
Deductive runtime certification

Konstantine Arkoudas 1 Martin Rinard 2

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA

Abstract

This paper introduces a notion of certified computation whereby an algorithm not
only produces a result r for a given input x, but also proves that r is a correct
result for x. This can greatly enhance the credibility of the result: if we trust the
axioms and inference rules that are used in the proof, then we can be assured that r
is correct. Typically, the reasoning used in a certified computation is much simpler
than the computation itself. We present and analyze two examples of certifying
algorithms.

We have developed denotational proof languages (DPLs) as a uniform platform for
certified computation. DPLs integrate computation and deduction seamlessly, offer
strong soundness guarantees, and provide versatile mechanisms for constructing
proofs and proof-search methods. We have used DPLs to implement numerous
well-known algorithms as certifiers, ranging from sorting algorithms to compiler
optimizations, the Hindley-Milner W algorithm, Prolog engines, and more.

Key words: Verification, certifying algorithms, program
correctness, proofs, certificates, Athena, DPLs

1 Introduction

Complete deductive verification of software systems can be extremely onerous.
It is a major challenge to prove mechanically that a complex piece of software
will always produce the correct output for any given input. The difficulty is
due partly to the fact that deductive technology has not yet reached a suffi-
ciently advanced state of the art, and partly to the inherently high complexity
of software. Nevertheless, formal proofs are a superb methodology for increas-
ing reliability, and we would like to find a use for them even when it is not
practical to prove a system completely correct.

This paper presents an alternative to complete static verification, namely
partial dynamic certification. Instead of statically proving that an algorithm

1 Email: arkoudas@lcs.mit.edu
2 Email: rinard@lcs.mit.edu

c©2004 Published by Elsevier Science B. V.



Arkoudas, Rinard

produces correct results for all inputs, we express the algorithm as a proof-
search procedure that takes an input x and not only produces a result r but
also proves that r is a correct result for x. Such certifying algorithms can be
viewed as instrumented versions of conventional algorithms, modified to justify
their results with deductive reasoning. The reasoning is performed at runtime,
and applies only to the particular input x and result r. The completed proof
can be regarded as a certificate for the result r; once this proof is validated,
we may say that r has been “certified.”

Runtime certification is less powerful than static verification. It guaran-
tees no more and no less than this: if and when the algorithm produces a
result, that result is correct—modulo the logic that specifies what counts as
correct. That can still be very useful, since it prevents the program from
silently generating a plausible but incorrect result.

The advantage of runtime certification is that usually it is much more prac-
tical than static verification. Consider, for instance, the unification example
we give in Section 4. A complete verification of a unification algorithm was
given by Paulson [28], where he states that the proof “relies on a substantial
theory of substitutions, consisting of twenty-three propositions and corollar-
ies... The project has grown too large to describe in a single paper... The proof
is not entirely beautiful. A surprisingly diverse series of problems appeared.”
A more recent correctness proof for a Martelli-Montanari-style unification al-
gorithm using the Boyer-Moore theorem prover runs to thousands of lines [31].
By contrast, expressed as a certifying algorithm, our Martelli-Montanari unifi-
cation procedure was implemented in less than one page of Athena code. 3 This
dramatic difference is an apt illustration of the main tradeoff: static verifica-
tion gives us peace of mind for all inputs, but is difficult; runtime certification
gives us more limited assurance, pertaining only to particular inputs and out-
puts, but is much more feasible. Another important difference is that static
proofs—such as the aforementioned by Paulson—usually verify an abstract
model of the software component, not the actual code; whereas in certified
computation the theorem refers to the actual result obtained in real time.

We envision runtime certification as a methodology to be applied to se-
lected parts of a software system, not to every part. In some cases it might
not be viable to characterize output correctness with mathematical rigor. For
other components, such as reactive systems, the important issue is not out-
put correctness but behavioral safety, and in that case other methods and
formalisms such as runtime monitoring [8] or I/O automata [18] will be ap-
propriate. Even when correctness has a precise description and is important,
certification might not be deemed necessary. For instance, compiler writers
are not likely to certify lexical analyzers or parsers. Those parts are so well
understood and so routinely automated by highly reliable tools that the effort
necessary to certify them would outweigh the benefit. However, we might

3 Athena is the DPL we have used for all our implementations; we describe it in Section 3.

2



Arkoudas, Rinard

still want to certify the optimizing part of a compiler’s back end, or a type
inference algorithm, or some other component whose correctness is crucial.

2 An example

Consider Euclid’s algorithm for computing the greatest common divisor of two
natural numbers a and b, denoted gcd(a, b). The algorithm can be stated in
pseudocode as follows:

euclid(a, b) = If b is 0, return a. Otherwise, return the result of
the recursive call euclid(b, a mod b).

(We write a mod b for the remainder obtained when a is divided by b.)

The correctness of this algorithm hinges on the following two results of
number theory:

∀ x | gcd(x, 0) = x(1)

∀ x, y | y > 0⇒ gcd(x, y) = gcd(y, x mod y)(2)

As given above, the algorithm relies on these two theorems tacitly. In order to
prove that the algorithm is correct, the connection must be made explicit. For
purposes of static verification, one would use strong induction on b to show
that for any given a and b, euclid(a, b) produces gcd(a, b).

