
Automatic Parallelization of Divide and Conquer Algorithms �

Radu Rugina and Martin Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

frugina, rinardg@lcs.mit.edu

Abstract

Divide and conquer algorithms are a good match for modern
parallel machines: they tend to have large amounts of in-
herent parallelism and they work well with caches and deep
memory hierarchies. But these algorithms pose challenging
problems for parallelizing compilers. They are usually coded
as recursive procedures and often use pointers into dynami-
cally allocated memory blocks and pointer arithmetic. All of
these features are incompatible with the analysis algorithms
in traditional parallelizing compilers.

This paper presents the design and implementation of
a compiler that is designed to parallelize divide and con-
quer algorithms whose subproblems access disjoint regions
of dynamically allocated arrays. The foundation of the com-
piler is a ow-sensitive, context-sensitive, and interprocedu-
ral pointer analysis algorithm. A range of symbolic analy-
sis algorithms build on the pointer analysis information to
extract symbolic bounds for the memory regions accessed
by (potentially recursive) procedures that use pointers and
pointer arithmetic. The symbolic bounds information al-
lows the compiler to �nd procedure calls that can execute in
parallel without violating the data dependences. The com-
piler generates code that executes these calls in parallel. We
have used the compiler to parallelize several programs that
use divide and conquer algorithms. Our results show that
the programs perform well and exhibit good speedup.

1 Introduction

Divide and conquer algorithms solve problems by breaking
them up into smaller subproblems, recursively solving the
subproblems, then combining the results to generate a so-
lution to the original problem. A simple algorithm that
works well for small problem sizes terminates the recursion.
Good divide and conquer algorithms exist for a large va-
riety of problems, including sorting, matrix manipulation,
and many dynamic programming problems [5].

Divide and conquer algorithms have several appealing
properties that make them a good match for modern paral-

�This research was supported in part by NSF Grant CCR-9702297.

lel machines. First, they tend to have a lot of inherent par-
allelism. Once the division phase is complete, the subprob-
lems are usually independent and can therefore be solved in
parallel. Moreover, the recursive structure of the algorithm
naturally leads to recursively generated concurrency, which
means that even the divide and combine phases execute in
parallel with divide and combine phases from other subprob-
lems. This approach typically generates more than enough
concurrency to keep the machine busy [3].

Second, divide and conquer algorithms also tend to have
good cache performance. Once a subproblem �ts in the
cache, the standard recursive solution reuses the cached data
until the subproblem has been completely solved. Because
most of the work takes place deep in the recursive call tree,
the algorithm usually spends most of its execution time run-
ning out of the cache. Furthermore, divide and conquer al-
gorithms naturally work well with a range of cache sizes and
at all levels of the memory hierarchy. As soon as a subprob-
lem �ts into one level of the memory hierarchy, the algorithm
runs out of that level (or below) until the subproblem has
been solved [7]. Divide and conquer programs therefore au-
tomatically adapt to di�erent cache hierarchies, and tend
to run well without modi�cation on whatever machine is
available.

It can be quite di�cult, however, to parallelize programs
that use divide and conquer algorithms. The natural formu-
lation of these algorithms is recursive. For e�ciency reasons,
programs often use pointers into arrays and pointer arith-
metic to identify subproblems. Our benchmark programs
also tend to use dynamic memory allocation to match the
sizes of the data structures to the problem size. All of these
properties pose challenging analysis problems for the com-
piler. Moreover, traditional analyses for parallelizing com-
pilers are of little or no use for this class of programs | they
are designed to analyze loop nests that access arrays using
a�ne array index expressions, not recursive procedures that
use pointers and pointer arithmetic.

Inspired by the appealing properties of divide and con-
quer algorithms, we designed and implemented a paralleliz-
ing compiler for programs that use these algorithms. This
paper presents analysis algorithms and experimental results
from this e�ort. To successfully parallelize divide and con-
quer programs, we had to develop a new approach for par-
allelizing compilers and a new set of sophisticated analyses
that realize this approach. These analyses reason symbol-
ically about how (potentially recursive) procedures access
speci�c regions of dynamically allocated memory.

1.1 Analysis Overview

Our compiler is designed primarily to parallelize algorithms
whose subprograms use pointers and pointer arithmetic to
access disjoint regions of dynamically allocated arrays. For
these algorithms, the analysis usually proceeds as follows.
The compiler �rst runs a ow-sensitive, context-sensitive,
and interprocedural pointer analysis algorithm. The infor-
mation extracted by this analysis is used in all successive
analyses. The compiler then extracts symbolic expressions
for the regions of memory accessed in the procedures that
implement the base and combination phases of the divide
and conquer algorithm. It uses these expressions in an in-
terprocedural �xed-point analysis that extracts expressions
for the regions of memory accessed by the recursive proce-
dures that implement the divide phase of the algorithm. In
e�ect, these expressions make explicit the memory access in-
variants that drive the recursive structure of the algorithm.

The compiler then runs a dependence testing analysis
on the extracted expressions from adjacent calls. If the
expressions represent disjoint regions of memory, the calls
are independent and can execute in parallel. The depen-
dence tester uses both pointer analysis information (to de-
termine that expressions denote regions in di�erent alloca-
tion blocks) and logical reasoning (to determine that expres-
sions denote nonoverlapping regions in the same allocation
block).

1.2 Other Applications

Although we developed these analyses to parallelize divide
and conquer algorithms, we believe they will be useful in
other contexts. Fundamentally, our analysis extracts ex-
pressions that characterize how pointer-based programs ac-
cess regions of dynamically allocated memory. This tech-
nology could easily be applied to symbolic array bounds
checking, to detect data races in explicitly parallel programs,
and as part of a program understanding system that helps
programmers understand the behavior of complex, pointer-
based programs. We also believe we have developed the ba-
sic analysis technology necessary to fully extend traditional
parallelizing compiler technology to heavily optimized pro-
grams whose loops access memory using pointers rather than
array references.

Finally, we contrast the problem we are solving and our
analysis techniques with the problem and analysis techniques
for traditional parallelizing compilers. Traditional paralleliz-
ing compilers are designed to exploit loop-level parallelism
in computations that access dense matrices using a�ne ac-
cess functions. This problem naturally leads to integer pro-
gramming algorithms that analyze potential interferences
between loop iterations. Our compiler is designed to ex-
ploit recursively generated concurrency in divide and con-
quer computations that use pointers to identify subproblems
and manipulate data. Faced with this problem, we devel-
oped a set of symbolic analysis algorithms. These algorithms
use �xed-point techniques to extract invariants that describe
the regions of memory that recursive procedures access.

This paper makes the following contributions:

� Approach: It identi�es a new approach for auto-
matically parallelizing divide and conquer algorithms
whose subproblems access disjoint regions of dynam-
ically allocated arrays. The approach fully supports
recursion and the heavy use of pointers and pointer
arithmetic.

� Algorithms: It presents a set of novel analysis algo-
rithms that, together, enable a compiler to automati-
cally parallelize divide and conquer programs. These
algorithms are based on pointer analysis and symbolic
analysis of the regions of dynamically allocated mem-
ory accessed by (potentially recursive) procedures.

