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Abstract—Tasks’ scheduling has always been a central I. INTRODUCTION

problem in the embedded real-time systems community. As in

general th(_e schedullng problem_ls'_\/'P-hard, researchers haye Scheduling has a significant impact of our daily life,
been looking for efficient heuristics to solve the schedulth o, ing from logistics planning, workflow systems, space
problem in polynomial time. One of the most important .. . . .

scheduling strategies is the Earliest Deadline First (EDF) MISSION p'Iannlng, entertainment, medical systems, and SO
It is known that EDF is optimal for uniprocessor platforms ~ on. Tasks’ scheduling has always been a central problem in
for many cases, such as: non-preemptive synchronous tasksthe embedded real-time systems community. As in general
(ie., all tasks have the same starting time and cannot be the scheduling problem i8P-hard, researchers have been
interrupted), and preemptive asynchronous tasks (i.e., 8 ,quing for efficient heuristics to solve the scheduling

tasks may be interrupted and may have arbitrary starting . L .
time). However, Mok showed that EDF is not optimal in problem in polynomial time. There exist many models to

multiprocessor platforms. In fact, for the multiprocessor define a task. In this paper, we consider that a task is
platforms, the scheduling problem is A'P-complete in most characterized by three parametessis called thestarting
of the cases where the corresponding scheduling problem can tjme (also known as theelease timg ¢ is called the

be solved by a polynomial-time algorithm for UNIProcessor ., 1y tation timefalso known as thevorst-case execution
platforms. Coffman and Graham identified a class of tasks for . . . .
time), and d is called thedeadline For simplicity, we

which the scheduling problem can be solved by a polynomial- ' - ) )
time algorithm, that is, two-processor platform, no resouces, consider the tasks to be single-instance, hence there is

arbitrary partial order relations, and every task is non- no need to consider the tasks’ period. Thus, the notions
preemptive and has a unit computation time. of task, task instance and job are equivalent and can be

Our paper introduces a new non-trivial and practical interchangeable used. In fact, the results and examples fro
subclass of tasks, called urgent tasks. Briefly, a task is uemt if  thjg paper can be easily extended to periodic or sporadic
it is executed right after it is ready or it can only wait one unit tasks. Without loss of generality, we assume that, and

time after it is ready. Practical examples of embedded real- .
time systems dealing with urgent tasks are all modern buildig ¢ @ré non-negative integers, although a task may have

alarm systems, as these include urgent tasks such as ‘cheoi rational values for some parameters when needed. Using
for intruders’, ‘sending a warning signal to the security office’,  these notations, a tagkis denoted as a tripl€t, ¢, d), and
‘informing the building’s owner about a potential intrusio ', it means thatl’ can be executed after time completing

and so on. By using propositional logic, we prove a new result a total of ¢ time units by the deadling. Given a task
in schedulability theory, namely that the scheduling probém . )

for asynchronous and preemptive urgent tasks can be solved S€t7 = {_Tla Tk} then T is called schedulableby _

in polynomial time. a scheduling algorithm SA if SA ensures that the timing

constraints of all tasks ifi are met. Algorithm SA is called
Keywords-optimal scheduling; urgent task; polynomial-time  gptimal if whenever SA cannot find a schedule, then no
algorithm other scheduling algorithm can [8].
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problems [29]. There are only few subclasses of the genepaibblem can be solved in polynomial time. Briefly, given a
scheduling problem that have polynomial-time complexittaskT = (s, ¢, d), we say thatl’ is urgentif s +c¢ < d <
optimal algorithms. Dertouzos showed that the Earliesttc+1. Practical examples of embedded real-time systems
Deadline First (EDF) algorithm has polynomial complexityglealing with urgent tasks are all modern building alarm
and can solve the uniprocessor preemptive schedulisgstems, as these include urgent tasks such as ‘checking
problem [10]. Mok discovered another optimal algorithnfior intruders’, ‘sending a warning signal to the security
with polynomial complexity for the same subclass, thaiffice’, ‘informing the building’s owner about a potential

is, the Least Laxity First (LLF) algorithm [24]. Anotherintrusion’, and so on. Let us consider the following two
polynomial algorithm was found by Lawler in 1983 fortask sets as running examples in our paper.

non-preemptive unit computation time tasks with arbitrary E ) : .
. : xample 1.1:By abstracting the previous alarm system,
start time [18]. However, according to Graham, Lawler P y 9 b y

Lenstra and Kan, when dealing with non-preemptive ar%vde} C?vrr]1 ecrzn;;dir Ege lpr(i()am%tlvz tg)Sklgézt)nglz’ 1(1(2)’

non-unit computation time tasks, the scheduling proble ;
becomes\/P-hard. §? 3.5). Clearly, 7; contains only urgent tasks. In fact,

. ] ) the task setZ; is an adaptation of an example used by
Despite the fact that EDF is an optimal method fofqk to demonstrate the non-optimality of EDF scheduling
uniprocessor platform, EDF is not optimal for multiproo the multiprocessor platforms [24]. We consider a two-
cessor platforms. Mok showed that for multiprocessQy;ocessor platform rather than a uniprocessor one as the
platforms, the scheduling problem &/P-complete in o gye task set is not feasible if only one processor is used
most of the cases where the corresponding schedulipg schequling. Obviously7; is not EDF-schedulable on a
problem can be solved by a polynomial-time algorithryy,_nrocessor platform becausg will be assigned to the

for the uniprocessor platforms [24]. Coffman and Graha}st nrocessor7, will be assigned to the second processor,
identified a class of tasks for which the scheduling problemanceT3 will miss its deadline. However. we show in

can be solved by a polynomial-time algorithm, that is, tWogection 111 that our method will find actually that these

processor platform, no resources, arbitrary partial Ordﬁ’f_'?ent tasks can be executed as follows: fifstand then
reIanns,_and_every task is non-preemptive and has a URIton the first processor, and at the same tifaeon the
computation time [9]. second processor.

