satisfy to
ensure that the generated parallel program executes correctly. We
then present the algorithm in detail.

5.1 Model of Computation

The algorithm is designed to analyze pure object-based programs.
Such programs structure the computation as a set of operations on
objects. Each object implements its state using a set of instance
variables. An instance variable can be a nested object, a pointer to
an object, a primitive data item such as anint or adouble , or an
array of any of the preceding types. Each operation has a receiver
object and several parameters. When an operation executes, it can
read and write the instance variables of the receiver object, access
the parameters, or invoke other operations. Well structured object-
based programs conform to this model of computation; pure object-
based languages such as Smalltalk enforce it explicitly.

We next present some notation that we will use when we present
the algorithms. The program defines a set of classescl 2 CL and
a set of operationsop 2 OP. Given an operationop, the func-
tion receiverClass(op) returns the class of the receiver objects of
op. The program also defines a set of instance variablesv 2 V.
The function instanceVariables(cl) returns the instance variables
of the classcl. No two classes share an instance variable — i.e.,
instanceVariables(cl1) \ instanceVariables(cl2) = ; if cl1 6=
cl2.

5.2 Program Representation

Synchronization selection takes place after the commutativity anal-
ysis algorithm has successfully parallelized a phase of the computa-
tion. The commutativity analysis algorithm extracts some informa-
tion that the synchronization selection algorithm uses. Specifically,
it produces the set of operations that the parallel phase may invoke
and the set of instance variables that the phase may update [25]. For
each operation, it also produces a set ofupdate expressionsthat rep-
resent how the operation updates instance variables and a multiset
of invocation expressionsthat represent the multiset of operations
that the operation may invoke. There is one update expression for
each instance variable that the operation modifies and one invoca-
tion expression for each operation invocation site. Except where
noted, the update and invocation expressions contain only instance
variables and parameters — the algorithm uses symbolic execution



to eliminate local variables from the update and invocation expres-
sions [18, 25].

An update expression of the formv=exp represents an update
to a scalar instance variablev. The symbolic expressionexp de-
notes the new value ofv. An update expressionv[exp0]=exp rep-
resents an update to the array instance variablev. An update ex-
pression of the formfor (i=exp

1
; i<exp

2
; i+=exp

3
) upd repre-

sents a loop that repeatedly performs the updateupd. In this case,
< can be an arbitrary comparison operator and+= can be an arbi-
trary assignment operator. The induction variablei may appear in
the symbolic expressions ofupd. An update expression of the form
if (exp) upd represents an updateupd that is executed only ifexp
is true.2

An invocation expressionexp
0
-> op(exp

1
; � � � ; expn) repre-

sents an invocation of the operationop. The symbolic expression
exp

0
denotes the receiver object of the operation and the symbolic

expressionsexp
1
; � � � ; expn denote the parameters. An invocation

expression of the formfor (i=exp
1
; i<exp

2
; i+=exp

3
) inv rep-

resents a loop that repeatedly invokes the operationinv. In this
case,< can be an arbitrary comparison operator and+= can be an
arbitrary assignment operator. The induction variablei may appear
in the symbolic expressions ofinv. An invocation expression of
the formif (exp) inv represents an operationinv that is invoked
only if exp is true.3

5.3 Synchronization Selection Requirements

To execute correctly, all accesses to a potentially updated variable
must use the same synchronization mechanism. The synchroniza-
tion selection algorithm therefore classifies each potentially up-
dated variable as either anoptimistically synchronized variable, (a
variable whose updates can use optimistic synchronization or no
synchronization) or alock synchronized variable(a variable whose
accesses must use lock synchronization).

The commutativity analysis algorithm assumes that each opera-
tion executes atomically with respect to other operations that access
the same object. The analysis takes place at the granularity of in-
stance variables and multisets of invoked operations — two opera-
tions commute if the instance variables and multisets of invoked op-
erations are the same in both execution orders [25]. But optimisti-
cally synchronized updates execute atomically only at the granular-
ity of individual updates, not at the coarser granularity of complete
operations (each operation may perform multiple updates). If the
synchronization selection algorithm chooses to optimistically syn-
chronize a set of updates, it must ensure that the generated parallel
program always produces the same result as the corresponding pro-
gram in which all operations execute atomically.