� Experimental Results: It presents experimental re-
sults for several automatically parallelized programs.
These results show that the compiler is capable of com-
piling divide and conquer algorithms and that the re-
sulting parallel code performs well.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an example that illustrates the actions of the
compiler. Sections 3, 4, 5, 6, and 7 present the analysis al-
gorithms. Section 8 presents the experimental results from
our parallelizing compiler. Section 9 discusses related work;
we conclude in Section 10.

2 Example

Figure 1 presents an example of the kind of programs that
our analysis is designed to handle. The sort procedure
on line 18 implements a recursive, divide-and-conquer al-
gorithm written in C. It takes an unsorted input array d
of size n, and sorts it, using the array t (also of size n) as
temporary storage. The algorithm is structured as follows.

In the divide part of the algorithm, the sort procedure
divides the two arrays into four sections and, in lines 29
through 32, calls itself recursively to sort the sections. Once
the sections have been sorted, the combination phase in lines
34 through 37 produces the �nal sorted array. It merges the
�rst two sorted sections of the d array into the �rst half of
the t array, then merges the last two sorted sections of d into
the last half of t. It then merges the two halves of t back
into d. The base case of the algorithm uses the insertion
sort procedure in lines 9 through 17 to sort small sections.

For e�ciency reasons, the sort program identi�es sub-
problems using pointers into dynamically allocated memory
blocks that hold the data and accesses these blocks via these
pointers. This strategy leads to code containing signi�cant
amounts of pointer arithmetic and pointer comparison oper-
ators. Note, for example, the pointer arithmetic in lines 24
through 28 and the < pointer comparison operators in lines
3, 6, and 7. This code will usually run faster than code that
uses integer array indices to identify and solve subproblems.

There are two sources of concurrency in this program:
the four recursive calls to the sort procedure can execute in
parallel, and the �rst two calls to the merge procedure can
execute in parallel.

The basic problem a parallelizing compiler must solve
is to determine the regions of memory that each procedure
accesses. In our example, the compiler determines that a
call to merge(l1,h1,l2,h2,d) reads the memory regions
[l1; h1�1] and and [l2; h2�1] and writes the memory region
[d; d+ (h1� l1) + (h2� l2)� 1].1 It also determines that a
call to insertionsort(l,h) reads and writes [l; h� 1], and
a call to sort(d,t,n) reads and writes [d; d + n � 1] and
[t; t+ n� 1].

1Here we use the notation [l; h] to denote the region of memory
between the addresses l and h, inclusive. If h is less than l, [l; h]
denotes the empty region. As is standard in C, we assume continguous
allocation of arrays, and that the addresses of the elements increase
as the array indices increase.

1: void merge(int *l1, int *h1,
2: int *l2, int *h2, int *d) f
3: while ((l1 < h1) && (l2 < h2))
4: if (*l1 < *l2) *d++ = *l1++;
5: else *d++ = *l2++;
6: while (l1 < h1) *d++ = *l1++;
7: while (l2 < h2) *d++ = *l2++;
8: g

9: void insertionsort(int *l, int *h) f
10: int *p, *q, k;
11: for (p = l+1; p < h; p++) f
12: k = *p;
13: for (q = p-1; l <= q && k < *q; q--)
14: *(q+1) = *q;
15: *(q+1) = k;
16: g
17: g

18: void sort(int *d, int *t, int n) f
19: int *d1, *d2, *d3, *d4, *d5,
20: *t1, *t2, *t3, *t4;
21: if (n < CUTOFF) f
22: insertionsort(d, d+n);
23: g else f
24: d1 = d; t1 = t;
25: d2 = d1 + n/4; t2 = t1 + n/4;
26: d3 = d2 + n/4; t3 = t2 + n/4;
27: d4 = d3 + n/4; t4 = t3 + n/4;
28: d5 = d4+(n-3*(n/4));

29: sort(d1, t1, n/4);
30: sort(d2, t2, n/4);
31: sort(d3, t3, n/4);
32: sort(d4, t4, n-3*(n/4));
33:
34: merge(d1, d2, d2, d3, t1);
35: merge(d3, d4, d4, d5, t3);
36:
37: merge(t1, t3, t3, t1+n, d);
38: g
39: g

40: void main() f
41: int n;
42: int *data, *temp;
43: scanf("%d", & n);
44: if (0 < n) f
45: data = (int *) malloc(sizeof(int)*n);
46: temp = (int *) malloc(sizeof(int)*n);
47: /* code to initialize the data array */
48: sort(data, temp, n);
49: /* code that uses the sorted array */
50: g
51: g

Figure 1: Divide and Conquer Sorting Example

2.1 Region Expressions

Roughly speaking, the compiler extracts these region expres-
sions as follows. It �rst performs a ow-sensitive, context-
sensitive, and interprocedural pointer analysis. The infor-
mation from this pass is used at various places throughout
the rest of the analyses. In some cases, the results are used
to increase the precision of the analysis by determining that
pointer assignments do not a�ect the values of local vari-
ables; in other cases they are used to disambiguate expres-
sions that denote regions of memory in di�erent allocation
blocks.

The compiler next performs an analysis that extracts
symbolic upper and lower bounds for each pointer or inte-
ger variable at each program point. These bounds are rep-
resented as expressions in the initial values of the procedure
parameters. In our example, the analysis determines that
at line 14, l � q � h � 2; at line 15, l� 1 � q � h� 2; and
at line 12, l+ 1 � p � h� 1.

The compiler next examines all of the load or store in-
structions in the program. It uses the symbolic bounds to
generate regions that the accesses must fall into. In our ex-
ample, the analysis is able to place the reads via p at line
12 in the region [l + 1; h � 1], the reads via q at lines 13
and 14 in the region [l; h � 2], the writes via q at line 14
in the region [l + 1; h � 1], and the writes via q at line 15
in the region [l; h � 1]. The compiler coalesces these re-
gions to deduce that a call to insertionsort(l,h) reads
and writes [l; h�1]. A similar analysis enables the compiler
to determine that a call to merge(l1,h1,l2,h2,d) reads the
memory regions [l1; h1 � 1] and [l2; h2 � 1] and writes the
memory region [d; d+ (h1 � l1) + (h2� l2)� 1].

The compiler next uses the region expressions from the
analysis of merge and insertionsort as the basis for a �xed-
point algorithm that determines the memory locations that
the sort procedure accesses. The algorithm repeatedly an-
alyzes the sort procedure, incrementally deriving more pre-
cise information about the regions of memory that it ac-
cesses.

In our example, the analysis proceeds as follows. The
algorithm uses the analysis results for insertionsort and
merge to determine that the call to insertionsort on line
22 reads and writes [d; d+ n � 1], and the call to merge on
line 34 reads [d1; d2�1] and [d2; d3�1] and writes [t1; t1+
(d2� d1) + (d3� d2)� 1]. It simpli�es the upper and lower
bound expressions to determine that the call to merge reads
[d; d+ n=4� 1] and [d+ n=4; d+ n=2 � 1] and writes [t; t+
n=2� 1]. It then coalesces adjacent regions to derive a read
region of [d; d+n=2�1] and a write region of [t; t+n=2�1].
A similar analysis for the other merge call sites combined
with the previously described information yields the �nal
read and write regions [d; d+ n � 1] and [t; t+ n� 1] for a
call to sort(d,t,n).