Anderson and Srinivasan discovered the Pfair scheduling )
technique where each task is broken into quantum-lengthEX@mple 1.2:Let us consider a second example taken
subtasks, each of which must execute within a “Windov&’r_Om [6], that is, 7> = {T1, T5, Ts} a preemptive task set
of time slots [1]. ERfair is a variant of Pfair schedulingdVen 71 = (0,2,3), T> = (0,2,3), and T3 = (0,2,3).
in which subtasks within the same job are allowed tg@rPenter et al. [6] showed thdk is schedulable only
execute before the Pfair window. The authors proved th4§ing @ fully dynamic and unrestricted migration schedul-
the Pfair and ERfair are optimal scheduling techniqud@d algorithm. All the other combinations of priority and
for intra-sporadic tasks on uniprocessor and two-progesgBgration degrees fail to find a schedule By on a two-
platforms. More recently, Srinivasan and Anderson [2d]rocessor platform [6]. LikeZ, from Example 1.1, task
showed that a simplified variant of the Pfair, called?pD S€t 72 is not EDF-schedulable [6]. On the contrary, our
is also optimal for scheduling “rate-based” tasks whodgCchnique will identify7, as an urgent task set and find
processing steps may be highly jittered. One of the diﬂje following scheduleT; for time interval [0,2) by the

ferences between their techniques and ours is that thiist Processorly for time interval [0, 1) by the second

technique is a rate-based scheduling technique and GPcessor and,3) by the first processor, and; for
1,3) by the second processar.

technique is based on a conversion to a special sub&&grvall
of propositional formulas. For simplicity in expressing To handle increasing task workload in embedded real-
the scheduling algorithm and corresponding proofs, ofme systems ranging from automotive control to avionics,
technique performs for each task an internal conversion @@al-core platforms are very popular, according to Steven-
unit computation time sub-tasks. However, this conversigan and Hill [30] and Kim et al. [16]. This motivates the
does not require any tight synchronization as in Andersefeed for developing an efficient schedulability test and
and Srinivasan’s work [1] and is transparent to the methagheduling algorithm for a two-processor system. As in
itself. In fact, we break tasks only in theory since we glughe alarm system, in a number of automotive applications
the corresponding sub-tasks back to contiguous entitigescribed by Kopetz et al. [17], Leteinturier [20], Brod} [5
whenever possible during the final execution assignmesid avionics described by Ras and Cheng [25], Rice and
(details in Section I). Cheng [26], and Locke et al. [23], there are periodic task
Our paper introduces a new non-trivial and practicalets with long periods, short deadlines, and computation
subclass of asynchronous tasks, for which the schedulitignes close to the corresponding relative deadlines. These



are exactly the task characteristics we have captured in @ssignment is in fact similar to the notion of schedule
model for which we provide a polynomial-time scheduladefined by Srinivasan and Anderson [28]. The schedule
bility test and scheduler. There have been studies in ttiere is represented as a predicate, whereas the execution
scheduling of periodic tasks with short deadlines and loragsignment is expressed as a union of intervals.

periods for uniprocessor systems such as the one describeBefinition 2.1: Let us considef = {T' T} a task
i By = 1y ==s Lk

by Audsley [3], but few on multiprocessors. This paperet, where each task; is given by (s;, ci, d;). We say

will tackle the tasks’ scheduling on two-processor/dua] hat the task seT is schedulable by processars andr
core systems.

The structure of this paper: Section | presents the if and only if there exists amxecution assignmergalso

definition and notations needed for the scheduling probler|§1nown asschedulg denoted byl A = 7 — [0, D), where

. = I’ general[s,e),) € FA(T) means the tasi’ executes
and a conversion result of a urgent task set to an equwal%r)}tprocessw in time interval from times to time e. and

unit computation time urgent task set. Section Il desaibe’,.” . . o
Satisfies the following two properties:

an efficient 2SAT encoding for urgent preemptive tasks ) 1 (1)
using Algorithm A and its refined form, Algorithm, 1) ¥ € {1, ...k}, we haveBA(Ti) = [s; ", ¢; ), )V
Section IV presents a necessary condition for schedulingU[ng)ael(-ni))(m,ni)' wherer; 1, ..., 7, are processors
urgent tasks. The last two sections present related work @nldor ray sl < el <. < s < glm). i (e(_j) _S(j))
conclusions. - B ’
ci, 8; < SZ(-I) andez(."f’) < d;;
Il. THE SCHEDULING PROBLEM 2)Vie {1, ..k} Vje{l, ...k}, i+ j, we have
There exists a few different, but similar, formulations foA(T;) N EA(T;) = 0. =
the scheduling problem. Although these formulations are in Similar to the approach from [8], the scheduling prob-
general equivalent_, they_might hig_hlight some dimensiorpém presented in Definition 2.1 a’ssumes that the tasks’
more than other dimensions. In th'_s SENSE, our Paper CQly, siraints are known in advance, such as deadlines, com-
siders the two-processor platiorm, independent preemm'ﬁfutation times, and start times. This framework is called
tasks, and no shared resources or overloa_Ld. static scheduling[29]. Static scheduling is in contrast
For the Sake of the presentation, we list some Of.”With dynamic scheduling, where the constraints may not
useful notations for the schedulability theory. A time iNba known in advance (e.g., start time). In fact, Mok
terval is a set of time stamps with the property that aYowed that the scheduling, problem for real—tim’e sys-
time ;tamp th‘,"‘t lies between two time stamps in th? Sett’s*gms with shared resources and no knowledge about the
also included in the set. For example, ¢) denotes a time future start times of the tasks is undecidable [24]. It is

interval that is left-closed and right-open. We say thakta?mportant in practice to reduce task waiting time and
T executes in the time intervak, e), if T' is ready to