The atomicity requirements may force the synchronization se-
lection algorithm to use lock synchronization. Consider, for exam-
ple, a computation that contains an operation that updates multiple
variables and an update in a different operation that reads all of
the variables. To satisfy the atomicity requirements, the updates in
the first operation must execute atomically as a group with respect

2For some operations, the compiler may be unable to generate update expressions
that accurately represent the new values of the instance variables. The commutativity
analysis algorithm is unable to parallelize phases that may invoke such operations. Be-
cause the synchronization selection algorithm runs only after the commutativity anal-
ysis algorithm has successfully parallelized a phase, update expressions are available
for all operations that the parallel phase many invoke.

3For some operations, the compiler may be unable to generate invocation expres-
sions that accurately represent the multiset of invoked operations. The commutativity
analysis algorithm is unable to parallelize phases that may invoke such operations.
Because the synchronization selection algorithm runs only after the commutativity
analysis algorithm has successfully parallelized a phase, invocation expressions are
available for all operations that the parallel phase many invoke.

to the update that reads the variables. Because optimistically syn-
chronized updates are atomic only at the granularity of individual
updates, the synchronization selection algorithm can not optimisti-
cally synchronize the updates in the first operation. All of the up-
dated variables must be classified as lock synchronized variables.

The current algorithm applies two constraints to enforce the
atomicity requirements. First, each update to an optimistically syn-
chronized variable may access only the updated variable and vari-
ables that are not updated during the parallel phase. Second, all
accesses to an optimistically synchronized variable may occur only
in updates to that variable — no other update reads the variable and
no operation invocation site depends on the variable. It is possible
to relax these constraints. For example, if an operation accessed
only one updated variable, the compiler could allow its operation
invocation sites to depend on the variable even if the variable were
optimistically synchronized. To ensure that updates to the variable
would execute atomically with respect to the accesses in the op-
eration, the generated code would read the value of the variable
into a local variable. It would then access the value from that local
variable for the remainder of the operation.

It would also be possible to integrate the commutativity test-
ing and synchronization selection more closely. In such a scenario,
the synchronization selection algorithm would propose a set of op-
timistically synchronized variables, and the commutativity testing
would take place at the finer granularity of individual updates to
those variables.

5.4 The Algorithm

Figure 5 presents the synchronization selection algorithm. It takes
as parameters the set of invoked operations, the set of updated vari-
ables, a function updates(op), which returns the set of update ex-
pressions that represent the updates that the operationop performs,
and a function invocations(op), which returns the multiset of in-
vocation expressions that represent the multiset of operations that
the operationop invokes. There is also an auxiliary function called
variables; variables(exp) returns the set of variables in the sym-
bolic expressionexp, variables(upd) returns the set of free vari-
ables in the update expressionupd, and variables(inv) returns the
set of free variables in the invocation expressioninv.4 The algo-
rithm produces a set of variables whose updates may be optimisti-
cally synchronized, a set of classes that must be augmented with
locks, and a set of operations that must use lock synchronization.

The algorithm determines the kind of synchronization it must
use by processing all of the updates and invocations. For each
update, it first checks if it needs to synchronize the update at all.
Because store instructions execute atomically, there is no need to
explicitly synchronize an update that simply writes a value into an
instance variable if the value does not depend on a variable that
some other operation may update. Such updates often occur in code
that initializes objects.5

If the update requires some form of synchronization, the al-
gorithm checks if it can synchronize the update using optimistic
synchronization. In principle, it should be possible to use opti-
mistic synchronization for any update that reads an instance vari-
able, computes a new value that does not depend on a different vari-

4The free variables of an update or invocation expression include all variables in
the expression except the induction variables in expressions that representfor loops.
In particular, the free variables in an update expression include the updated variable.

5The algorithm allows two operations to update the same variable without syn-
chronization as long as the new values do not depend on updated variables. Before the
synchronization selection takes place, the commutativity testing algorithm has verified
that the operations generate the same final result regardless of the order in which the
updates execute. The sole responsibility of the synchronization selection algorithm is
to ensure that the operations execute atomically.



able that another operation might update, then writes the new value
back into the variable. In the MIPS R4400, however, it is illegal to
perform a memory access between thell andsc instructions. The
algorithm therefore uses optimistic synchronization only when the
new value can be expressed in the formv� exp or v[exp0]� exp,
wherev or v[exp0] denotes the original value of the variable,� is
an arbitrary binary operator andexp andexp0 do not contain an
updated variable. In this case, the generated code can compute the
value ofexp into a register, then use an instruction sequence sim-
ilar to that in Figure 1 to atomically perform the computation and
update the variable.