The algorithm then analyzes the sort procedure un-
der the assumption that each call reads and writes the re-
gions described above. This analysis derives that a call to
sort(d,t,n) reads and writes [d; d+n�1] and [t; t+n�1].
The algorithm has therefore reached a �xed point and con-
verges.

2.2 Parallelization

To parallelize the program, the algorithm uses the extracted
region expressions to perform dependence tests between ad-
jacent call sites. If there is no dependence, the compiler

generates code that executes the calls in parallel.2 In our
example, the dependence test between the recursive calls to
sort in lines 29 and 30 proceeds as follows. The compiler
uses the region expressions for sort to determine that the
�rst call reads and writes [d; d+n=4�1] and [t; t+n=4�1],
while the second call reads and writes [d+ n=4; d+ n=2� 1]
and [t + n=4; t + n=2 � 1]. The compiler checks all pairs
of region expressions from the two call sites to see if they
are independent. If so, the calls are independent and can
execute in parallel.

There are three ways for region expressions to be inde-
pendent: either they denote regions in di�erent allocation
blocks, they both denote regions that are read, or they de-
note nonoverlapping regions of the same block. The com-
piler uses the pointer analysis information to determine if
region expressions denote regions of di�erent blocks and to
determine if the region expressions both denote regions that
are read. It reasons logically about the upper and lower
bound expressions to determine if region expressions denote
nonoverlapping regions of the same block. In our example,
the compiler uses pointer analysis information to determine
that [d; d+ n=4� 1] and [t+ n=4; t+ n=2� 1] denote mem-
ory regions in di�erent blocks. It uses logical reasoning to
determine that [d; d + n=4 � 1] and [d + n=4; d + n=2 � 1]
denote nonoverlapping regions of the same block. It can use
similar strategies to determine that all of the other pairs are
independent, and that the calls can execute in parallel.

Using this basic approach, the compiler can determine
that all four recursive calls to sort can execute in parallel,
and that the �rst two calls to merge can execute in parallel.
It therefore generates Cilk code that executes these calls
in parallel. Figure 2 contains the generated code for the
sort procedure in our example. This code uses the Cilk
spawn construct to execute calls in parallel, and the Cilk
sync construct to synchronize after the parallel calls.

3 Analysis Overview

The primary goal of the analysis is to obtain, for each pro-
cedure, a set of symbolic region expressions that character-
ize how the procedure accesses memory. The compiler uses
these region expressions to �nd independent procedure calls,
then generates code that executes independent calls in par-
allel.

Each region expression contains a symbolic lower bound
and a symbolic upper bound. These bounds are expressed
in terms of a reference set of variables. The reference set
for each procedure consists of a set of variables that denote
the initial values, or values at the start of the execution
of the procedure, of the parameters and referenced global
variables. We denote the initial value of a parameter or
global variable p by p

0
. For example, the reference set for

the sort procedure in Figure 1 is fd0; t0; n0g. The analysis
consists of several steps:

� Pointer Analysis: The pointer analysis extracts in-
formation used by all succeeding analyses.

� Bounds Analysis: The intraprocedural bounds anal-
ysis extracts symbolic upper and lower bounds for the

2More precisely, the compiler generates code that exposes the
concurrency to the run-time system. Actually creating a full-blown
thread at each call site would generate an excessive amount of over-
head. We generate code in the Cilk parallel programming language;
the Cilk run-time system uses lazy task creation [15, 3] to generate
only as many threads required to keep the machine busy.

18: void sort(int *d, int *t, int n) f
19: int *d1, *d2, *d3, *d4, *d5,
20: *t1, *t2, *t3, *t4;
21: if (n < CUTOFF) f
22: insertionsort(d, d+n);
23: g else f
24: d1 = d; t1 = t;
25: d2 = d1 + n/4; t2 = t1 + n/4;
26: d3 = d2 + n/4; t3 = t2 + n/4;
27: d4 = d3 + n/4; t4 = t3 + n/4;
28: d5 = d4+(n-3*(n/4));

29: spawn sort(d1, t1, n/4);
30: spawn sort(d2, t2, n/4);
31: spawn sort(d3, t3, n/4);
32: spawn sort(d4, t4, n-3*(n/4));
33: sync ;
34: spawn merge(d1, d2, d2, d3, t1);
35: spawn merge(d3, d4, d4, d5, t3);
36: sync ;
37: merge(t1, t3, t3, t1+n, d);
38: g
39: g

Figure 2: Generated Parallel Code for Sorting Example

values of pointer variables at each point in the pro-
gram. These bounds are expressed in terms of the
reference set of the enclosing procedure.

� Region Analysis: The region analysis extracts the
set of regions accessed by each procedure. It �rst uses
the results of the bounds analysis to extract a region
expression for each pointer dereference. It then coa-
lesces region expressions from the same procedure to
obtain a minimal set of regions that each procedure
accesses directly. An interprocedural �xed-point algo-
rithm derives region expressions for the entire (poten-
tially recursive) computation of each procedure.

� Parallelization: The concurrency extractor compares
region expressions to �nd independent procedure calls
(two calls are independent if neither's computation ac-
cesses memory that the other's computation writes).
The code generator then generates code that executes
independent calls in parallel.

Figure 3 illustrates how all of these analyses come to-
gether in the overall structure of the compiler.

4 Pointer Analysis

We use a ow-sensitive, context-sensitive, and interproce-
dural pointer analysis algorithm [18]. The analysis works
for both sequential and multithreaded programs, although
in the research presented in this paper, we use it only for
sequential programs. The algorithm uses location sets to
represent the memory locations accessed by statements that
dereference pointers and caches the results of previous anal-
yses to avoid performance problems caused by repeatedly
analyzing the same procedure in the same context [21, 6].

The pointer analysis serves two main purposes. First,
it provides the pointer disambiguation information required

Figure 3: The Structure of the Compiler

for other dataow analyses to give accurate results on pro-
grams that use pointers. Most of the succeeding analyses
reason symbolically about the computed pointer values, and
a single write via an unresolved pointer reference would de-
stroy all of the extracted information. The analysis results
are also used in the dependence testing phase to determine
that region expressions denote regions in di�erent allocation
blocks.

5 Bounds Analysis

The bounds analysis consists of three subanalyses: an or-
der analysis that extracts information about the order rela-
tionships between variables at each program point, an ini-
tial value analysis that expresses the order relationships in
terms of the reference set, and a correlation analysis that
improves the precision of the other analyses. At the end of
the bounds analysis, the compiler has generated symbolic
upper and lower bounds for each pointer dereference. These
bounds are expressed in terms of the reference set of the
enclosing procedure, and are used by the region analysis to
derive region expressions for each procedure. The analysis
uses the special lower bound �1 or the special upper bound
+1 if it is unable to derive a lower or upper bound in terms
of the reference set.