X ). . . _context-switching time, especially when power dissipatio
execute by processorat time s and finishes its execution;q - siqered [19], [27]. However, for simiplicity Defirdti
pefore tlmee, giving the pOSS|b_|I|ty of next task _to start; 1 assumes also that there is no context-switching time.
its execuu_on by processor at time e. The set with no Given [S(_ui)’e(ui))(” € EA(T,) and [S(_uj)’e(_uj))(r_) c
elements is called the empty set and is denoted.bye g ¢ : J J )
say that[s, €)(,) N [s',¢)(ryy = 0 if and only if either Ef(Tj), wherer; andr; are processors, such thséf‘ =
r1 # 1o OF [s,e) N [s',¢/) = 0 in the mathematical senses; ', then we say that task is executed immediately
(ie., [s,e)N[s',e/) = {x | z € [s,e) andx € [¢,¢')}). after T;. The superscript above means the block index,
From now on,; andr, denote the two processors we ar@amely a task with an execution time ef may be
using. For a finite seV, we denote byV| the number of decomposed into different and dlStlm; blocks executed
elements ofl. in interva|3[5§1)aez('l))(m,l)’ [Sz(‘m)aez('m))(m,ni)-

Here is a formal definition of the scheduling problem Given two tasksl; and T}, we recall thatl; — T is a
on a two-processor environment where each task has precedence constraint betwe€hand 7 if task 7; must
own deadline. We consider in this paper a tast set denowdit for task; to finish its execution in order to get started.
as7T given by {T1, ..., T}, where each tasl; is given Using the notation of Definition 2.1, we say that tasks
by (si, ¢, d;). According to [29], if each task has aT; are preemptive ifn; > 1 (the casen; = 1 corre-
deadline, the scheduling problem for the multiprocesssponds to non-preemptive tasks). Another special case is
environment is exacerbated. This is actually one of the keshen the tasks have unit computation time. According
points why the scheduling problem for multiprocessor i® Definition 2.1, task7; has unit computation time if
difficult. Definition 2.1 defines the execution assignment = 1. A unit computation time is usually considered
for the time interval0, D), whereD = max{d; | T; € 7}. non-preemptive. Lawler proved that the scheduling prob-
We refer to D as the maximum deadline. The executiofem for non-preemptive unit computation time tasks with



arbitrary start time can be solved by a polynomial time Sinceez(-j) > sg'j) +1, foranyj € {1, ..., [;}, it follows
complexity algorithm [18]. However, according to Grahamthat Sz('li) > 31(.“)*1 +1>..>st+L—-1>s+1;— 1.
Lawler, Lenstra and Kan, the scheduling problem with nomherefores; +1; — 1 < S§Zi>_

preemptive and non-unit computation time tasks becomgg prove (b), we use again condition 1). We @élf) <
N'P-hard [14]. Next we recall the meaning of the urgené[(zi) < S 4 < < ) Hm)=() ni— 1, <

task set defined briefly in the Introduction. d+m; —1,.

Definition 2.2: Let us consider a task = (s, ¢, d). We Condition 2) from Definition 2.1 holds fo¥ ' based on
say that task is urgentif and only if s+¢ < d < s+c+1. condition 2) for7. Since EA is an execution assignment
A task set containing only urgent tasks is calleduagent schedulable for7’ that satisfies conditions 1) and 2), it
task setns follows that7” is a schedulable task set.

As shown in Examples 1.1 and 1.2 of the Introduction (<) Let us suppose that’ is schedulable. That means

H H H !
the task set¥; and 7, are urgent task sets. In addition,there existsEA, an execution assignment fdf’ that

it is easy to check thaf; and7; are not schedulable on satisfieg conditions 1) ar(lld) 2) fro(rCTJ)Defini(ti(k))n 2.1
a uniprocessor platform. Section IIl presents a scheduling) ¥ @ € {1, - k}, 3 s; S; v s, Such that

(c1) C )

algorithm able to generate a feasible scheduleZioand si < 8; ° < ..<s; ' <..< s < d; and BA(T) =
7> on a two-processor platform. [s9), ) 4 Dy V3 €AL el

The next result shows the conversion of a preemptive2) Vi € {1, ...k}, Vi’ € {1, ...c;}, Vje{l, ...k}, V
urgent task set to a unit computation time urgent task sgt.€ {1, ..., ¢;}, i # j, we haveEA(Ti(Z )) ﬂEA(Tj(J >) =
0.

Since any arbitrary task;, wherei € {1, ...,k}, of T is
preemptive, the execution assignmé&m (T;) can be easily
defined usingEA(Ti(J)), wherej € {1, ..., ¢;}. As such,
BA(T) = 575" + D) U Ul 51 + D, o,
for all i € {1, ..., ¢;}. This is ensured by the precedence
constraints:7\" — 7, ., T\ — T Without
loss of generality, we take; = ¢; in Definition 2.1 by
Proof (=) Let us suppose thaf is schedulable. identifying each execution interval as a unit computation

According to Definition 2.1, there exisfs A, an execution time interval. Obviously,EA(T;) satisfies condition 1)
2 K3 (3 j:l

Theorem 2.1:Let T = {T3, ..., Ty} be a preemptive
urgent task set, where > 1, and eachl; is denoted as
(siy i, di). Let T/ = {7V, ., 1\, ., TV, .., T\
be a task set such thﬁ];(l) =(s;+1-1,1,di—¢c; +1)
andTM — 1, ., 77" 7 are the precedence
constraints, for ali € {1, ..., k}, andi € {1, ..., ¢;}.