In our approach, we express Euclid’s method as an algorithm derive-gcd
that not only produces a result r for two inputs a and b but also proves that
r is the gcd of a and b. Accordingly, the output of derive-gcd is a theorem of
the form gcd(a, b) = r. The theorem is to be derived from axioms and previ-
ously established results—in this case, equations (1) and (2)—using standard
inference methods, e.g., universal specialization, modus ponens, reasoning by
cases, etc. Specifically, we formulate derive-gcd as follows:

derive-gcd(a, b) = If b is 0 then infer gcd(a, b) = a from (1). Otherwise,
let m = amod b (i). Recursively apply derive-gcd to b and m to obtain
a theorem of the form gcd(b, m) = r (ii). From (2), (i), and the supposition
b > 0, we conclude gcd(a, b) = gcd(b, m) (iii). Finally, from (iii), (ii), and
the transitivity of equality, we obtain gcd(a, b) = r.

We can view derive-gcd as a method for arguing that a certain result is
correct—as a “justification algorithm.” It is a recipe that spells out how to
obtain the gcd of two integers, and also how to convince a skeptical observer
that the result is indeed correct. 4

The important point is the reduction in our trusted base. What do we
need to trust in order to believe a theorem produced by derive-gcd? We need
to trust the premises used during the justification process, namely, proposi-

4 It is noteworthy that Euclid himself formulated his procedure as a certifying algorithm.
We quote from the beginning of Proposition II, Book 7 of the Elements: “It is required to

find the greatest common measure of AB and CD. If now CD measures AB, since it also measures itself,

then CD is a common measure of CD and AB. And it is manifest that it is also the greatest, for no greater

number than CD measures CD. But, if CD does not measure AB, then...” The presentation continues
in the same style. 3



Arkoudas, Rinard

tions (1), (2), and the transitivity of equality; and we also need to trust that
the primitive arithmetic operations at our disposal for computing remainders
and for performing numerical comparisons are correctly implemented. Pre-
sumably (1) and (2) were previously derived from more rudimentary axioms
and definitions; transitivity of equality can be taken as an axiom; and the cor-
rectness of elementary arithmetic operations can reasonably be taken in good
faith. But the control structure of derive-gcd does not need to be trusted in or-
der for the resulting theorems to be credible; and that is the crucial difference
between a certifying algorithm such as derive-gcd and a conventional algo-
rithm such as euclid. For instance, if the conditional analysis that derive-gcd
performs or the recursive call that it places to itself are misguided, in the
sense that they fail to produce the proper outcome, then the proof will not go
through and no theorem will be established. But if a theorem is derived then
it can be trusted, even if its derivation happened to be a fluke. Certifying
algorithms thus enforce a strict separation between logic and control, pushing
the latter outside the trusted base.

This becomes more evident if the language in which we implement the
certifying algorithm is capable of issuing a certificate for every output theo-
rem, i.e., a formal proof for the correctness of the result. Certificates can be
obtained automatically in a language such as Athena (see below). In Athena
the user can apply derive-gcd to two integers, say 12 and 8, and obtain two
things, the theorem gcd(12, 8) = 4 and a certificate that proves this theorem.
In this case, the certificate will be a straight-line proof such as the following:

a. gcd(4, 0) = 4 from (1)
b. 4 > 0 primitive
c. 8mod 4 = 0 primitive
d. gcd(8, 4) = gcd(4, 0) from (2), b, and c
e. gcd(8, 4) = 4 from d, a, and equality transitivity
f. 8 > 0 primitive
g. 12mod 8 = 4 primitive
h. gcd(12, 8) = gcd(8, 4) from (2), g, and f
j. gcd(12, 8) = 4 from h, e, and equality transitivity

Observe that this certificate is essentially the evaluation trace of the appli-
cation of derive-gcd to 12 and 8. Also note that the asymptotic complexity
of derive-gcd and euclid are the same. Certificates for theorems of the form
gcd(a, b) = r will have O(log2 min{a, b}) steps.

3 Denotational proof languages

Certified computation can be viewed as a language-independent paradigm—as
a general style of backing up computation with proof. Nevertheless, in making
that approach workable in practice we are confronted with a language problem:
we need languages in which justification algorithms such as derive-gcd can be
fluidly expressed. To be suitable for certified computation, a programming

4



Arkoudas, Rinard

language must offer several features over and above the standard amenities
of modern languages. The language must have a built-in rigorous notion of
statement and proof, and furthermore:

• There must be a trusted deduction mechanism by which one can derive
consequences of axioms and definitions.

• There must be a sound abstraction mechanism for proofs in order to auto-
mate tedious steps. Arbitrarily complicated proof-search algorithms (e.g.,
semantic tableaux or Knuth-Bendix completion) must be expressible in a
trusted manner.

• There must be built-in support for natural deduction as practiced in com-
mon mathematical reasoning. Assumption and eigenvariable discharge, for
example, should be handled automatically.

• If requested, theorem-producing computations must be able to output cer-
tificates, which can then be independently checked.

One of our main contributions to certified programming has been the design of
DPLs (Denotational Proof Languages) [1]. In particular, we have implemented
Athena, a DPL for polymorphic multi-sorted first-order logic that satisfies all
of the above criteria. There are two main innovations behind Athena, one syn-
tactic and the other semantic. On the syntax front, Athena has formalized key
notions such as assumption scope and eigenvariable scope in novel ways (most
notably, without reducing them to variable scope in the typed λ-calculus as
is done in Curry-Howard systems [14]), which has enabled the introduction
of syntax forms such as assume, pick-any, and pick-witness, that closely
capture the most common and useful idioms of mathematical reasoning. Se-
mantically, the main contribution of DPLs is the concept of assumption bases.
The introduction of assumption bases as a fundamental semantic abstraction
on a par with lexical environments, stores, and continuations allows for an
elegant treatment of proof theory, even for logics that have been difficult to
formalize in a non-graphical manner, such as Fitch-style natural deduction,
and for a smooth integration of proof checking with computation.