synchronizationSelection(invokedOperations;updatedVariables;
updates; invocations)

lockedClasses= ;;
lockedOperations= ;;
optimisticVariables= updatedVariables;
for all op 2 invokedOperations

for all u 2 updates(op)
if (requiresSynchronization(u; updatedVariables) and

notcanUseOptimisticSynchronization(u; updatedVariables))
optimisticVariables= optimisticVariables� variables(u);
lockedClasses= lockedClasses[ freceiverClass(op)g;
lockedOperations= lockedOperations[ fopg;

for all i 2 invocations(op)
if (variables(i) \ updatedVariables6= ;)

optimisticVariables= optimisticVariables� variables(i);
lockedClasses= lockedClasses[ freceiverClass(op)g;
lockedOperations= lockedOperations[ fopg;

returnhoptimisticVariables; lockedClasses; lockedOperationsi;

canUseOptimisticSynchronization(u; updatedVariables)
if (u is of the formv = v� exp and

variables(exp) \ updatedVariables= ;)
return true;

if (u is of the formv[exp0] = v[exp0]� exp and
(variables(exp) [ variables(exp0)) \ updatedVariables= ;)

return true;
if (u is of the formif (exp) upd and

variables(exp) \ updatedVariables= ;)
returncanUseOptimisticSynchronization(upd; updatedVariables);

if (u is of the formfor (i = exp
1
; i < exp

2
; i+ = exp

3
) upd

and81�j�3variables(expj) \ updatedVariables= ;)
returncanUseOptimisticSynchronization(upd; updatedVariables);

return false;

requiresSynchronization(u; updatedVariables)
if (u is of the formv = exp and

variables(exp) \ updatedVariables= ;)
return false;

if (u is of the formv[exp0] = exp and
(variables(exp) [ variables(exp0)) \ updatedVariables= ;)

return false;
if (u is of the formif (exp) upd and

variables(exp) \ updatedVariables= ;)
returnrequiresSynchronization(upd;updatedVariables);

if (u is of the formfor (i = exp
1
; i < exp

2
; i+ = exp

3
) upd

and81�j�3variables(expj) \ updatedVariables= ;)
returnrequiresSynchronization(upd;updatedVariables);

return true;

Figure 5: Synchronization Selection Algorithm

To execute correctly, all accesses to a potentially updated vari-
able must use the same synchronization mechanism. If any of the
updates to a given variable must use lock synchronization, the al-
gorithm deletes the variable from the set of optimistically synchro-
nized variables. The compiler will augment the class of the receiver
object with a lock and insert constructs that acquire and release the

lock in all operations that access the variable.
The invocation expressions capture the remainder of the op-

eration's accesses to updated variables. If an invocation expres-
sion contains an updated variable, the algorithm deletes the variable
from the set of optimistically synchronized variables. All accesses
to the variable will use lock synchronization. The end result is that
all accesses to a given optimistically synchronized variable occur
only in optimistically synchronized updates to that variable.

5.5 Multiple Updates In Loops

There is a technical detail associated with loops that update the
same variable or array element more than once. If the updates are
optimistically synchronized, they are atomic only at the granularity
of the individual loop iterations, not at the granularity of the entire
loop. With lock synchronization, they would be atomic at the gran-
ularity of the entire loop. Optimistically synchronizing variables
that may be updated multiple times in a loop makes the granularity
of the enforced atomicity finer. Because the commutativity anal-
ysis for such variables takes place at the granularity of individual
loop iterations instead of at the granularity of the entire loop, this
change in the granularity does not affect the correctness of the op-
timistically synchronized parallel program.

5.6 Code Generation

If an operation must use lock synchronization, the generated code
acquires the lock in the receiver object before it accesses any poten-
tially updated instance variables; it does not release the lock until
it has completed all of its accesses to potentially updated variables.
The commutativity analysis algorithm ensures that all invocations
of operations that may access potentially updated variables occur
after the invoking operation has completed its last access to a po-
tentially updated variable [25]. Thisseparabilityproperty ensures
that the generated code never attempts to acquire more than one
lock, which in turn ensures that it never deadlocks.

It is possible for an operation to synchronize some of its up-
dates using locks and other updates using optimistic synchroniza-
tion. The nonblocking nature of optimistic synchronization ensures
that the combination of the two different synchronization mecha-
nisms never causes deadlock.

6 Experimental Results

We next present experimental results that characterize the perfor-
mance and memory impact of using optimistic synchronization.
We present results for three automatically parallelized applications:
Barnes-Hut [4], a hierarchical N-body solver, String [10], which
builds a velocity model of the geology between two oil wells, and
Water [26], which simulates water molecules in the liquid state.
Each application performs a complete computation of interest to
the scientific computing community. Barnes-Hut consists of ap-
proximately 1500 lines of serial C++ code, String consists of ap-
proximately 2050 lines of serial C++ code, and Water consists of
approximately 1850 lines of serial C++ code.