Then7 is schedulable if and only if’ is schedulable.

assignment for7, that satisfies conditions 1) and 2). W&,y pefinition 2.1 becausei
shall show that any arbitrary time interval that belongs j=1
to EA leads to some unit time intervals that belondi — - . o
to the execution assignment faF'. Let us consider an _ 1€ second condition from Definition 2. A(T;) N

arbitrary time interval[s\"’, e{"")),. . | € EA(T;), where EA(T;) =0, foralli e {1, ...k}, j € {1, ...k}, i # 4,
st (1) ;) holds due to the mutual exclusion of the unit computation
l € {1, ..., n;}. We show that there exist,”” — s,

: X . . i tasks.
_unlt compu(g'_a;tloggasks i that get ((le;)<ecuted(l|_r; the time Therefore, it follows that7 is a schedulable task sat.
intervals [s;"", s;"" + 1),y )0 oo (67 — 1€ 7)) o _
According to the unit computation tasks @f, this is Considering the notations from Theorem 2.1, we can
equivalent with the following two conditions: formally define aconversion mappingy : 7 — [7T']

@ si+1i—1<s® given by o(T3) = [T{, .., T\], for all i € {1,

(b) Sl(li) <di—ci+1—1 ..., k}. Note that[7’] means the set of all arrays with

k(glements ofl’, The conversion mapping expresses also the

1. precedence constraints between subta@}@: — TZ.(Q),
, will execute the above len=1 _ ples)

unit mter(yz;ds by gr;)c%s)sqh_,li). In other words: The next two examples illustrate the conversion mapping
EA(T;) =[s; ", s, " + 1) ;

Tig) of an urgent task set to a unit computation task set as
described in Theorem 2.1.

If conditions (a) and (b) hold, the unit computation tas
(li)75<li)7

711([7)’ 717‘([7)-5-1’ " jﬂ,z(lz)"”el

Nyl _ i) , ,
BAT T = (e - 1,6,

; oo i) . Example 2.1:Let 7; = {T}, T», T3} be the preemptive
H(erj)C_el, the( p)recedence constralﬂfé — T3, .., urgent task set defined in Example 1.1. By Theorem 2.1,
T\ — T;° hold. 7, is converted to the unit computation task g¢t= {77,

To prove (a), we consider condition 1) from Definition 2.17% 73, Ty, T¢}, whereT] = (0,1,1), Ty = (0,1,2),
thatis,s; < s! < el < ..<s! < <™ <M I =(0,1,1.5), T) = (1,1,2.5), andT! = (2,1,3.5). The



conversion mapping is given by(Ty) = [T7], ¢(T2) = VL., ), Where theL; ;'s are literals. We can denote the
(T3], and o(T3) = [T%, Ty, Ti]. According to Theorem above F' using the set representatiofi = {{L11, ...,
2.1,7; is schedulable if and only i} is schedulables Lin}, s {Li1y -, Lin,}}, or simply F = {C, ...,
C,}, whereC; = {L;1, ..., L; », }. For instance, formula
I= (AV =BV -C)A(mAV BV -C) is represented
i’ set notation ast" = {{4,-B,~C}, {4, B,~C}}.
A clause C with no literals is called the empty clause,
and it is denoted as. If a propositional formula contains
the empty clause, the entire formula is unsatisfiable (or
contradictory). A clause” with (at most) two literals is
called a 2CNF clause. A formula containing only 2CNF
clauses is called 2CNF formula. The SAT problerPdes
a CNF propositional formula have a truth assignm@ns?
We shall use in next section the conversion mapping agelled the 2SAT problem if the input is a 2CNF formula.
its inverse. The inverse of is denoted ag(~") : [T'] =7 Aspvall, Plass and Tarjan proved in 1979 [2] that the
and is given byy(~!) = T;. For instance, the inverse of 2SAT problem has a solution if and only if there is no
conversion mapping for the task set from Example 2.2 irongly connected component of the implication graph that
given by: o=(T7) = Ty, o1(T3) = T1, ¢"V(T3) =  contains both some variable and its negation. Since styongl
Ty, o"(T}) = Ta, o(T}) = Ts, and "D (T§) =  connected components may be found in linear time by an
Ts. algorithm based on depth first search, the same linear time
bound applies as well to the 2SAT problem.

Example 2.2:Let 7, = {11, T», T3} be the preemptive
urgent task set defined in Example 1.2. By Theorem 2
T, is converted to the unit computation task $gt= {77,
Ts, T4, Ty, T2, T4}, whereTy = (0,1,2), Ts = (1,1, 3),
T; = (0,1,2), Tj = (1,1,3), T, = (0,1,2), and T} =
(1,1,3). The conversion mapping is given y7;) = [T7,
T3], p(Tz) = [Tév T3], and p(T3) = [T5/v TG/] According
to Theorem 2.1,7; is schedulable if and only if7] is
schedulables

I1l. A 2SAT ENCODING FORURGENT PREEMPTIVE ] ) ]
TASKS We describe below AlgorithmA that takes as input a

task set and provides in the output a propositional formula

The first part of this section defines the notion ofhat is satisfiable if and only if the task set is schedulable.
over-schedulable schedulability and shows that an over-

schedulable task set is schedulable, too. Then, this sectio Algorithm A
describes AlgorithmA, and its refined version, Algorithm The input: 7/ = {7}, ..., T} an urgent task set, where

B, that has as input a task s&t of k£ unit computa- eraChT-’ is given by (s;, 1, d;) and, s; and d; are non-
tion time urgent tasks and provides as output a Zsphegative integers:

encoding (explaln_ed next pgragrapﬁ) S.UCh tha.\tT S The output: F' a 2SAT propositional formula such that
over-schedulable if and only if" is satisfiable. Since the. - . A

PN is satisfiable if and only if7’ is schedulable on a two-
2SAT satisfiability problem was proved by Aspvall, Plass

o ', .. processor platform.
and Tarjan in 1979 to be solvable by a polynomial tim )
complexity algorithm [2], it follows that the problem of he method:
scheduling unit computation time urgent tasks, and, F=0; N o
Theorem 2.1, the problem of scheduling urgent tasks c4n @dd propositional clauses ' specifying that each
be solved by a polynomial time complexity algorithm. task cannot start earlier than the starting time for both