5.1 Order Analysis

The order analysis extracts two kinds of information. For
integer variables, the zero order analysis maintains infor-
mation about the values of the variables relative to zero.
For pointer and integer variables, the relative order analy-
sis maintains information about the values of the variables
relative to other variables. Both analyses are predicated in-
traprocedural dataow analyses with the order information
generated both at assignments and at conditionals.

The zero order analysis maintains information for each
integer variable i. It uses a lattice that can represent any
disjunction (logical or) of the following atomic relations:
i � �2, i = �1, i = 0, i = 1, and i � 2. The analysis
formally represents these atomic relations using the set O =
fO

�2; O�1; O0; O1; O2g. The lattice is the power set P(O)
of O, and the meet operation is set union. At each program
point p, the analysis produces a function Zerop : V! P(O);
Zerop(i) represents the order relation for i relative to zero.

Similarly, the relative order analysis maintains informa-
tion for each pair of integer or pointer variables i and j.
It uses a lattice that can represent any disjunction (logi-
cal or) of the following atomic relations: i � j � 2, i =
j � 1, i = j, i = j + 1, and i � j + 2. The analy-
sis formally represents these atomic relations using the set
R = fR

�2; R�1; R0; R1; R2g. The lattice is the power set
P(R) of R, and the meet operation is set union. At each
program point p, the analysis produces a function Relp :
V � V ! P(R); Relp(i,j) represents the order relation be-
tween i and j.

When the analysis starts, both the zero order and rela-
tive order information is initialized to the empty set for all
variables at all program points. The exception is the initial
program point, which starts out with the zero order infor-
mation initialized to O and the relative order information
initialized to R for all variables.

We next consider how assignments a�ect the order infor-
mation. Each assignment to a variable i kills all zero order
relations for i and all relative order relations that involve i.
If the assignment is of the form i=n or i=j+n, where i and

j are program variables and n 2 N is an integer constant,
the analysis uses an abstract interpretation to generate new
order relations.

Figure 4 presents the abstraction functions used in the
analysis. The functions gO and gR map integers to their ab-
stract representations in the analysis lattices; the functions
hO and hR are the corresponding abstractions for integer
addition.

gR : Z! R

gR(n) =

(
R
�2 if n � �2

Rn if n 2 f�1; 0; 1g
R2 if n � 2

hR : Z� f�2;�1; 0; 1; 2g ! P(R)

hR(n;m) =

(
fgR(k) j k � n+mg if m = �2
fgR(n+m)g if m 2 f�1; 0; 1g
fgR(k) j k � n+mg if m = 2

gO : Z! O

gO(n) =

(
O
�2 if n � �2

On if n 2 f�1; 0; 1g
O2 if n � 2

hO : Z� f�2;�1; 0; 1; 2g ! P(O)

hO(n;m) =

(
fgO(k) j k � n+mg if m = �2
fgO(n+m)g if m 2 f�1; 0; 1g
fgO(k) j k � n+mg if m = 2

Figure 4: Abstraction Functions for Order Analysis

Figure 5 presents the analysis rules for assignment state-
ments. These rules assume that p is the program point be-
fore the assignment and p + 1 is the program point after
the assigment. The basic idea is that the rules reconstruct
as much of the order information as the abstraction allows.
For example, the analysis of the assignment i=5 will pro-
duce, by rule 1, Zerop+1(i) = O2. In other words, i � 2
after the execution of i=5. Moreover, if before the execu-
tion of i=5, O1 2 Zerop(j) (i.e., j = 1), then rules 2 and 3
require that O2 2 Relp+1(i,j) and O

�2 2 Relp+1(j,i). In
in other words, i � j+2 and j � i�2 after the assignment.

Next consider the analysis of the assignment i=j+1 with
i 6= j. Rules 1 and 2 require that R1 2 Relp+1(i,j) and
R
�1 2 Relp+1(j,i) | i.e., after the execution of i=j+1,

i = j + 1 and j = i � 1. If O
�1 2 Zerop(j) (i.e., j =

�1), then by rule 3, O0 2 Zerop+1(i) (i.e., i = 0 after the
execution of i=j+1). If R

�2 2 Relp(j,k) (i.e., j � k � 2)
then by rules 4 and 5, fR

�2 [R
�1g 2 Relp+1(i, k) and

fR2 [R1g 2 Relp+1(k, i). In other words, i � k � 1 and
k � i+ 1 at the program point after the assignment.

We next consider how conditionals a�ect the order infor-
mation. Conceptually, the order information that ows into
the true branch is the conjunction (logical and) of the order
information in the condition and the order information ow-
ing into the conditional. The order information that ows
into the false branch is the conjunction of the negation of the
order information in the condition and the order informa-
tion owing into the conditional. In our lattices P(O) and

P(R), the conjunction corresponds to the set intersection
operation.

The analysis extracts additional order information from
conditionals of the form i � n, i � n and i � j+ n, where
i and j are program variables and n 2 N is an integer
constant. Other conditionals such as i < n or i � j+n can
easily be reduced to these conditionals. The analysis also
supports conditionals with equality tests by replacing them
with two conditionals with inequality tests: i = n is replaced
by i � n and i � n, and i = j+ n is replaced by i � j+ n
and j � i � n. Figure 6 shows the analysis rules for a
conditional statement at program point p with a true branch
at program point t and a false branch at program point f .
For conditionals of the form i � n and i � n, only the zero
ordering information of i is modi�ed; for conditionals of the
form i � j + n, only the relative ordering information of
i and j is modi�ed. In other words, the analysis does not
perform the full transitive closure of the additional ordering
information generated at the conditional.

The analysis rules in Figures 5 and 6 de�ne analyses that
are monotonic under the subset inclusion ordering | if the
analysis extracts more information about the ordering at a
program point p (i.e., it can use fewer atomic relations to
represent the order information), it generates more informa-
tion at p+ 1 (if there is an assignment at p) and at t and f
(if there is a conditional at p).

5.2 Initial Value Analysis

The order analysis produces relations that can be used to
derive upper and lower bounds for each variable at each
program point. But the order relations are expressed in
terms of the values of the variables at the current program
point. The region analysis needs the bounds to be expressed
in terms of the reference set of the procedure (i.e., the initial
values of the parameters and the globals).

The initial value analysis propagates the initial values of
the parameters and the globals into the procedure. When-
ever possible, it generates, for each variable at each program
point, a mapping from that variable to an expression with
variables from the reference set. The analysis is structured
as a dataow analysis on the at lattice of expressions with
least element? and greatest element>. If the analysis is un-
able to represent the value of a variable using an expression
with variables from the reference set, it maps the variable
to >.

The transfer function for a statement p=exp generates
a new mapping for p. It �rst examines all of the variables
in exp. If any of these variables are currently mapped to
?, the analysis maps p to ?. If none of the variables are
mapped to ?, but at least one is mapped to >, the analysis
maps p to >. Otherwise, it derives a new expression from
exp by mapping all of the variables in exp to their current
expressions. The analysis maps p to this new expression.