As a programming language, Athena is a higher-order strict functional
language in the tradition of Scheme and ML. Such a language affords distinct
advantages for certified computation, e.g., higher-order proof continuations
can be freely passed around, and this often comes handy. Nevertheless, this is
not essential. Other programming languages, e.g., an object-oriented language
such as Java, could just as well be meshed with the abstract syntax and
semantics of DPL proofs in a conservative manner (i.e., so that a Java program
that does not contain any DPL proofs looks and behaves exactly as prescribed
by the Java specification).

In terms of deduction, Athena comes with a small but logically complete
collection of very simple inference rules, namely introduction and elimination
rules for the logical connectives and quantifiers, and equivalence and congru-
ence rules for equality. This results in a minimal trusted base. More com-

5



Arkoudas, Rinard

plicated rules can be implemented as methods, whose soundness is ensured
by the formal semantics of the language. An automatic theorem prover (e.g.,
based on resolution) can thus be soundly implemented. Alternatively, a pow-
erful off-the-shelf ATP such as Vampire [32] can be employed as an oracle, and
then the proof output by Vampire can be converted into a native deduction
using the system’s primitive inference rules. Such outsourcing is preferable
to “rolling one’s own” prover because it leverages the great progress that has
been made in the ATP community over the last decade. Either way, having
such a prover is important in order to be able to skip tedious steps when writ-
ing down proofs or proof algorithms. Athena currently uses a combination
of outsourcing (via Vampire) and natively written methods for rewriting and
other types of proof automation.

Finally, an important issue for logical frameworks is the size of the overall
“trusted base.” On one extreme, we could provide a minimal initial collection
of axioms and primitive inference rules in a foundational theory that is in
principle adequate for all mathematics, such as ZF, and offer only two ways
of extending the system: by conservative definitions and by deduction using
the provided inference rules. In this way everything is tied back to the initial
axioms and inference rules, which are presumably obviously sound, and thus
soundness is safeguarded. On the other extreme, the users are allowed to
introduce arbitrary axioms, inference rules, and decision procedures, without
a small initial base to serve as an anchor. The first approach is superior in
principle, as a minimal trusted base maximizes the assurance that deduction
provides, but it is unnecessarily stringent in practice.

Athena takes a middle ground: a minimal trusted base is provided and
users have the option of tying everything back to that base by extending it
only via conservative definitions and deduction; but they are not required
to do so. They also have the option of introducing arbitrary axioms, rules,
and decision procedures. The choice of where to anchor the proofs is left
up to the users, to be decided on an individual basis by the context of each
application. For instance, in the unification example of the next section we
introduce five inference rules as primitives. They are not the simplest possible
rules: in the worst case, applying four of them takes linear time in the size of
their inputs, while the fifth takes quadratic time. The rules could be further
reduced, expressed as trusted methods in terms of simpler rules and axioms,
albeit at the expense of additional work. But even if we leave them as they
are, we will already have accomplished a remarkable trust reduction: instead
of having to trust the conventional Martelli-Montanari algorithm, which has
a complex control structure and exponential complexity, we need only trust
five very short and simple inference rules of quadratic complexity at worst.

6



Arkoudas, Rinard

4 Unification via a certifying algorithm

As a more involved example, in this section we will use certifying computa-
tion to implement first-order unification. A conventional unification algorithm
takes as input two terms s and t and produces an idempotent most general
unifier (“mgu”) θ for them, if one exists; otherwise the algorithm fails. By
contrast, our unification prover will take s and t as inputs and will not sim-
ply produce θ, but will in fact prove that θ is an idempotent mgu for s and
t. In other words, the output of our prover will be a theorem of the form
imgu(s, t, θ), asserting that θ is an idempotent mgu of s and t.

The first step is to formulate a sound logic that allows us to derive judg-
ments of this form. Then, based on this logic, we can start to implement a
unification procedure as a certifying algorithm. In what follows, by “term”
we will mean a first-order Herbrand term over some function symbols and
variables; by “equation” we will mean an ordered pair of terms 〈s, t〉, which
will be more suggestively written as s≈ t; and by “substitution” we will mean
a function from variables to terms that is the identity almost everywhere
[2]. We use the letters x, y, and z as typical variables; f , g, and h as func-
tion symbols; s and t for terms; and θ, σ, and τ for substitutions. We write
{x1 7→ t1, . . . , xn 7→ tn} for the substitution that maps each xi to ti (we assume
that x1, . . . , xn are distinct) and every other variable to itself; and we write θ
for the unique homomorphic extension of a substitution θ to the corresponding
term algebra [34,2].

The Martelli-Montanari (MM for short) unification algorithm [19] deals
with finite systems of equations rather than with single equations. By a system
of equations we will mean a list of the form

E = [s1 ≈ t1, . . . , sn ≈ tn].(3)

We write E1, E2 for the list obtained by concatenating E1 and E2. For con-
venience, we sometimes treat a single equation as an one-element list, e.g.,
writing E, s≈ t instead of E, [s≈ t]. Finally, for any θ and system E of the
form (3), we write θ(E) for the system [θ(s1)≈ θ(t1), . . . , θ(sn)≈ θ(tn)].