The next part focuses on the SAT encoding associatBPCeSsors; o

with the task set. LeP be thepropositional logicover 3-2dd propositional clauses 1 specifying that each task
the finite set ofatomic formulee (variables)V = {4, Cannot execute after its deadline;
.y A} A literal L is an atomic formulad (positive 4. add propositional clauses t5 specifying the mutual
literal) or its negation-A (negativeliteral).Any function exclusion constraints, that is, a processor can execute at
S:V — {fal se,true} is an assignmenthat can be MOst one job at a time;
uniquely extended inCP to a propositional formulaF’. 5. add propositional clauses 1 specifying that if jobT;
The binary vector(y1, ..., y,) is a truth assignment foF i executed by processdy then it cannot be executed at
overV = {Ai, ..., A,} if and only if S(F) = true the same time by processr
such thatS(4;) = i, Vi € {1, .., n}. A formula 6. add propositional clauses t6' specifying that if two
F is called satisfiableif and only if there exists an unit time jobs do not correspond to the same initial task,
assignmentS for which S(F) = true; otherwise FF then they can be permuted (because they are not subject to
is called unsatisfiable Any finite disjunction of literals precedence constraints);
is a clause Any propositional formulal” € £P having 7.add propositional clauses f0 specifying that if two time
[ clauses can be translated into teenjunctive normal unit jobs correspond to the same initial task, then they have
form (CNF): F = (L11V ... VL1 )N ... A(LjaV ... to follow the sequence/order on which they appear (e.g.,



the second unit time job cannot execute before the first usitndition Cond; . If this is true, thenCond, will not be
time job). evaluated. On the other hand(ibnd; is false, therCond,

We refine AlgorithmA into Algorithm B by providing will be evaluated and the value 6fond; or el se Cond,
more implementation details about constructing a propwill be false if and only if bothCond; and Cond, are
sitional formula able to provide a feasible schedule fdalse.
the given urgent task set. Subsequently, we provide aThe next result proves the correctness and complexity of
correctness and time complexity result for AlgorittBn  Algorithm B. Note that functionsnaz() andmin() from

Algorithm B Algorithm B have the traditional meaningzin(a,b) = a

if a < b, andb otherwise; andnax(a,b) = a if a > b,
The input: 7' = {17, ..., T}.} an urgent task set, where ea€h 5ndp otherwise.
is given by(s;, 1, d;) and, s; andd; are non-negative integers;
¢ : T — T’ the conversion mapping; Theorem 3.1:Let us consideff’ an urgent task set and
The output: I a 2SAT propositional formula such thdt is . 77— 7 the conversion mapping as input for Algorithm

satisfiable if and only if7” is schedulable on a two- Processory | ot F be the output by AlgorithmB. Then 77 is
platform. y

The method schedulable on a two-processor platform if and onlyif
1 C(F) = is satisfiable. Moreovet” has polynomial size of " and
V(F) = { 51])7 e lie {1, .k}, j€{0, .., D—1}}; Algorithm B has a polynomial-time complexity.
3for (i=1" i<= k:z++){ . . o .
4. for (j=0; j<s; j++) Proof We start with the complexity part, as it is easier
5.  C(F)=C(F)U {{ﬁe“)}} U {{-e®}: to check. Obviously|V(F)| = 2- k- D. The number of
6. for (j=di+1; j< 121’) Jt+) . clauses depends on each task’s starting time and deadline.
7. CF) = CF)U{{-e ;1 U{{= 6 ik An upper bound fofC(F)| added at statements from lines
8. for (m=i+1, m<= k: m++) . )
3t012is2-k-D+2-k-D+k-(k—1). To find an upper
9. mazT = mazx{si, Sm}; .
10. minT = min{d;, dy}; bound for|C'(F)| added at statements from lin&8 to 27,
11. for (j=mazT; j<minT; j++) we suppose that at each iteration of fler statement from
12. C(F) = CF) U {{-el),=e)}} U line 13, we add 4 clauses as in the statement from lifie
{{ﬁe(z) e 3 Therefore, an upper bound €' (F)| added from lined.3

to 27is 4- D. By summarizing these numbers, we get the

} .D- (k=
13.for (1=0: 1< D: I1+4) total upper bound od- D - (k+ 1)+ k- (k—1). HenceF

14. if (there existsT! == (I,1,{ + 1) orel se 7/ == has a polynomial size o’

(1,1,142)) then { In order to estimate the time complexity of Algorithm

15, if (there exists ng # ¢, such thatl; == (1,1,1+1) B, we recall that the Aspvall, Plass and Tarjan algorithm
orelse Tj == (1,1, +2)) then [2] for solving a 2CNF formula needs a time complexity of

16. C(F) = O(F) U ({2} Uf{mel?), =21} ;
17. else { //letT;= (1 Jl+1)orel se T’ (l 1,01+
2),j#1i

n-(n+m), wheren is the number of variables and the
number of clauses of the propositional formula. Combining

18. i f (3T such thatp'(T}) # ¢~ (T})) t hen v_vith the abov_e results, it follows that Algorithi® has a
19. C(F) = C(F)U {{6511)7 11U {{6511)7 Py time complexity of2-k-D-[4-D-(k+1)+ k- (k— 1.)].
{{e§ll)7e(2)}}u {{e?, 6(2)}}, For the correctnes(s)part, we §hal| prove 'Fhat for amy
{1, ..., k}, we havere; / = true if and only if task7} is
21- ' f Tj==(,1,1+2) then { o o executed by processerat time interval[j, j + 1), where
22. . CF) = CF) U {{e ety jedo,..,D—1} andr € {1,2}.
U{{-ely), —e? 1} , The statements from linesand5 consider each previous
23. } replaceT; by (I +1,1,1+2); sub-interval by adding the unit clausgse!')} and{-e\”}
24 el se C(F) =o; /I F is unsatisfiable ag” = for all time units before their start time. This is equwaﬂen
(1,1,1 + 1)) to: task 7/ cannot execute in the sub-intervill, s;).
25. i f (there exist more taskd, 1,1+ 1) other thanZ;  Similarly, the statements from lingsand7 each and every
andTj) then _ o subsequent sub-interval by adding the unit clayses '}
26. C(F) =g [l F is unsatisfiable
27. replace all taskgl, 1,1 + 2) other thanT; and T} by and{ﬁe }for all time units after their deadline time. This
(I4+1,1,1+2); is equwalent to: tasi! cannot execute in the sub-interval
} [di, D).
} The statements from line&to 12 correspond to mutual