6.1 Methodology

We implemented a prototype parallelizing compiler that uses com-
mutativity analysis as its basic analysis paradigm. Compiler flags
determine whether it generates code that uses mutual exclusion
locks or (when possible) optimistic synchronization. We used the
compiler to obtain the following versions of each application:



� Optimistic: When possible, the compiler generates code that
uses optimistic synchronization. For our three applications,
the atomic operations use optimistic synchronization exclu-
sively — the generated code contains no mutual exclusion
locks. The serial and Optimistic versions therefore have iden-
tical memory layouts.

� Item Lock: If a primitive data item (such as anint , float
or double ) in an object may be updated in a parallel phase,
there is a lock associated with that item. If an operation in a
parallel phase updates an item, it acquires the corresponding
lock, performs the update, then releases the lock.

� Object Lock: If an object may be updated in a parallel phase,
there is a lock associated with that object. When an opera-
tion in a parallel phase updates an object, it acquires the ob-
ject's lock, performs the update, then releases the lock. Each
nested object has the same lock as its enclosing object.

� Coarse Lock: Like the Object Lock version, there is a lock
associated with each object and each operation that updates
an object holds that object's lock. But the compiler analyzes
the program to detect sequences of operations that acquire
and release the same lock. It then transforms the sequence so
that it acquires the lock once, executes the operations without
synchronization, then releases the lock [7].

The Optimistic versions synchronize at the granularity of individual
data items. The Item Lock versions also synchronize at this granu-
larity, but use locks instead of optimistic synchronization. Because
the Object Lock versions synchronize at the coarser granularity of
objects, they allocate fewer locks and execute fewer lock constructs
than the Item Lock versions. The trade off, of course, is that the
Object Lock versions may suffer from false exclusion.

The Coarse Lock versions allocate the same number of locks as
the Object Lock versions, but execute fewer lock constructs. The
trade off is that the Coarse Lock versions may suffer fromfalse
contention. False contention occurs when a processor attempts to
acquire a lock, but the processor that currently holds the lock is
executing code that was originally in no atomic operation. The
first processor must wait until the lock is released, even though the
computations are independent and should, in principle, be able to
execute concurrently. False contention can significantly degrade
the performance by reducing the amount of available parallelism.

The compiler is structured as a source to source translator from
serial C++ to parallel C++ containing synchronization primitives
and calls to procedures in our run time system. Starting with an
unannotated, serial C++ program, the compiler generates the Opti-
mistic, Object Lock and Coarse Lock versions automatically with
no programmer intervention. Although it would be possible to gen-
erate the Item Lock versions automatically, we generated these ver-
sions by hand starting from the Object Lock version.

We collected experimental results for the applications running
on an SGI Challenge XL multiprocessor with 24 100 MHz R4400
processors running IRIX version 6.2. We compiled the generated
parallel programs using version 7.1 of the MipsPro compiler from
Silicon Graphics.

The Item Lock, Object Lock, and Coarse Lock versions all use
the most efficient lock implementation available on this platform.
The acquire is implemented as an inlined code sequence that uses
ll andsc to atomically test and set a value that indicates whether
the lock is free or not [11]. The release simply clears the value.
When the implementation attempts to acquire a lock that is not free
or the instruction sequence that implements the test and set fails, it
must retry until it acquires the lock. The implementation uses ex-
ponential backoff to eliminate immediate, repeated attempts to ac-
quire an unavailable lock [2, 21]. In practice, we expect programs

compiled for multiprogrammed machines to use less efficient prim-
itives that invoke the operating system to suspend a thread if it is
unable to acquire a lock [17]. The presented results therefore over-
state the efficiency of the versions that use locks.

6.2 Cost Of Basic Operations

Table 1 presents the execution times for a single update imple-
mented using different synchronization mechanisms. Each update
reads an array element, adds a constant to the element, then stores
the new value back into the array. We present times for cached
updates, in which all of the accessed data are present in the first
level processor cache, and for uncached updates, in which all of the
data are present in the first level processor cache of another pro-
cessor. The times vary significantly for the the cached versions,
with the optimistically synchronized update executing significantly
faster than the lock synchronized update. The execution times of
the uncached versions are dominated by the cache miss time and are
roughly comparable for the different synchronization mechanisms.