A system of the form (3) is unifiable iff there exists a substitution θ such
that θ(si) = θ(ti) for i = 1, . . . , n. We call θ a unifier of E. If θ is more general
than every σ that unifies E then we say that θ is a most general unifier of E.
Most general unifiers are unique up to composition with a renaming, and in
that sense we may speak of the mgu of some E. We write U(E) for the set of
all unifiers of E, where we might of course have U(E) = ∅ if E is not unifiable.
Thus the traditional unification problem of determining whether two terms s
and t can be unified is reducible to the problem of deciding whether the system
[s≈ t] is unifiable.

A system E is said to be in solved form iff the set of equations that occur
in it is of the form {x1 ≈ t1, . . . , xk ≈ tk} where the variables x1, . . . , xk are
distinct and xi does not occur in tj for any i, j ∈ {1, . . . , k}. It is straightfor-
ward to show that a system E of this form determines a unique substitution

7



Arkoudas, Rinard

θE = {x1 7→ t1, . . . , xk 7→ tk} that is an idempotent most general unifier of E.
The MM algorithm attempts to transform a given system into solved form

by repeated applications of the following rules:

• Simplification: E1, t≈ t, E2 ⇒ E1, E2;
• Decomposition: E1, f(s1, . . . , sn)≈ f(t1, . . . , tn), E2 ⇒ E1, s1 ≈ t1, . . . , sn ≈ tn, E2;
• Transposition: E1, t≈ x, E2 ⇒ E1, x≈ t, E2, provided that t is not a variable;
• Application: E1, x≈ t, E2 ⇒ {x 7→ t}(E1), x≈ t, {x 7→ t}(E2), provided that x occurs in

E1, E2 but not in t.

For any two systems E and E ′, we write E ⇒ E ′ to signify that E ′ can be
obtained from E by one of these rules.
The qualification in the transposition rule is needed to guarantee the termi-
nation of the transformation process. The same goes for the qualification that
x must occur in E1, E2 in the last rule (the second qualification of that rule
ensures that the process does not proceed in the presence of an equation x≈ t
where x occurs in t, since such an equation is not unifiable).

The idea behind using these transformations as an algorithm for unifying
two terms s and t is this: we start with the system E1 = [s≈ t] and keep
applying rules (non-deterministically), building up a sequence E1 ⇒ E2 ⇒
· · · ⇒ Ek, until we finally arrive at a system of equations Ek to which no
more rules can be applied. It is not difficult to prove termination (i.e., that
it is impossible to continue applying rules ad infinitum), and that if s and t
are indeed unifiable then the final system Ek will be in solved form, i.e., its
equations will comprise a set of the form Ek = {x1 ≈ t1, . . . , xn ≈ tn} where the
variables x1, . . . , xn are distinct and xi does not occur in any tj. Accordingly,
the substitution θEk

= {x1 7→ t1, . . . , xn 7→ tn} is an idempotent mgu of
Ek. Further, we can show that if Ei ⇒ Ei+1 then U(Ei) = U(Ei+1), so that
any substitution that unifies Ei also unifies Ei+1 and vice versa. Thus it
follows that θEk

is also an idempotent mgu of Ek−1, Ek−2, . . . , E1, and hence
an idempotent mgu of s and t. On the other hand, if the final set of equations
Ek is not in solved form then we may conclude that the initial terms s and t
are not unifiable.

We will now set up a calculus for proving that a system of equations is
unifiable. We can use such a calculus to show that two given terms s and
t can be unified by adducing a proof to the effect that the system [s≈ t] is
unifiable. Such a proof would start from axioms asserting that certain systems
are evidently unifiable and proceed by applying inference rules of the form “If
E1, . . . , En are unifiable then so is E.” The MM transformation rules are not
appropriate for that purpose because they proceed in the reverse direction:
they start from the equations whose unifiability we wish to establish and work
their way back to systems whose unifiability is apparent. In that sense, they
are analytic or “backward” rules: they keep breaking up the original equations
into progressively simpler components. By contrast, we want synthetic rules
that will allow us to move in a forward manner: starting from simple elements,
we must be able to build up the desired equations in a finite number of steps.

8



Arkoudas, Rinard

[Solved-Form]
`U [x1 ≈ t1, . . . , xn ≈ tn] : {x1 7→ t1, . . . , xn 7→ tn}
provided [x1 ≈ t1, . . . , xn ≈ tn] is in solved form

`U E1, E2 : θ [Reflexivity]
`U E1, t≈ t, E2 : θ

`U E1, s≈ t, E2 : θ [Symmetry]
`U E1, t≈ s,E2 : θ

`U E1, s1 ≈ t1, . . . , sn ≈ tn, E2 : θ [Congruence]
`U E1, f(s1, . . . , sn)≈ f(t1, . . . , tn), E2 : θ

`U E1, x≈ t, E2 : θ [Abstraction]
`U E′

1, x≈ t, E′
2 : θ

provided {x 7→ t}(E′
1, E

′
2) = E1, E2.

Fig. 1. A logic for deducing idempotent most general unifiers.

In fact we will see that the MM algorithm is, in a precise sense, a backward
proof-search algorithm for the deduction system we formulate here.