28.retum I with V(F") and C(F") computed above exclusion between taskg andT”, executed by a proces-

The operatoor el se from Algorithm B has the follow- sor, that is, one processor can execute eifffeor T, at
ing meaning:Cond; or el se Conds will evaluate first the same time. This is equivalent to adding to formfla



all the clauses{ﬂe e ﬂe(l) ;1 and {ﬂe (2) ;+ for all  Without loss of generality, we truncate the deadlines to the
J € {maz{s;, sm}, mm{dz,dm}} integer value by considering the ceiling of the deadline.
The statements from line$4 to 16 correspond to the Therefore, 73 = (0,1,1), T> = (0,1,2), T3 = (0,1,1),
case when there is only one ta#k asking for a processor 7, = (1,1, 2), andT; = (2,1, 3). By running AlgorithmB
available at time intervall,! + 1). Since this can be doneon a two-processor platform we get the formﬁlayrven by

by either processor; or 7‘2, the correspondlng clausesthe following clauses{ﬁe1 b= (1)} {—e {ﬁe@)
added toC(F) are {{efll), e )11, and {{ﬁe” ,ﬁe a3 {~ (2)} {~ (2)}’ {—e } {~ é%} {~ éz} {ﬁe@)
The last clause means that7if executes on processof, = (1)} (- (1)} (=elDY, {=e 2 )} (e 2 )} {ﬁe(z)
then it cannot execute on processgyand vice versa. The & (i) (1) ’ ? ) ? 5 (2)
statements from lined7 and 19 correspond to the case{ﬁe oby {meah, {-e R } {e 24 0} { 42} {;e
when there are two tasks/ and T’ which do not belong {ﬁess o} {—e } {ﬁeé,g}a {= e(_’)}, {= 6 } {= e( )

to the same initial task (that ISA? YTy # @fl(T/)) The mutual exclusion clauses are the foIIowing:

asking for a processor for the time |nter\{all +1). This {—el's, 6213 {ﬁef —esh}, {=el’y, ~eSl,
correspond tdef l)/\e@)) V(e (1)/\e(l) hence equivalent {ﬂefg, 630} {- egl()), 630} {- e%, 6323
to the conjunctive normal form clause{s{egll), 511)}} Thr? c][altlrses generated at stdsisto 26 of Algorithm B
1) (2 1) (2 (2 are t e ollowin
el e, Lheg o)), (e e, (el e T @ (D) ) @
The statements from line20 to 24 deal with the case L 0(’1)3 0 (ﬁ 07 %0 3 0’ (3)0 %()) (2)
whenp~!(T}) = ¢~ (T}), namelyT] andT; are subtasks {62 1 €41 €,1) 2 1 4 g €41 {ez1,

of the same task. IT} is specified ag/, 1,1+ 1), then the {65 %, eé2%

schedule cannot be done so the formHlas unsatisfiable. A truth assrgnment foF is: 5(61 0) =true,S(e

If T! is specified as(l,1,! + 2), then this is changed (2)

o(l+1 1pl +2) Trge taskT-’)is scheduled for eit%ler true, S(esy) = tr ue, S(ey) =true, ands(e -
s ' i ) ) t r ue. This truth assignment corresponds to the fo ollowing

(1.4 1) () Or [I0+ 1)(T2) Her;ceC( ) will contaln the  gchedulable schedule e

corresponding clausgge.}), c\7}}, and{{ e}, ~e{7}}. EA(T)) = {[0.)u)}, BAT) = {[L2)u}

The statement from I|nQ2 corresponds to the case WherEA(Tg) ={[0,1)(2)}, EA(T)) = {[1,2)(»)}, BEA(TY) =

condition (=1 (T7) # ©=1(T}) does not hold. It means {[2,3) ,}.

T andT; are subtasks of the same original task, that i&oming back to the original task s&t, we getEA(Ty) =

( 1>(T’) As such, it is also clear that srndq was not [0, 1)(1)} FA(T) = {[1, 2)(1)} EA(Ts) = {[0, 2) 2)5
scheduled for(l,l + 1), then the precedence constraint®, 3yt =
T — T; was correctly implemented.

The statements from linéxb and26 cover the case when ,
there is no processor available for the time intefyal+-1) ple 2.2. X\\I/e ret(;all';ha’lfz _t{Tl’ T, T, T4’| Tt?’ Ts}. By ;
since both processors andr, are taken. The statementrunnlng gorithmA on a two-processor plattorm, we g¢
from line 26 corresponds to the case when both processdrse formuIaFlgrven by the foIIowrng clauses{ﬁellz}
are taken for the time intervdl, [ 4+ 1) hence its execution {ﬁ€1 2} {-e ( )} {—e } {—e } {ﬁ {ﬁe( )
is shifted from[l,l + 1) to [l + 1,1 + 2) - this will be {ﬁe } {—e } {- e(2)}, {= gé}, {ﬁem}.
processed at the next iteration of ther statement from Here there are some mutual exclusion clauses

1) =

(1)
(i
52) =

Example 3.2:We continue now the task set from Exam-

; 1 (2
line 13. {_‘61 oﬁeg()) {- 61 Oa_‘€3()J {- 61 Oa_‘€50

It is clear from lines5 to 12 of Algorithm B that (-, 6(2) ef& {~ 63 eél()) {~ 630,1523
whenevere!”) = false, then taskT/ is not executed b i 2

rocessore at tlrhfg fr?terval[ + 1) Lines 16 and 22y " eg i’ ). gi’ﬁ% 1}, and so on. The rest
P " ¥ of the clauses are omitted because they are similar
ensure that Ifei,l true then taskT; executes at time sombinations with the above ones.