The merge operation is de�ned as follows. The merge of
? with any expression exp is exp, the merge of two identical
expressions exp is exp, the merge of two di�erent expressions
is >, and the merge of > with any expression is >.

When the analysis starts, the mapping at the �rst pro-
gram point maps each parameter and global variable to its
corresponding variable from the reference set. All other vari-
ables are mapped to >. The mappings at all of the other
program points start out mapping all of the variables to ?.

Rules for statement i = j+ n :

1. if i 6= j then Relp+1(i,j) = fgR(n)g

2. if i 6= j then Relp+1(j,i) = fgR(�n)g

3. if Om 2 Zerop(j) then hO(n;m) � Zerop+1(i)

4. if Rm 2 Rel(j,k), i 6= k then hR(n;m) � Relp+1(i,k)

5. if Rm 2 Rel(j,k), i 6= k then hR(�n;�m) � Relp+1(k,i)

Rules for statement i = n :

1. Zerop+1(i) = fgO(n)g

2. if Om 2 Zerop(j), i 6= j then hR(n;�m) � Relp+1(i,j)

3. if Om 2 Zerop(j), i 6= j then hR(�n;m) � Relp+1(j,i)

Figure 5: Analysis rules for an assignment at program point p.

Rules for condition i � n :

1. Zerot(k) =
n
Zerop(i) \ hR(n+ 2;�2) if k = i
Zerop(k) if k 6= i

2. Relt(k,j) = Relp(k,j) for any k 6= j

3. Zerof (k) =
n
Zerop(i) \ hR(n� 1; 2) if k = i
Zerop(k) if k 6= i

4. Relf (k,j) = Relp(k,j) for any k 6= j

Rules for condition i � n :

1. Zerot(k) =
n
Zerop(i) \ hR(n� 2; 2) if k = i
Zerop(k) if k 6= i

2. Relt(k,j) = Relp(k,j) for any k 6= j

3. Zerof (k) =
n
Zerop(i) \ hR(n+ 1;�2) if k = i
Zerop(k) if k 6= i

4. Relf (k,j) = Relp(k,j) for any k 6= j

Rules for condition i � j+ n :

1. Relt(k,l) =

(
Relp(i,j) \ hR(n+ 2;�2) if k = i; l = j
Relp(j,i) \ hR(�n� 2; 2) if k = j; l = i
Relp(k,l) otherwise

2. Zerot(k) = Zerop(k) for any k

3. Relf (k,l) =

(
Relp(j,i) \ hR(�n+ 1;�2) if k = j; l = i
Relp(i,j) \ hR(n� 1; 2) if k = i; l = j
Relp(k,l) otherwise

4. Zerof (k) = Zerop(k) for any k

Figure 6: Analysis rules for a conditional at program point p, with true branch at program point t and false branch at program
point f .

5.3 Pointer Disambiguation in Order and Initial Value
Analyses

The order and initial value analyses use the pointer analy-
sis information to maintain precision in the face of pointer
dereferences. Consider, for example, an assignment *p=exp.
If the pointer analysis determines that p always points to a
speci�c variable v, the compiler can conceptually replace *p
with v in the assignment. This conceptual transformation
allows the compiler to analyze *p=exp as v=exp. The order
analysis can therefore generate precise order information for
v and the initial value analysis can map v to an accurate
expression derived from exp. A similar approach preserves
precision in the presence of reads via pointers.

The compiler falls back on conservative approaches if it
is unable to completely disambiguate a pointer. Assume
that the compiler is only able to determine that, at the as-
signment *p=exp, p points to one of several variables. In
this case, the initial value analyis conservatively maps all
of the potentially updated variables to > when it analyzes
the assignment. Similarly, the order analysis kills all of the

order information involving any of the potentially updated
variables.

Finally, it is possible for a callee procedure to change
the order or initial value information in the caller. This can
happen, for example, if the caller passes a pointer variable by
reference, and the callee modi�es the pointer variable. An
unmapping process similar to that used in standard pointer
analysis algorithms ensures that the analyses conservatively
model this possibility.

5.4 Correlation Analysis

The compiler uses correlation analysis to improve the preci-
sion of the bounds analysis in cases, such as for the variable
d in the merge procedure from Figure 1, when the order and
initial value analyses fail to derive accurate bounds. Cor-
relation analysis is designed to detect relationships of the
following form: \whenever p is incremented, exactly one of
q, r, or s is also incremented". In this case, we say that
p is the target variable, and that q, r, and s are the corre-
lated variables. The compiler uses this information to derive

bounds for the target variable in terms of the bounds and
initial values of the correlated variables.

The analysis is triggered whenever the compiler is un-
able to derive bounds for a target variable using the order
and initial value analyses. For each target variable and each
program point, the analysis produces two sets of variables:
a set of correlated variables with which the target variable
is correlated, and a set of uncorrelated variables with which
the target variable is known to be not correlated. The anal-
ysis maintains the invariant that these two sets are disjoint.
Once a variable enters the set of uncorrelated variables, it
never moves back into the set of correlated variables at any
subsequent point in the program.

5.4.1 The Analysis Algorithm

The analysis starts by examining the basic blocks to match
each increment of the target variable with an increment in
the same basic block of a correlated variable whose sym-
bolic bounds are already known from the order and initial
value analyses. The initial value analysis must also have
successfully extracted a symbolic initial value for the corre-
lated variable at the start of the procedure in terms of the
reference set of the procedure. In the example in Figure 1,
each increment of d is matched with the increment of l1 or
l2 from the same line in the program. Because l1 and l2
are parameters, their initial values are simply their values
at the start of the merge procedure.

This matching is used to de�ne the transfer functions for
basic blocks. The output set of uncorrelated variables that
ows out of a basic block is the input set of uncorrelated
variables that ows into the basic block plus all variables
updated in the block whose updates are not matched. The
output set of correlated variables is computed as follows.
The compiler �rst augments the input set of correlated vari-
ables to include all variables with matched increments in
the basic block. It then removes all variables that are in the
output set of uncorrelated variables.

The merge operation is de�ned as follows. The output
set of uncorrelated variables is the union of the input sets
of uncorrelated variables. The output set of correlated vari-
ables is the union of the input sets of correlated variables
minus the output set of uncorrelated variables. The sets of
correlated and uncorrelated variables are empty when the
analysis starts, and monotonically increase to their �nal val-
ues as the analysis proceeds.

For the target variable d in the example in Figure 1, the
sets of correlated variables for the basic blocks in lines 4 and
5 are fl1g and fl2g, respectively. The sets of uncorrelated
variables are empty. The merge operation at the top of the
while loop in line 3 will compute fl1,l2g as the correlated
set for d, and will leave the uncorrelated set empty. The
analysis reaches a �xed point with fl1, l2g as the corre-
lated set for d at the beginning of each basic block that
dereferences d.

5.4.2 Using Correlation Information

The correlation information establishes equations for the
values of reference variables in terms of the correlated vari-
ables. Whenever a target variable is correlated with a set
of variables at a certain program point, the di�erence be-
tween the value of the target variable and its initial value
is equal to the sum of di�erences between the values of the
correlated variables and their initial values. The compiler
uses this equation to derive bounds for the target variable
in terms of the bounds for the correlation variables.