Execution Time For Execution Time For
One Cached Update One Uncached Update

Version (microseconds) (microseconds)
No Synchronization 0.049 3.251

Optimistic Synchronization 0.187 3.352
Lock Synchronization 0.278 3.456

Table 1: Measured Execution Times for One Update

6.3 Barnes-Hut

We start our discussion of Barnes-Hut by analyzing the memory
overhead of using locks. Table 2 presents thememory usagefor
each version — the amount of memory used to store objects during
the execution of the program.6 Thelock overheadis the percentage
of memory used to hold locks. Locks impose a significant mem-
ory overhead, with the Item Lock version allocating twice as much
memory for locks as the Object Lock and Coarse Lock versions.

Version Memory Usage (Mbytes) Lock Overhead
Serial 40 -

Optimistic 40 -
Item Lock 49 18%

Object Lock 45 11%
Coarse Lock 45 11%

Table 2: Lock Memory Overheads for Barnes-Hut

Number of Lock Number of Optimistically
Version Acquire/Release Pairs Synchronized Updates

Optimistic - 108,641,972
Item Lock 108,641,972 -

Object Lock 54,271,834 -
Coarse Lock 212,992 -

Table 3: Number of Synchronization Operations for Barnes-Hut

Table 3 presents the number of synchronization operations per-
formed by the different versions. The Optimistic and Item Lock

6The applications store all of their data except local variables in objects. The mem-
ory usage therefore indicates the total heap data usage of the program. The reader
should bear in mind that the numbers in Table 2 are for a realistic but small data set —
16,384 particles. Larger data sets would dramatically increase the memory usage.
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Figure 6: Speedups for Barnes-Hut
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Figure 7: Time Breakdowns for Barnes-Hut

versions synchronize each update separately from all other updates.
The Item Lock version therefore executes as many acquire/release
pairs as the Optimistic version executes optimistically synchronized
updates. The Object Lock version executes half as many acquire
and release pairs as the Item Lock version — on average, the com-
putation performs two updates every time it acquires and releases
a lock. The Coarse Lock version executes dramatically fewer ac-
quire/release pairs than the Item Lock and Object lock versions.
On average, the Coarse Lock version performs approximately 510
updates every time it acquires and releases a lock.

Table 4 presents the running times for Barnes-Hut as a function
of the number of processors executing the computation. Figure 6
presents the corresponding speedup curves.7 The application scales
reasonably well — the speedup over the Serial version is above 12
out of 24 processors for all versions.

Processors
Version 1 4 8 12 16 20 24
Serial 140.75 - - - - - -

Optimistic 154.49 42.51 23.19 17.07 13.64 11.82 10.54
Item Lock 175.38 48.25 26.05 18.89 15.22 13.16 11.73

Object Lock 159.54 43.10 24.12 17.57 14.21 12.30 10.94
Coarse Lock 147.35 40.32 22.44 16.36 13.28 11.52 10.29

Table 4: Execution Times for Barnes-Hut (seconds)

We used program counter sampling [9, 19] to measure how
much time each version spends in different parts of the parallel
computation. We break the execution time down into the following
components:

7The speedup is the running time of the serial version divided by the running time
of the parallel version. The serial version executes with no parallelization overhead,
and, like the serial version of Water, performs slightly better than a highly optimized
version written in C [25]. The serial version of String performs slightly worse than the
corresponding C version.

� Atomic Operation: The amount of time spent executing op-
erations that require synchronization to execute atomically or
operations that contain lock constructs.8 Performance prob-
lems caused by contention for locks or retried updates show
up as increases in this component of the execution time.

� Idle: The amount of time spent idle. All but one processor is
idle during serial phases of the computation; processors may
also be idle during parallel phases if the program has poor
load balancing.

� Serial Compute: Time spent computing in serial phases of
the computation.

� Parallel Compute: Time spent computing in parallel phases
of the computation.

Figure 7 graphically presents the time breakdowns for the dif-
ferent versions of Barnes-Hut.9 As the number of processors in-
creases, the primary limiting factor on the performance is the idle
time. One of the phases of the computation (the tree construc-
tion phase) executes sequentially. As the number of processors
increases, this serial phase becomes a bottleneck that limits the per-
formance.

The time breakdowns for the different versions are approxi-
mately equivalent except for the Atomic Operation times, which

8For the Optimistic, Item Lock and Object Lock versions, all application-level
synchronization takes place inside operations that require synchronization to execute
atomically. For the Coarse Lock versions, the compiler occasionally lifts lock con-
structs out of operations that require synchronization into operations that would oth-
erwise not contain lock constructs. Our applications spend very little time executing
such operations. Barnes-Hut always spends less than 0.3% of its execution time ex-
ecuting operations that contain lifted lock constructs; Water always spends less than
1.3% of its execution time executing operations that contain lifted lock constructs.