interval 1,1 4 1),. Line 19 ensures that I%(Tl) =true The clauses generated at stdj3sto 26 of Algorithm B

r) _ ' ¢+ are the foIIowrng

ande” =t rue, thenT; executes irjl, 1+ 1),y andT; Rt W@ @ @) (2)
executes inl, ! 4 1)z_). 107 €3,0 107 10 30a €3,0 {10,

Line 28 returns the output of AlgorithnB, hence the {e2 1, éli éli, 2 1 { f;}, éQ{ { é{ (2)

1 2 1 (2)

theorem is completely proved. {el! 41, éi} {el! 41, ii} {e é; e } {ef? 417 61

Next, we show now the application of Algorithii for A truth assignment foF’ is: 5(6113) =true, 8( é )=
our running task sets. true, S(efy) = true, S(efy) = true, S(ef) =

Example 3.1:We continue now the task set from Ex+true, and S(eé?%) = true. This truth assignment cor-
ample 2.1. We recall tha¥] = {T1, Tz, T3, T4, T5}. responds to the following schedulable scheduleZgr



EA(T) = {0,1)qy}, EFA(Ty) = {[1,2)w)}, a) there exist at leasty, T»,, T3, T4, andTs € 7 such
EA(T3) = {[0,1)2)}, EA(Ty) = {[2,3)(1)}, FA(T5) = that their start times equat

{[1,2)2)}, and EA(Tg) = {[2,3)2)}- b) there existl’, Ts, T5, Ty € T with start times and
Coming back to the original task s&, we getEA(Ty) = Ts, Ts, Tv € T with start times + 1;
{[0,2)y}, EA(T2) = {[0,1)(2), [2,3)1)}, EA(T3) = c) there existl}, T», T5 € 7 with start times and Ty,
{[1,3)2)} = Ts, Ts, T € T with start times + 1.

As an immediate implication of Theorem 3.1, Algorithmwe need to prove that all the above conditions lead to
B is optimal. In other words, i’ provided as output by unschedulable schedules. The computation time of each
Algorithm B is unsatisfiable, then both task s@tsand7’ task is at least.
are not schedulable. In fact, AlgorithBaschedules the task @) Without loss of generality, let us assume thaexecutes
set7” in a similar way as Least Laxity First strategy. Then the time intervals, s +1)(,), T2 in [s+1,5+2) ), T3
resulted formulaF’ can actually provide more than just ondn [s, s +1)(,), andTy in [s+1, s+2) ;). TaskT5 cannot
schedule. In addition, AlgorithrB has a polynomial-time be executed later than 2 because it is an urgent task. At

complexity on a multiprocessor platform. the same time7; cannot be executed in eithér, s + 1)
or [s +1,s + 2) as these two time intervals are taken by
IV. NECESSARYCONDITIONS FORSCHEDULING processors; andr,. HenceTs will miss its deadline.
URGENT TASKS b) Without loss of generality, let us assume tiiaexecutes

This section is devoted to identifying large subclasses 6 [s, s+ 1)), T2 iN [s+1,542) ), T30 [s, s+ 1) (),
urgent tasks that are not schedulable. The tasks that lead 0N [s + 1,5+ 2)(r,), T5 in [s + 2,5+ 3)(,), andTg in
non-schedulability are calls@mmedtasks. We prove that [s + 2,5 + 3)(.,). TaskT7 cannot be executed later than
if a task set contains jammed tasks, then the task set canhdt 3 because it is an urgent task with start time- 1.
be schedulable. We describe some necessary conditionsHéwvever, 77 cannot be executed earlier thar- 3. Hence
tasks’ scheduling on a two-processor platform. The neXt Will miss its deadline.
subsection presents some necessary conditions for taskg?) Case ) is similar to case b).
scheduling on a uniprocessor platform. We saw in SectionIn conclusion, 7 is not schedulable as it contains
Il that Algorithm B was able to check in a polynomialjammed taskss
time complexity whether a task set is schedulable or not.

: ) In order to test whether a given urgent task getis
However, the worst case has a time complexity26fk - g 9

) schedulable, we check first the applicability of Theorem
D[4 D-(k+1)+k-(k—1)], wherek is the number , for jammed tasks. Obviously, this can be done in linear

of tasks andD is their maximum deadline. The conditionﬁime and space complexity. In the affirmative case, we

lveagéezgrr:]t t|2|§tsect|on can be checked in linear time aE‘gnclude thatZ is not schedulable. Otherwise, Algorithm
P piexity. B can be applied as an alternative to check whether the

Definition 4.1: Let us consider a two-processor platcorresponding propositional formula is satisfiable.
form. We say that a task sét is jammed if (at least)

one of the following conditions hold: A. Scheduling conditions for the uniprocessor platform
a) there exist at least five urgent tasksZnwith the ] . N
same start time: This subsection presents some necessary conditions for

b) there exist at least four urgent tasksZhwith start tasks’ scheduling on a uniprocessor platform. These con-

time s and at least three other urgent task<Zofvith start ditions look much simpler than the corresponding condi-
time s + 1: tions for tasks’ scheduling on a two-processor platform.

Likewise the scheduling conditions for the two-processor
platform, and the corresponding scheduling conditions for
the uniprocessor platform can be done in linear time and
space complexity.