In the example in Figure 1, the equation between the
values of the target variable d and the correlated variables
l1 and l2 is d � d0 = (l1 � l10) + (l2 � l20) at the start
of each basic block that dereferences d. This equation can
be combined with the bounds l10 � l1 < h10 for l1 and
l20 � l2 < h20 for l2 to obtain the bounds d0 � d <
d0 + (h10 � l10) + (h20 � l20) for d.

The compiler uses the bounds at the start of each basic
block to obtain bounds at each program point within the
basic block. It simply propagates the bounds from the start
of the block into the block, incrementing the lower and upper
bound whenever the target variable is incremented.

6 Region Analysis

The region analysis extracts symbolic region expressions that
characterize how each statement and the computation rooted
at each call site access data. Throughout the analysis, the
compiler keeps reads and writes separate, generating a set
of read region expressions and a separate set of write region
expressions for each statement and each call site. Because
the variables in these expressions are all from the reference
set of the enclosing procedure, the dependence tester can di-
rectly compare the region expressions to see if they overlap.

The region analysis starts with the results of the bounds
analysis, which generates an upper and lower bound for each
pointer dereference in terms of the reference set of the en-
closing procedure. For each procedure, the region analysis
coalesces adjacent and overlapping regions from the proce-
dure's pointer dereferences to obtain a minimal set of re-
gions that the procedure directly accesses. It then uses an
interprocedural �xed-point algorithm to extract the regions
accessed by the entire computation of the procedure. This
algorithm analyzes call sites and propagates region expres-
sions from callees to callers.

When the interprocedural analysis terminates, it has com-
puted a set of region expressions for each procedure. These
region expressions are given in terms of the reference set of
the procedure and characterize how that procedure accesses
data. As a byproduct of the interprocedural analysis, the
compiler also generates a set of symbolic region expressions
that characterize how each statement and call site in the
program access data; these region expressions are given in
terms of the reference set of the enclosing procedure. The
dependence testing phase uses these region expressions to
extract the concurrency.

6.1 Region Expressions

Each region expression is represented in the form [l; u], where
l is the lower bound and u is the upper bound. Both l and
u are symbolic expressions in terms of the reference set of
the currently analyzed procedure. These expressions are of
the form p+ exp, where p is a pointer into the accessed al-
location block and exp is an integer expression representing
the pointer o�set.

If the region expression summarizes how a statement or
procedure reads data, it is marked as a read expression; if
it summarizes how a statement or procedure writes data, it
is marked as a write expression. It is important to realize
that each region expression identi�es a region of memory
within a speci�c set of allocation blocks. The pointer anal-
ysis determines the set of allocation blocks for each region
expression. So even if the symbolic analysis is unable to
generate symbolic bounds for a region expression in terms
of the reference set, the region expression does not denote

all of memory. It merely denotes all of the memory in the
allocation blocks that the pointer analysis extracted for that
region expression.

6.2 Intraprocedural Region Analysis

The intraprocedural region analysis generates the local re-
gion set of the procedure, or a minimal set of region ex-
pressions that characterize how the procedure accesses data.
The local region set is expressed in terms of the procedure's
reference set. The analysis starts by using the results of
the bounds analysis to extract a region expression for each
pointer dereference in the procedure. At each pointer deref-
erence, it uses the order information (as translated by the
initial value analysis into the reference set of the procedure)
to obtain upper and lower bounds for the region that the
dereference accesses. Together, these bounds make up the
region expression for that dereference. The special bound
�1 is used as the lower bound for dereferences with no
lower bound from the bounds analysis; +1 is used as the
upper bound for dereferences with no upper bound from the
bounds analysis.

The local region set is initialized to the union of the re-
gion expressions from all of the pointer dereferences in the
procedure. An iterative algorithm repeatedly �nds two re-
gion expressions in this set whose upper and lower bounds
are either adjacent or overlap. It then merges the regions
into a new region as follows. The lower bound of the new
region is the minimum of the lower bounds of the original
regions, and the upper bound is the maximum of the upper
bounds of the original regions. The original regions are re-
moved from the local region set, the new region is inserted
into the set, and the algorithm iterates until there are no
more adjacent or overlapping regions.

This algorithm assumes that the analysis can compare
the upper and lower bounds of region expressions and gen-
erate the minimum and maximum of two bounds. These
bounds are symbolic expressions in the reference set of en-
closing procedure. During the bounds analysis, each bounds
expression is transformed into a sum of terms; each term is a
product of a coe�cient and a variable from the reference set.
The algorithm compares two such expressions by comparing
corresponding terms: one expression is larger than another
if all of its terms are larger. The algorithm compares terms
by comparing their coe�cients. If the variable from the ref-
erence set is positive or zero, the compiler chooses the term
with the larger coe�cient as the larger term. If the variable
is negative, the term with the larger coe�cient is the smaller
term. This approach requires that the compiler know the
sign of the integer variables in the reference set. The cur-
rent implementation relies on the programmer to declare all
such variables as C unsigned variables, which forces them to
be nonnegative. It would be straightforward to implement
an interprocedural abstract analysis to determine the sign
of variables in the reference set.

The algorithm that computes the minimum and maxi-
mum of two bounds expressions also operates at the granu-
larity of terms. The minimum of two bounds expressions is
the sum, over all pairs of corresponding terms, of the smaller
term in the pair; the maximum is the sum of the larger terms
in corresponding pairs.

For the example in Figure 1, the local region sets for main
and sort are empty. The local region set for merge reads
[l10; h10 � 1] and [l20; h20 � 1] and writes [d0; d0 + (h10 �
l10)+h20�l20�1]. The local region set for insertionsort
reads and writes [l10; h10 � 1].

6.3 Interprocedural Region Analysis

For each procedure, the interprocedural region expression
analysis uses the local region sets to derive a global region
set, or a minimal set of region expressions that characterize
how the entire execution of the procedure accesses data.

6.3.1 Non-Recursive Procedures

For non-recursive procedures, the analysis extracts the global
region sets by propagating region sets up from the leaves of
the call graph towards the root. For each procedure, the
global region set is initialized to the procedure's local region
set. At each propagation step, the analysis performs a sym-
bolic unmapping as follows. It �rst translates the region ex-
pressions from the reference set of the callee to expressions in
the variables of the caller. It then translates the expressions
from the variables of the caller to expressions in the refer-
ence set of the caller. The resulting expressions are added
to the current global region set of the caller, with adjacent
or overlapping regions coalesced as discussed in Section 6.2.

Consider, for example, the call site at line 34 in Figure 1
where sort calls merge. The global region set for merge con-
tains the read region expression [l10; h10 � 1]. The analysis
�rst unmaps this region expression into the variables of the
sort procedure to obtain the region expression [d1; d2 � 1].
It then uses the bounds analysis information to obtain the
lower bound d0 for d1 and the upper bound d0+n0=4�1 for
d2�1. Note that both bounds expressions are in terms of the
reference set for sort. The compiler combines these bounds
to obtain the region expression [d0; d0 + n0=4 � 1], which
is the translation of the original region expression from the
global region set of merge into a region expression that char-
acterizes, in part, how a speci�c call to merge accesses data.