The judgments of our logic are of the form `U E : θ, asserting that the
substitution θ is an idempotent most general unifier of E. The logic itself
comprises one axiom and four unary rules, shown in Figure 1. The axiom
[Solved-Form] asserts that every system of equations E = [x1 ≈ t1, . . . , xn ≈ tn]
in solved form is unifiable, and that θE = {x1 7→ t1, . . . , xn 7→ tn} is an idem-
potent mgu of E. The rules [Reflexivity], [Symmetry], and [Congruence] are
self-explanatory, and their soundness should be clear (it is straightforward to
prove that all five rules are sound, and indeed complete [1]). Observe that if
we read the rules in a forward manner then, in relation to the MM transforma-
tions, reflexivity can be viewed as the inverse of simplification, symmetry as
the inverse of transposition, and congruence as the inverse of decomposition.
We will also see that [Abstraction] is the inverse of application. Also notice
that these are pure inference rules, in the sense that no control information is
embedded in them. Restrictions such as found in the transposition rule of the
MM system will instead be relegated to the control structure of a certifying
algorithm that automates this logic, keeping the logic itself cleaner.

Finally, consider the abstraction rule. The proviso {x 7→ t}(E ′
1, E

′
2) =

E1, E2 is the key here. It means that the equations in E ′
1, E

′
2 are abstractions

of the equations in E1, E2, obtainable from the latter by replacing certain
occurrences of t by x. Alternatively, the equations in E1, E2 are instances of
the equations in E ′

1, E
′
2, obtained from the latter by applying the substitution

{x 7→ t}. Accordingly, the equations in E ′
1, E

′
2 are more general than those of

E1, E2.
Let us illustrate with an example. We will show that the substitution

9



Arkoudas, Rinard

θ = {x 7→ a, y 7→ g(h(a)), z 7→ h(a)} is an idempotent mgu of f(x, g(z), b, z)
and f(a, y, b, h(x)). The following deduction proves this:

1. [x≈ a, y ≈ g(h(a)), z ≈ h(a)] : θ [Solved-Form]
2. [x≈ a, y ≈ g(h(a)), b≈ b, z ≈ h(a)] : θ 1, [Reflexivity]
3. [x≈ a, g(h(a))≈ y, b≈ b, z ≈ h(a)] : θ 2, [Symmetry]
4. [x≈ a, g(z)≈ y, b≈ b, z ≈ h(a)] : θ 3, [Abstraction] on z ≈ h(a)
5. [x≈ a, g(z)≈ y, b≈ b, z ≈ h(x)] : θ 4, [Abstraction] on x≈ a

6. [f(x, g(z), b, z)≈ f(a, y, b, h(x))] : θ 5, [Congruence]

We note that the only rule that creates—or in any way affects—the substi-
tution θ of a judgment `U E : θ is the axiom [Solved-Form]. All of the other
rules simply pass along the substitution of the premise unchanged. Thus a
substitution is created only once, for a system in solved form, and from that
point on it is carried along from system to system via the various rules, until
it is finally attached to the original input.

We can now implement a certifying algorithm unify that takes an input
system E and uses this logic to derive a theorem of the form `U E : θ,
provided that E is unifiable, or fails otherwise. In what follows we will sketch
the outlines of such an algorithm at a high level. 5

Most of the work in unify is done by an auxiliary procedure find-candidate,
which takes a system E and splits it into three parts, a prefix E1, an equation
s≈ t, and a suffix E2, in such a way that E1, s≈ t, E2 matches the left-hand
side of one of the four MM rules. These three values are returned in a three-
element list. If no such decomposition exists, then find-candidate returns the
empty list. First, unify passes its input E to find-candidate. If the latter is
unable to split E as discussed above and returns the empty list, then unify
checks to see whether E is in solved form. If so, rule [Solved-Form] is used to
prove the corresponding theorem; otherwise unify fails. On the other hand, if
some decomposition E1, s≈ t, E2 is found using some MM rule T , then unify
places a recursive call to itself with a new input list, appropriately constructed
from E1, s, t, and E2, and then uses that result and the corresponding rule of
our calculus (the inverse of T ) to derive a theorem about E.

Figure 2 depicts the run-time flow of control when unify is applied to
the system [f(x, g(z), b, z)≈ f(a, y, b, h(x))]. In essence, every application of
a primitive rule justifies the work of the corresponding recursive call. By
the time the entire proof has been completed, we have validated the original
problem decomposition and proof search. Therefore, we do not need to trust
find-candidate or unify , which are by far the most complicated parts of the
system. If we are confident in the five primitive inference rules, the result is
credible.

5 The interested reader can find the actual Athena code for this and other examples (along
with explanatory comments) at www.cag.lcs.mit.edu/~kostas/dpls/cc-examples.