9For each category, the size of the part of the bar dedicated to that category cor-
responds to the sum over all processors of the amount of time the processor spends
in that category. The total height of the bar divided by the number of processors is
therefore the running time of the application on that number of processors.
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Figure 8: Speedups for String
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Figure 9: Time Breakdowns for String

directly reflect the efficiency differences between the different syn-
chronization mechanisms. For each version, the Atomic Operation
times stay roughly constant as the number of processors increases.
This independence of the number of processors indicates that con-
tention is not a problem in any of the versions, that the Object Lock
and Coarse Lock versions do not incur false exclusion, and that
the Coarse Lock version does not incur false contention.10 Given
the lack of false exclusion and false contention, the Coarse Lock
version performs best, although the difference between all of the
versions is quite small as the computation scales.

6.4 String

For String, false contention in the Coarse Lock version completely
serializes the computation. We therefore present results for only the
Optimistic, Item Lock, and Object Lock versions. Table 5 presents
the lock memory overheads for String. For the Object Lock version,
the overhead is negligible. For the Item Lock version, allocating
one lock for each data item significantly increases the overhead.
Table 6 presents the number of synchronization operations for the
different versions. The Item Lock and Object Lock versions both
execute one lock acquire/release pair per update — the increased
lock granularity in the Object Lock version does not decrease the
number of executed lock constructs.

Table 7 presents the execution times; Figure 8 presents the cor-
responding speedup curves. The Optimistic and Item Lock versions
scale almost perfectly up to 24 processors. The Object Lock ver-
sion, however, stops scaling at 16 processors. An examination of

10Contention occurs when two operations attempt to update the same object or data
item. In the Optimistic version, contention causes the store conditional instruction to
fail, which in turn causes the operation to retry the update. In the versions that use
locks, contention causes multiple operations to attempt to acquire the same lock at the
same time. One of the operations acquires the lock, and the other operations must wait
until that operation finishes the update and releases the lock. Contention shows up in
the time breakdowns as an increase in the Atomic Operation time.

the time breakdowns in Figure 9 shows that the Atomic Operation
times for the Object Lock versions grow dramatically as the num-
ber of processors increases, while the Optimistic and Item Lock
versions spend almost no time executing Atomic Operations re-
gardless of the number of processors executing the computation.
This difference in the Atomic Operation times indicates that false
exclusion causes the poor performance in the Object Lock version.

Version Memory Usage (Mbytes) Lock Overhead
Serial 3.6 -

Optimistic 3.6 -
Item Lock 4.9 27%

Object Lock 3.6 0%

Table 5: Lock Memory Overheads for String

Version Number of Lock Number of Optimistically
Acquire/Release Pairs Synchronized Updates

Optimistic - 30,036,938
Item Lock 30,036,938

Object Lock 30,036,938 -

Table 6: Number of Synchronization Operations for String

Processors
Version 1 4 8 12 16 20 24
Serial 891.74 - - - - - -

Optimistic 936.21 237.44 120.78 81.47 60.92 47.90 40.24
Item Lock 917.57 232.61 119.37 79.51 59.17 47.62 40.06

Object Lock 933.06 245.79 132.16 97.29 81.02 78.02 78.24

Table 7: Execution Times for String (seconds)
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Figure 10: Speedups for Water
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Figure 11: Time Breakdowns for Water

An examination of the application helps to explain the perfor-
mance differences. String repeatedly updates individual elements
of a large aggregate data structure stored in a single object. Be-
cause the update pattern is very irregular and is determined in part
by the input data, it is impractical to lock the data structure at any
granularity other than the object or item granularities.

In the Object Lock version, there is one lock for the entire ag-
gregate. Operations that attempt to concurrently update any item in
the aggregate must contend for that one lock even if they update dif-
ferent items. The results indicate that this coarse synchronization
granularity generates a significant amount of contention. Because
the Optimistic and Item Lock versions synchronize at the granu-
larity of individual items, operations suffer from contention only if
they attempt to concurrently update the same item. The results in-
dicate that this fine synchronization granularity almost completely
eliminates contention.

6.5 Water

Table 8 presents the lock memory overheads for Water. The use of
locks significantly increases the amount of memory that the pro-
gram consumes. Table 9 presents the number of synchronization
operations. The Object Lock version executes approximately 2.75
updates per lock acquire/release pair; the Coarse Lock version ex-
ecutes approximately 5.5 updates per acquire/release pair.