6.3.2 Recursive Procedures

The analysis uses a �xed point algorithm to handle recur-
sive procedures. For each recursive procedure, the analysis
initially sets the procedure's global region set to its local re-
gion set. It then applies the bottom-up symbolic unmapping
algorithm described above to propagate region expressions
from callees to callers. It terminates the recursion by using
the procedure's current global region set in the unmapping
as an approximation of its actual global region set. When-
ever possible, the unmapped region expressions are coalesced
into the current global region set of the caller. The analysis
uses the coalescing algorithm discussed above in Section 6.2.
The algorithm continues until it reaches a �xed point.

In some cases, this analysis generates an unbounded num-
ber of region expressions that cannot be coalesced. This
may happen, for instance, when the recursive function ac-
cesses a statically unbounded number of disjoint regions. In
this case, the analysis as described above will not terminate.
Even if the analysis is always able to coalesce the region ex-
pressions from recursive calls into the current global region
set, the analysis as described above may not terminate if the
bounds always increase or decrease.

The compiler therefore imposes a �nite bound on the
number of analysis iterations. If the analysis fails to con-
verge within this bound, we replace the extracted region
expressions with corresponding region expressions that iden-
tify the entire allocation blocks as potentially accessed.

In the example in Figure 1, the global region set for
sort starts out empty. The interprocedural region analysis
for non-recursive procedures propagates the region expres-
sions from the calls to insertionsort and merge into the

sort procedure, and coalesces the resulting region expres-
sions to add the read region [d0; d0 + n0 � 1] and the write
region [t0; t0 + n0 � 1] to the global region set for sort.
The interprocedural region analysis for recursive procedures
uses this global region set as an approximation to derive re-
gion expressions that characterize how the recursive calls to
sort access data. After coalescing these region expressions
back into the current global region set for sort, the analysis
reaches a �xed point.

7 Parallelization

The goal of the compiler is to �nd sequences of procedure
calls that can execute in parallel. The primitives the com-
piler works with are the Cilk spawn and sync primitives [3].
The spawn primitive generates a parallel call | the spawned
procedure executes in parallel with the rest of caller, includ-
ing any subsequent parallel calls. The sync primitive blocks
until all of the caller's outstanding parallel calls terminate.
The output of the concurrency extraction phase of the com-
piler consists of a set of spawn points (each spawn point
corresponds to a parallel call) and a set of sync points. The
compiler inserts these constructs to maximize concurrency
subject to the constraint that the parallel program preserve
the data dependences of the original serial program.

7.1 Dependence Testing

Given the Cilk primitives, the relevant data dependences
exist between a callee and subsequent statements in the
caller, and between multiple callees. The compiler enforces
these dependences by comparing the region expressions from
callees with region expressions from statements or other
callees. If a write region from one of the two has a nonempty
intersection with a write or read region from the other, then
there is a potential data dependence. Otherwise, there is no
dependence.

The intersection test between two regions is performed
as follows. The compiler �rst uses the pointer analysis infor-
mation to check if the expressions denote regions in di�erent
allocation blocks. If so, their intersection is empty and there
is no dependence. If not, the compiler does a symbolic check
of the expressions for the lower and upper bounds of the two
regions. If the upper bound for one region is less than the
lower bound of the other, then the regions have an empty
intersection and there is no dependence. If the compiler is
unable to determine that the upper bound for one region is
less than the lower bound of the other, it must conservatively
assume that the intersection is nonempty. The bounds com-
parison checks are done symbolically using the expression
comparison algorithm described in Section 6.2.

7.2 Concurrency Extraction

The compiler uses the dependence test outlined above as the
foundation of an algorithm that identi�es parallel sections of
the program, or sections in which each procedure call can
execute in parallel with all subsequent statements and all
other procedure calls in the section.

The parallel section algorithm starts with an initial call
site. It then traverses the control ow graph of the pro-
gram to grow the parallel section as follows. It repeatedly
visits a candidate statement or call site on the control ow
frontier of the parallel section. To visit a candidate, the
compiler performs a dependence test between the symbolic

region expressions of of the candidate and the symbolic re-
gion expressions of the call sites in the current parallel sec-
tion. These symbolic region expressions are generated by
the region analysis, and are all expressed in terms of the
reference set of the enclosing procedure.

If all of the dependence tests indicate that there is no
dependence, the candidate statement or call site is added to
the parallel section. Otherwise, the program point before
the statement or call site is marked as a sync point. The
algorithm continues until all of the statements or call sites
on the frontier either have been visited or are the end node
of the procedure.

The analysis of the procedure generates multiple (poten-
tially overlapping) parallel sections as follows. The compiler
�rst traverses the call graph to �nd an initial call site. It
then performs the parallel section algorithm described above
to generate a set of sync points. The algorithm next �nds
another call site that is not yet in any parallel section, and
repeats the parallel section algorithm using that call site as
the initial site. The algorithm terminates when every call
site is in a parallel section. All call sites in parallel sections
that contain at least two call sites are identi�ed as spawn
points.

7.3 Code Generation

Once the compiler has determined the spawn and sync points,
code generation is straightforward. The compiler inserts a
spawn construct at each spawn point and a sync construct
at each sync point.

8 Experimental Results

We have implemented a parallelizing compiler based on the
analysis algorithms presented in this paper. This compiler
was implemented using the SUIF compiler infrastructure [1].
We implemented all of the analyses, including the pointer
analysis, from scratch starting with the standard SUIF dis-
tribution. The compiler generates code in the Cilk parallel
programming language [3]. We present experimental results
for two programs: a version of the sorting program pre-
sented in Section 2 and a divide and conquer matrix mul-
tiplication program. The matrix multiplication program is
representative of matrix manipulation programs; the sorting
program is representative of less regular divide and conquer
algorithms.

We ran the generated programs on an eight processor
Sun Ultra Enterprise Server. Table 1 presents the execution
times and self-relative speedups for the automatically par-
allelized matrix multiply program. The input is a 1024 by
1024 matrix of doubles. For comparison purposes, the exe-
cution time of the standard naive, triply-nested matrix mul-
tiply loop is 316 seconds, as opposed to 28.5 seconds for the
automatically parallelized version running on one processor.
We attribute the performance di�erence to cache improve-
ments from blocking and from an e�cient, hand-unrolled
implementation of the base case in the automatically paral-
lelized version.

Table 2 presents the execution times and self-relative
speedups for the automatically parallelized sort program
presented in Section 2. The input is four million randomly
generated integers. For comparison purposes, the execution
time of the sequential version of this program is 9.23 sec-
onds.