10



Arkoudas, Rinard

unify [f(x, g(z), b, z)≈ f(a, y, b, h(x))]

?
(Decompose) � -Inverses

unify [x≈ a, g(z)≈ y, b≈ b, z ≈ h(x)]

?
(Apply)

unify [x≈ a, g(z)≈ y, b≈ b, z ≈ h(a)]

?
(Apply)

unify [x≈ a, g(h(a))≈ y, b≈ b, z ≈ h(a)]

?
(Transpose)

unify [x≈ a, y ≈ g(h(a)), b≈ b, z ≈ h(a)]

?
(Simplify)

unify [x≈ a, y ≈ g(h(a)), z ≈ h(a)] -

Solved-Form
{x≈ a, y ≈ g(h(a)), z ≈ h(a)} : θ

6
Reflexivity

{x≈ a, y ≈ g(h(a)), b≈ b, z ≈ h(a)} : θ

6
Symmetry

{x≈ a, g(h(a))≈ y, b≈ b, z ≈ h(a)} : θ

6
Abstraction

{x≈ a, g(z)≈ y, b≈ b, z ≈ h(a)} : θ

6
Abstraction

{x≈ a, g(z)≈ y, b≈ b, z ≈ h(x)} : θ

6
Congruence

{f(x, g(z), b, z)≈ f(a, y, b, h(x))} : θ

Fig. 2. Control flow, shown counter-clockwise, of unify applied to the running
example; θ here is {x 7→ a, y 7→ g(h(a)), z 7→ h(a)}.

5 Related work

Certified computation can be viewed as a generalization of work by Rinard
and Marinov at MIT [30] and other researchers elsewhere [29] on logical val-
idation of compiler transformations. There, an optimization procedure—say,
for constant propagation—does not only produce a transformed control flow
graph but also proves a bisimulation theorem relating it to the original. Here
we extend that idea to arbitrary computations.

The idea of using deduction for computational purposes is not new. It is
the cornerstone of the school of relational logic programming [17], which dates
back at least to the inception of Prolog in the early 1970s. Computation in that
setting is described by the well-known slogan of Kowalski: Computation =
Logic + Control. The logic part consists of our theory, the axioms and the
inference rules—the “what” of the problem. The control part amounts to a
theorem-proving strategy—the “how” part.

In logic programming, however, users do not write proofs or proof methods;
they only write axioms (expressed as Horn clauses). The control engine, SLD
resolution, is baked into the underlying framework and cannot be extended.
Users cannot formulate arbitrary proof strategies, custom-tailored for specific
problem domains. Certified computation with DPLs is quite different in that
users are given unrestricted freedom in structuring the control part. Apart
from expressiveness, generality, and extensibility, the complete separation of

11



Arkoudas, Rinard

logic from control is also a modularity boon, as many different control engines
can be used with—plugged into—a single logic. This facilitates the interaction
of a code consumer with arbitrary code producers.

Another methodology for attaining reliable software is static program ver-
ification, and we have already discussed the main tradeoff between it and our
approach, namely, generality vs. feasibility. Another advantage of program
verification is that a static proof has a fixed cost. Once correctness has been
established, the algorithm can be confidently executed arbitrarily many times
without additional effort. By contrast, our model has a runtime price: the
algorithm has to do extra work to justify itself every time it generates a re-
sult. Nevertheless, in our experience runtime certification has never strictly
increased the asymptotic complexity of an algorithm.

Software model checking [22,35] is not so much concerned with establishing
output correctness for specific inputs as it is with uncovering errors over as
large classes of inputs as possible, with an emphasis on concurrency problems
such as deadlocks, critical section violations, etc.

In software testing [5] an extensive sample of inputs are presented to the
program and the outputs are checked for correctness. While testing remains
invaluable in practice, it has serious drawbacks. First, generation of struc-
turally complex input data is difficult to automate [15], and thus test suites
end up being quite limited. Second, how are the outputs to be checked for
correctness? Inspection by eye is clearly impractical for large-scale experi-
ments. Hence, software must be written to check whether an output is correct
for a given input. But such “checkers” are often complicated and difficult to
implement, and so their credibility can be just as weak as the credibility of the
algorithm we are trying to test. We will elaborate that point shortly. Finally,
testing is an empirical, finite process; it cannot test all inputs. All too often,
after a program has shipped, it starts generating erroneous results for certain
combinations of inputs that simply fell through the cracks during testing.

To overcome the last of the above problems, Wasserman and Blum [33]
suggest that “checkers” be permanently attached to programs and deployed
at runtime, after a result r has been obtained, to check whether r is correct.
As the authors concede, this is only viable for problems for which a result can
be checked in asymptotically less time than the time it takes to generate it.
That is, it only makes sense to couple an algorithm A with a checker C if
the complexity of C is strictly less than that of A. They call those “simple
checkers.”

Unfortunately, simple checkers often don’t exist. In many cases, the most
efficient way for a checker C to independently determine whether a result r is
correct for an input x is to recompute its own result r′ and then compare r and
r′ for equality. The tester will thus be of the same complexity as the algorithm
itself, and we will have no reason to trust it more than the original algorithm.
Testing in such cases amounts to “redundancy coding”; it is inefficient and
of little value in boosting the credibility of our results. Consider sorting,

12



Arkoudas, Rinard

for instance. To check that an output list L′ is correct for an input list L,
a checker first needs to verify that L′ is sorted, which is relatively easy—it
can be done in linear time in the length of L′. But it also needs to verify
that L′ is a permutation of L. The most straightforward algorithm for that
takes quadratic time, i.e., it is more expensive than the sorting itself, which
presumably took n log n time. To do the permutation check with a better
worst-case performance, the checker would be reduced to sorting L, getting a
result L′′, and then checking L′′ and L′ for equality—thereby achieving zero
trust reduction.