Table 10 presents the execution times; Figure 10 presents the
corresponding speedup curves. The application scales reasonably
well to 12 processors, then the performance levels off. The time
breakdowns in Figure 11 show that increased Atomic Operation
and Idle times cause the poor performance. Because the Item Lock,
Object Lock and Coarse Lock versions repeatedly update the same
objects, they repeatedly attempt to acquire the same locks. The
resulting contention significantly reduces the performance. In the
Optimistic version, this access pattern causes the computation to
repeatedly retry failed optimistically synchronized updates.

Version Memory Usage (Mbytes) Lock Overhead
Serial 0.76 -

Optimistic 0.76 -
Item Lock 1.27 40%

Object Lock 1.00 24%
Coarse Lock 1.00 24%

Table 8: Lock Memory Overheads for Water

Number of Lock Number of Optimistically
Version Acquire/Release Pairs Synchronized Updates

Optimistic - 34,652,160
Item Lock 34,652,160 -

Object Lock 12,601,344 -
Coarse Lock 6,297,600 -

Table 9: Number of Synchronization Operations for Water

Processors
Version 1 4 8 12 16 20 24
Serial 158.86 - - - - - -

Optimistic 169.76 47.96 25.22 18.23 19.42 20.15 20.16
Item Lock 175.47 52.47 27.97 25.15 27.04 28.30 29.54

Object Lock 179.27 50.65 26.85 19.41 18.72 20.61 22.29
Coarse Lock 171.16 51.58 35.03 31.78 32.08 31.12 31.82

Table 10: Execution Times for Water (seconds)

The Optimistic version has a significantly smaller Idle time than
the versions with lock synchronization. We attribute this difference
to the fact that the Optimistic version immediately retries failed
updates. The use of exponential backoff in the Optimistic version
to increase the time between retried updates does not improve the
overall performance but does shift time from the Atomic Operation
component to the Idle component.



6.6 Discussion

The experimental results demonstrate that optimistic synchroniza-
tion is clearly the superior choice. It imposes no memory over-
head at all, and, for all of the benchmark applications, the fastest
lock synchronized version never performs significantly better than
the optimistically synchronized version. This robustness enables
a compiler to automatically generate optimistically synchronized
code without risking a significant degradation in the performance.
Based on these results, we believe that, whenever possible, com-
pilers should generate code that uses optimistic synchronization in-
stead of locks.

The results also demonstrate the simplicity of automatically ap-
plying optimistic synchronization instead of lock synchronization.
For Barnes-Hut, the Coarse Lock version performs better than both
the Object Lock and Item Lock versions and consumes less mem-
ory than the Item Lock version. For String, the Item Lock version
consumes more memory than the Object Lock and Coarse Lock
versions, but it eliminates the false exclusion and false contention
problems that limit the performance of the other two versions. For
Water, all versions incur significant memory and synchronization
overheads. These results show that the compiler must manage a
complex trade off between memory usage, lock overhead, false ex-
clusion, and false contention if it is to choose the best lock granular-
ity. Given the dynamic nature of the factors that control this trade
off, we believe that it will be difficult for compilers to successfully
manage this trade off. And, as String illustrates, the version with
the best performance may have significant memory overhead.

7 Related Work

The majority of existing research in optimistic synchronization has
addressed problems associated with using blocking synchroniza-
tion primitives such as locks in a multiprogrammed system. These
problems include poor responsiveness, lock convoys, priority inver-
sions and deadlock [12]. Optimistically synchronized data struc-
tures such as atomic queues allow programmers to avoid these prob-
lems. Such data structures were a key component of the extremely
efficient Synthesis kernel [20], a complete operating system ker-
nel built without blocking synchronization. Herlihy has developed
a general methodology for implementing optimistically synchro-
nized data structures [12], and other researchers have implemented
and measured the performance of several such data structures [23].
Our research explores the use of optimistic synchronization in a dif-
ferent context (a parallelizing compiler for irregular, object-based
computations) and for a different reason (to enable efficient fine-
grain synchronization).

Several software systems use the state bits and synchronizing
read and write instructions on machines such as Tera and Monsoon
to support efficient fine-grain synchronization. The implementa-
tion of M-structures in the dataflow language Id uses the state bits
to support efficient, implicitly synchronized atomic operations [5].
The Tera compiler exploits the state bits to automatically paral-
lelize loops that update indirectly accessed arrays. The generated
code uses the bits to make the updates execute atomically. A sim-
ple modification to our code generation algorithm would enable our
compiler to generate similarly synchronized code for computations
that update dynamic, pointer-based data structures. Instead of an
ll instruction, the generated code would use a synchronizing read.
Instead of ansc instruction, the code would use a synchronizing
write. Because the update would never fail, the code would omit
the conditional branch that retried the operation in case of failure.