1 2 4 6 8

Time (seconds) 28.5 14.8 7.4 5.1 3.8

Speedup 1.0 1.9 3.8 5.6 7.5

Table 1: Execution Times and Speedups for Divide and Con-
quer Matrix Multiply

1 2 4 6 8

Time (seconds) 9.24 4.94 2.99 2.36 2.11

Speedup 1.0 1.9 3.1 3.9 4.4

Table 2: Execution Times and Speedups for Divide and Con-
quer Sort

9 Related Work

Many tree traversal programs can be viewed as divide and
conquer programs. For this class of programs there is a sig-
ni�cant body of research in the area of shape analysis, which
is designed to discover when a data structure has a certain
\shape" such as a tree or list [4, 19, 8]. Several researchers
have used shape analysis algorithms as the basis for com-
pilers that automatically parallelize divide and conquer pro-
grams that manipulate linked data structures [9, 13, 14]. We
are aware, however, of no previous research on parallelizing
compilers for divide and conquer programs (such as those
in our benchmark set) that use pointers to access disjoint
regions of large, contiguously allocated blocks of memory.

Several researchers have developed symbolic analysis tech-
niques for various parallelization approaches. Blume and
Haghighat [2, 10] have independently developed symbolic
analysis techniques for parallelizing loop nests that manip-
ulate dense matrices [2, 10]. Rinard and Diniz have devel-
oped symbolic analysis techniques for detecting commuting
operations on objects and using the commutativity infor-
mation to automatically parallelize irregular, object-based
programs [17].

Moon, Hall and Murphy have developed a data-ow anal-
ysis that uses the conditions in ow of control statements to
obtain extra precision. They use the analysis to generate
conditions that guard conditionally optimized code, and to
generate conditions that use run-time information to iden-
tify parallel loops [16].

There has been a signi�cant amount of research on ex-
tracting array sections in scienti�c programs that manipu-
late dense matrices [20, 12, 11]. These techniques are all
designed to work for programs with loop nests that access
matrices using a�ne access functions. The techniques pre-
sented in this paper, on the other hand, are designed to work
for pointer references in recursive procedures with general
control ow.

10 Conclusion

Traditional parallelizing compilers have focused on an im-
portant, but narrow, form of concurrency: the concurrency
available in loop nests that manipulate dense matrices us-
ing a�ne access functions. This paper presents algorithms
and experimental results from a parallelizing compiler that

focuses on a more general and no less important form of con-
currency: the recursively generated concurrency available in
divide and conquer algorithms.

To exploit this form of concurrency, we found that we had
to implement both pointer analysis and a set of new symbolic
analysis algorithms. These algorithms allow the compiler to
reason statically about the regions of memory accessed in
(potentially recursive) procedures that heavily use pointers
and pointer arithmetic. The compiler uses this region access
information to detect independent calls to these procedures
and to generate code that executes the independent calls in
parallel.

We have implemented a parallelizing compiler based on
this general approach; our experimental results show that
this compiler is capable of automatically extracting concur-
rency from optimized implementations of divide and conquer
algorithms.

Acknowledgements

We would like to thank Nate Kushman, Darko Marinov, and
Don Dailey for their help in generating the experimental
results.

References

[1] S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng.
The SUIF compiler for scalable parallel machines. In
Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scienti�c Computing, February 1995.

[2] W. Blume and R. Eigenmann. Symbolic range propa-
gation. In Proceedings of the 9th International Paral-
lel Processing Symposium, pages 357{363, Santa Bar-
bara, CA, April 1995. IEEE Computer Society Press,
Los Alamitos, Calif.

[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An e�cient multi-
threaded runtime system. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, Santa Barbara, CA, July
1995. ACM, New York.

[4] D. Chase, M. Wegman, and F. Zadek. Analysis of point-
ers and structures. In Proceedings of the SIGPLAN
'90 Conference on Program Language Design and Im-
plementation, pages 296{310, White Plains, NY, June
1990. ACM, New York.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-
ductions to Algorithms. The MIT Press, Cambridge,
Mass., Cambridge, MA, 1990.

[6] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of the SIG-
PLAN '94 Conference on Program Language Design
and Implementation, pages 242{256, Orlando, FL, June
1994. ACM, New York.

[7] J. Frens and D. Wise. Auto-blocking matrix-
multiplication or tracking BLAS3 performance from
source code. In Proceedings of the 6th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, Las Vegas, NV, June 1997.

[8] R. Ghiya and L. Hendren. Is is a tree, a DAG or a cyclic
graph? a shape analysis for heap-directed pointers in C.
In Proceedings of the 23rd Annual ACM Symposium on
the Principles of Programming Languages, pages 1{15,
January 1996.

[9] V. Guarna. A technique for analyzing pointer and struc-
ture references in parallel restructuring compilers. Pro-
ceedings of the 1988 International Conference on Par-
allel Processing, August 1988.

[10] M. Haghighat and C. Polychronopoulos. Symbolic
analysis: A basis for parallelization, optimization, and
scheduling of programs. In Proceedings of the Sixth
Workshop on Languages and Compilers for Parallel
Computing, Portland, OR, August 1993.

[11] M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao,
and M.S. Lam. Detecting coarse-grain parallelism us-
ing an interprocedural parallelizing compiler. In Pro-
ceedings of Supercomputing '95, San Diego, CA, Decem-
ber 1995. IEEE Computer Society Press, Los Alamitos,
Calif.

[12] P. Havlak and K. Kennedy. An implementation
of interprocedural bounded regular section analysis.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):350{360, July 1991.

[13] L. Hendren and A. Nicolau. Parallelizing programs with
recursive data structures. IEEE Transactions on Paral-
lel and Distributed Systems, 1(1):35{47, January 1990.

[14] J. Larus and P. Hil�nger. Detecting conicts between
structure accesses. In Proceedings of the SIGPLAN '88
Conference on Program Language Design and Imple-
mentation, Atlanta, GA, June 1988. ACM, New York.

[15] E. Mohr, D. Kranz, and R. Halstead. Lazy task cre-
ation: A technique for increasing the granularity of par-
allel programs. In Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, pages 185{
197. ACM, New York, June 1990.

[16] S. Moon, M. Hall, and B. Murphy. Predicated array
data-ow analysis for run-time parallelization. In Pro-
ceedings of the 1998 ACM International Conference on
Supercomputing, Melbourne, Australia, July 1993.

[17] M. Rinard and P. Diniz. Commutativity analysis: A
new framework for parallelizing compilers. In Pro-
ceedings of the SIGPLAN '96 Conference on Program
Language Design and Implementation, pages 54{67,
Philadelphia, PA, May 1996. ACM, New York.

[18] R. Rugina and M. Rinard. Pointer analysis for mul-
tithreaded programs. In Proceedings of the SIGPLAN
'99 Conference on Program Language Design and Im-
plementation, Atlanta, GA, May 1999.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive updat-
ing. ACM Transactions on Programming Languages
and Systems, 20(1):1{50, January 1998.

[20] R. Triolet, F. Irigoin, and P. Feautrier. Direct paral-
lelization of CALL statements. In Proceedings of the
SIGPLAN '86 Symposium on Compiler Construction,
Palo Alto, CA, June 1986.

[21] R. Wilson and M. Lam. E�cient context-sensitive
pointer analysis for C programs. In Proceedings of the
SIGPLAN '95 Conference on Program Language De-
sign and Implementation, La Jolla, CA, June 1995.
ACM, New York.