This appears to be the case for most polynomial-time algorithms: check-
ers for them are either as expensive as the algorithms themselves or only
marginally better. Algorithms for intractable (NP-complete) problems do have
dramatically simpler checkers capable of verifying positive answers. That fol-
lows directly from the definition of the class NP. Consider, for instance, an
algorithm H for determining whether a graph is Hamiltonian. We can effi-
ciently check “yes” answers from H, provided of course that the latter produces
actual Hamiltonian cycles as evidence. However, we cannot efficiently check
negative answers from H. Indeed, under the assumption that NP 6= co-NP
(which is a widely held belief [25]), it is easily proved that no NP-complete
problem can be in co-NP, which means that there are no efficient checkers ca-
pable of verifying negative answers to NP-complete problems. Therefore, truly
simple and complete checkers seem to exist only for problems in NP ∩ co-NP
that are also believed to lie outside P, such as integer factorization.

Blum’s important contribution was showing that in some cases one may
employ probabilistic techniques [6] to perform certain checks more efficiently—
but we then give up the peace of mind that a complete guarantee would
give. For instance, in the sorting example above we can check whether L′ =
[y1, . . . , ym] is a permutation of L = [x1, . . . , xn] by using a deterministic hash
function h to compute the sums s1 = h(x1)+ . . .+h(xn) and s2 = h(y1)+ · · ·+
h(ym). This can be done in linear time, and if L′ is indeed a permutation of
L, then s1 = s2; otherwise the two sums will probably differ. The probability
of error can be made arbitrarily small, but more and more checks are required
at runtime for convergence, further penalizing runtime performance. It is also
unclear how widely applicable such techniques are; they seem to be better
suited for numerical problems.

So contrary to the folk wisdom in Computer Science which holds that
checking a result is easier than generating one, oftentimes checking a result is
just as difficult as producing one. In fact in some cases it is even more dif-
ficult, or even altogether impossible. A prime example arises in compilation:
although it is possible—and relatively easy—to mechanically find a machine-
language executable that simulates a given program in the source language,
it is impossible to mechanically check whether a given machine-language pro-
gram respects the semantics of a given source. No such checker exists, as
the problem is undecidable. As another example, consider the execution of a

13



Arkoudas, Rinard

Prolog query. How can we check a “yes/no” query answer? It is impossible
to build a complete, correct checker, because the problem is undecidable: a
bogus “yes” answer might send our checker into an infinite loop. But both
of these—and many other—problems are readily amenable to our approach.
Athena has been used to implement credible compilation as well as a certi-
fying Prolog system that backs up its answers with extremely simple natural
deduction reasoning.

The “runtime assertions” of Meyer’s contract-programming paradigm [20]
are another related approach. Executable assertions are useful for dynamically
performing sanity checks and for ensuring that certain simple pre- and post-
conditions hold, but are generally too weak to guarantee output correctness.
Simple assertions (containing only built-in primitives such as arithmetic op-
erations and comparisons, boolean combinations thereof, and bounded quan-
tification) are trustworthy but cannot express output correctness for many
useful algorithms. For instance, such assertions cannot ascertain whether a
Gauss-Jordan elimination algorithm has correctly determined that a given
system of linear equations has no solutions; that a symbolic integration pro-
cedure has correctly integrated a given function; that a string has correctly
matched a regular expression pattern; and so on. Even when such assertions
can capture output correctness, they often do so in a naive declarative style
and thus their runtime execution becomes impractical. For instance, there are
many problems—such as shortest-path graph problems—that can be procedu-
rally solved with efficiency, e.g., using dynamic programming techniques, but
whose declarative output specification would take exponential time to check.
Of course it is possible to allow specification assertions to contain arbitrary
executable code (e.g., assertions in Jass [4] can contain arbitrary side-effect-
free Java code). In that case one can perform complete correctness checks for
arbitrary computations, but the trust issue for the checking code resurfaces
intact.

We view techniques such as monitor-oriented programming (“MoP” [8])
and runtime verification [16,13] as orthogonal to certified computation. For
many problems, guaranteeing output correctness in such frameworks is dif-
ficult or impossible due to the same tension between specification simplicity
and trust that we discussed in the preceding paragraph. For instance, the pre-
and post-conditions of ASML [3] and JML [7] are simple and easy to trust, but
use bounded non-deterministic choice and quantification and hence are either
unable to express correctness for interesting problems or else are too inefficient
to execute. We can remedy this by writing ASML and JML specifications as
“model programs” that maintain variables, update state, perform loops, etc.,
but then the specifications become too operational. 6 Nevertheless, techniques
such as MoP and runtime trace verification are very useful for observing and

6 For example, a declarative correctness postcondition for a gcd algorithm would be grossly
inefficient to execute. Alternatively, we could express Euclid’s algorithm as an ASML
program, but then we would have little reason to trust it more than an implementation.

14



Arkoudas, Rinard

steering a system’s dynamic behavior using combinations of inline and offline
monitoring in ways that certified computation cannot, most notably for the
purpose of ensuring safety properties of system states, detecting and react-
ing to protocol violations, raising exceptions of the appropriate type, and so
on. Accordingly, we envision using such techniques in conjunction with certi-
fied computation in order to ensure that software component implementations
conform to different aspects of their specifications.

The proof-carrying code (PCC) of Lee and Necula [23] is primarily a com-
pilation methodology concerned with producing programs that satisfy some
security policy and are thus “safe” to execute. That requires general verifica-
tion, as the program must be proven safe for all possible traces. How difficult
this is depends on the particular notion of safety involved. Certified compu-
tation, by contrast, is a general paradigm for computation, concerned with
ensuring correctness for particular input-output pairs rather than safety prop-
erties for all inputs. Of course, a “certifying compiler” that outputs proofs of
memory or type safety [24,26] can be viewed as a certifying algorithm in our
sense.