8 Conclusion

As shared-memory multiprocessors become the dominant commod-
ity source of parallel computation, it will be important for par-
allelizing compilers to support irregular computations that access
dynamic, pointer-based data structures. Our experience with a par-
allelizing compiler for this class of applications indicates that their
synchronization requirements differ significantly from those of tra-
ditional parallel computations. Instead of coarse-grain barrier syn-
chronization, irregular computations require synchronization prim-
itives that support efficient fine-grain atomic operations.

This paper presents our experience using optimistic synchro-
nization to implement fine-grain atomic operations in automati-
cally parallelized programs. It presents the first published algo-
rithm that enables compilers to automatically generate optimisti-
cally synchronized parallel code. The presented experimental re-
sults show that optimistic synchronization is clearly the superior
choice for our set of benchmark applications. The optimistically
synchronized versions have no memory overhead at all and the
fastest lock synchronized version never performs significantly bet-
ter than the optimistically synchronized version. These results indi-
cate that optimistic synchronization may play a key enabling role in
the successful automatic parallelization of irregular computations.
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A Other Lock Implementations

In addition to the inlined lock implementation used for the exper-
imental results in Section 6 (we call this implementation the In-
line implementation), we also ran the benchmark applications with
three other lock implementations:

� Eager: The implementation does not use exponential back-
off between attempts to acquire a lock. After every failed
attempt to acquire a lock, the implementation immediately
reexecutes the instruction sequence that attempts to acquire
the lock.

� Mapped: The run time system provides a fixed number of
locks (in our experiments there are 262,144 locks). Instead
of augmenting updated objects with locks, the compiler gen-
erates code that maps the virtual address of each object or
item to one of the locks in the run time system. Each acquire
or release construct is implemented using the same inlined
code sequence as in the Inline implementation. The advan-
tage of this implementation is that there is a fixed amount of
memory dedicated to locks regardless of how much data the
program allocates. The primary disadvantages are that mul-
tiple objects or items may be mapped to the same lock, that
locks are located on different cache lines than the associated
objects or items, and that the mapping function may generate
poor lock utilization for large objects.

� Standard: The compiler augments updated objects with the
standard IRIX 6.2 locks; the generated code uses the standard
primitives in the IRIX 6.2 libraries to acquire and release the
locks. These primitives implement blocking locks — the ac-
quire primitive temporarily relinquishes the processor if it
cannot acquire the lock in a reasonable amount of time.11

Table 11 presents the measured execution times for a single
atomic update with the different lock implementations.

Execution Time For Execution Time For
One Cached Update One Uncached Update

Version (microseconds) (microseconds)
Inline Lock 0.28 3.46
Eager Lock 0.28 3.46

Mapped Lock 0.33 6.71
Standard Lock 0.79 7.02

Table 11: Measured Execution Times for One Locked Update

We present the performance impact of the different lock im-
plementations on our benchmark applications using thenormalized
execution time, which is the execution time of the Eager, Mapped,
or Standard version divided by the execution time of the Inline ver-
sion. Table 12 presents the mean (over all numbers of processors)
normalized execution times for the different versions of the differ-
ent applications.

Lock Implementation
Application Version Eager Lock Mapped Lock Standard Lock

Item Lock 0.99 1.01 1.26
Barnes-Hut Object Lock 1.00 1.01 1.13

Coarse Lock 1.00 0.99 1.01
String Item Lock 1.01 1.03 1.09

Object Lock 1.02 1.01 1.16
Item Lock 1.40 1.56 1.81

Water Object Lock 1.19 1.94 1.74
Coarse Lock 0.90 1.42 1.22

Table 12: Mean Normalized Execution Times

Finally, we ran a version of each benchmark application that
uses optimistic synchronization with exponential backoff between
retried updates. The use of exponential backoff slightly increases
the execution time for one cached update (from 0.189 microseconds
to 0.208 microseconds), but has little impact on the overall perfor-
mance. The mean normalized execution times of the versions with
exponential backoff relative to the versions that immediately retry
failed updates are 1.01 for Barnes-Hut, 0.99 for String, and 0.99 for
Water.
11The type of the lock isulock t , ussetlock acquires a lock and

usunsetlock releases a lock