The following result represents a necessary condition ) .
for feasibility of urgent tasks. Theorem 4.1 is useful for Definition 4.2:Let us consider a uniprocessor platform.
schedulability analysis of urgent task sets. We say that a task s is uni-jammed if (at least) one

) ] of the following conditions hold:

Theorem 4.1:A jammed urgent task set is not schedu- a) there exist at least three urgent tasksZinwith the

lable on a two-processor platform. same start time:

Proof Let us considerZ a jammed urgent task set. b) there exist two urgent tasks #h with start times and
According to Definition 4.1, it means we have one of that least two other urgent tasks @f with start times + 1.
following conditions fulfilled: "

c) there exist at least three urgent tasksZirwith start
time s and at least four other urgent tasks Bfwith start
times+1. =



The following result represents a necessary conditiand deadlines. They proposed @fn*) algorithm based
for feasibility of urgent tasks. Theorem 4.2 is useful foon the key consistency notion known as successor-tree-
schedulability analysis of urgent task sets. consistency for solving the problem. Only single-instance
Theorem 4.2:An uni-jammed urgent task set is nottf”lsks are consid_gred. In contrast, our proposed polynemial
schedulable on a uniprocessor platform. time schedula\_blllty test and a_lgorlthm works for urgent
tasks with arbitrary execution times.
Proof Let us considef a uni-jammed urgent task set. Moreover, Baruah, Rosier, and Howell proved in 1990

ACCOfding to Definition 42, it means we have one of thﬂ‘lat the prob|em of deciding whether an asynchronous

following conditions fulfilled: periodic task set, when deadlines are less than the periods,
a) there exist at leadf, T, and73 € 7 such that their js schedulable on one processotN&P-hard in the strong
start times equa¥; sense [4]. This even more negative result precludes the
b) there existl’, T> € T with start times and T3, T, existence of pseudo-polynomial time algorithms for the
€ T with start times + 1. solution of this feasibility decision problem, unles3

We need to prove that both conditions lead to unschedu-NP.

lable schedules. The computation time of each task is, ofThis result was extended in 1995 by Howell and Venka-

course, at least. trao who showed that the decision problem of determining

a) Without loss of generality, let us assume thiaexecutes whether a periodic task system is schedulable for all start
in the time intervals, s+ 1) andT5 in [s+1,s+2). Task times with respect to the class of algorithms using inserted
T; cannot be executed later thant- 2 because it is an jdle times is NP-Hard in the strong sense, even when the
urgent task. At the same timég cannot be executed in deadlines are equal to the periods [15].

either[s, s + 1) or [s + 1, s +2) as the processor executes An interesting concept in scheduling theory motivated by

Ty andT>, respectively. Hencé’ will miss its deadline. parallel computing systems is to consider multiprocessor

b) Without loss of generality, let us assume tiiaexecutes tasks which require more than one processor at the same
in[s,s+1), > in[s+1,s+2),andT3in [s+2,5+3). time [11]. A generalization of the classsical uniprocessor

TaskTy cannot be executed later than+ 3 because it is and two-processor unit computation time tasks was ad-
an urgent task with start time + 1. However,7; cannot dressed in [13]. Giaro and Kubale showed that, given a

be executed in any of the previous time intervals, namefixed set of either 1-element (it requires a single dedicated

[s,8+ 1), [s+1,s+2) or [s+ 2,5+ 3). HenceTy will  processor) or 2-element (it requires two dedicated pro-

miss its deadline. _ _ cesors simultaneously), the scheduling problem of sparse
~ In conclusion,7 is not schedulable as it contains uniinstances of tasks with arbitrary start times and deadlines
jammed taskss can be solved in polynomial time. We intend to consider

this kind of scheduling framework and check whether the
scheduling problem of urgent task sets can still be solved
Liu and Layland found a polynomial-time schedulabilityn polynomial time.
analysis test that ensures the Earliest Dealine First (EDF)Chen and Hsueh [7] presented a model, calfed L.,
optimality for synchronous tasks (i.e., all tasks have thgane, to describe the behavior of tasks and processors. By
same start time), and with relative deadlines equal &lowing task migration, the authors described two optimal
their respective periods [22]. However, Leung and Merrilbn-line algorithms based dfi— L., plane to schedule real-
proved that deciding if an asynchronous periodic task sé¢itne tasks with dynamic-priority assignment on uniform
when deadlines are less or equal than the periods, nmiltiprocessors. Our work presented an optimal scheduling
schedulable on one processoN&P-hard [21]. algorithm only for two-processor platforms, but we do not
There exist several polynomial-time algorithms for tworestrict the processors to be uniform.
processor scheduling [12], [31], [32], but all these restri  Carpenter et al. presented in [6] nine combinations of
tasks to have unit execution times (UET). Garey amgtiority and migration degrees taxonomy for scheduling
Johnson [12] presented a test for determining whethalgorithms. The task’s priority can be (i) static, (ii) dy-
there exists a schedule on two identical processors for tlmamic but fixed within a job, or (iii) fully dynamic. The
type of tasks with start times and deadlines, and providéakk's degree migration can be (i) no migration (i.e., task
an O(n?) scheduling algorithm if such a schedule existgartitioning), (ii) migration allowed, but only at the bagn
The considered tasks are single-instance and hence aot (i.e., dynamic partitioning at the job level), and (iii)
periodic. Vazirani [31] proposed a fast parallel (R-NClunrestricted migration (i.e., jobs are allowed to migrate)
algorithm for this problem. Wu and Jaffar [32] studied nonExample 1.2 describes the task $gttaken from [6] to
preemptive two-processor scheduling, again for UET tasKkistrate the power of a fully dynamic and unrestricted
but with arbitrary precedence constraints, release timesigration scheduling algorithm. On the other hand, all the

V. RELATED AND FUTURE WORK



other eight combinations of priority and migration degreg3]

fail to find a schedule foff; on a two-processor platform

[6]. However, according to [6], this class of fully dynamic
and unrestricted migration scheduling algorithm has [&4]
major drawback. The runtime overhead of the scheduling
algorithms for this class may be unacceptably too high
for some applications, in terms of runtime complexity;15]
preemption frequency, and migration frequency. According
to [6], migration is an important criteria in the desig 16]
of multiprocessor real-time systems because it affects the
true cost in terms of the final system produced. We plan
as future work to investigate finding the best scheduling

algorithm with minimum (or at least as minimum ag17]
possible) number of preemptions and migrations.

We identified and formally defined a non-trivial clas

VI. CONCLUSION

of task sets, calledrgent tasksfor which the scheduling
problem can be solved in polynomial time. We presentétf!]
an efficient algorithm for finding the schedule via o]

efficient 2SAT encoding. We identified a necessary efficient
condition useful for schedulability analysis of urgentkss
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