On the issue of deductive technology, we note that a certifying algorithm
could in principle be implemented in any language, e.g. in C, as long as it
eventually produces a formal proof (say, in LF [12] or Coq [9] or Athena form)
which can then be independently checked. But that would obfuscate the use
of deduction for documentation purposes, and would also be unduly cumber-
some. Algorithm certification is inextricably linked with proof engineering,
and is thus greatly facilitated by systems that make provisions for building
and managing formal theories, performing proof search, and constructing and
validating formal proofs (see Section 3). Thus LCF-style [10] systems such
as HOL [11] or Isabelle [27] could certainly be used for certified computation.
However, our certifying algorithms are not related to Milner’s seminal “tac-
tics” and “tacticals” [21]. Tactics are a mechanism for goal decomposition in
backward proof search (specifically, a tactic is a function that takes a goal and
returns a list of subgoals; a tactical is a combinator that composes tactics). We
are more concerned with forward proof presentation, and in particular with
enabling programmers to express proof methods such as derive-gcd in a per-
spicuous style. In that respect DPLs offer distinct advantages. Most notably,
the introduction of assumption bases as a fundamental semantic abstraction
obviates the need to use sequents (as is necessary in HOL-like systems), and
this results in proof and proof methods that are much closer to the natural
deduction format that mathematicians use in practice.

6 Conclusions

We have espoused a notion of certified computation where program results
are derived deductively rather than merely generated by arbitrary processes.
We have illustrated this approach with examples, and shown that it can result

15



Arkoudas, Rinard

in dramatic reductions of the trusted computing base without being inordi-
nately difficult. We have demonstrated that it is a realistic methodology by
developing a key enabling technology for it: DPLs, a class of languages that
significantly facilitate the formulation of algorithms as theorem provers. We
have extensively investigated the theoretical foundations of DPLs, and we
have built an efficient implementation of Athena, a DPL that integrates a
higher-order functional language with natural deduction. We have success-
fully used Athena to express many interesting algorithms as theorem provers.
Other programming languages could also be conservatively extended to in-
clude DPL-style proofs and proof methods.

On the spectrum of formal methods, certified computation is not as light-
weight as, say, assertion annotations with automatic code instrumentation;
but it is not as heavy-weight as total verification either. Total verification is
complicated by the fact that we need to reason about all possible inputs and
all possible control-flow paths. That is not necessary when implementing a
certifying algorithm. Invariants do not have to be explicitly formulated and
proved. Techniques for handling infinite-state systems such as structural in-
duction are not necessary. Induction is essentially replaced by more concrete
recursive calls. We believe that the constructive nature of proof in certified
computation (with deduction being performed by algorithms that can be exe-
cuted, observed, debugged, etc.), will be more appealing to programmers than
the more abstract techniques required for static verification.

Acknowledgments: We would like to thank Viktor Kuncak, Darko Marinov,
and Olin Shivers for several helpful insights and suggestions.

References

[1] K. Arkoudas. Denotational Proof Languages. PhD dissertation, MIT, 2000.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[3] Mike Barnett and Wolfram Schulte. Spying on Components: A Runtime
Verification Technique. In Proceedings of the OOPSLA 2001 Workshop on
Specification and Verification of Component-Based Systems, 2001.

[4] D. Bartetzko et al. Jass - Java with assertions. In Proceedings of the 2001
Workshop on Run-Time Result Verification, 2001.

[5] B. Beizer. Software testing techniques. Van Nostrand Reinhold Co., New York,
NY, 1990.

[6] Manuel Blum and Sampath Kannan. Designing programs that check their work.
Journal of the ACM, 42(1):269–291, 1995.

16



Arkoudas, Rinard

[7] Lilian Burdy et al. An overview of JML tools and applications. In Thomas Arts
and Wan Fokkink, editors, Electronic Notes in Theoretical Computer Science,
volume 80. Elsevier, 2003.

[8] Feng Chen and Grigore Rosu. Towards monitoring-oriented programming:
A paradigm combining specification and implementation. In Oleg Sokolsky
and Mahesh Viswanathan, editors, Electronic Notes in Theoretical Computer
Science, volume 89. Elsevier, 2003.

[9] T. Coquand and G. Huet. The Calculus of Constructions. Information and
Computation, 76:95–120, 1988.

[10] M. J. Gordon, A. J. Miller, and C. P. Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation, volume 78 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

[11] M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving
environment for higher-order logic. Cambridge University Press, Cambridge,
England, 1993.

[12] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, January 1993.

[13] Klaus Havelund and Grigore Rosu. Monitoring Java programs with Java
PathExplorer. In Klaus Havelund and Grigore Rosu, editors, Electronic Notes
in Theoretical Computer Science, volume 55. Elsevier, 2001.

[14] W. A. Howard. The formulae-as-types notion of construction. In J. Hindley and
J. R. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalisms, pages 479–490. Academic Press, 1980.

[15] S. Khurshid. Generating structrually complex tests from declarative
constraints. PhD thesis, MIT, 2003.

[16] Moonjoo Kim et al. Java-MaC: a Run-time Assurance Tool for Java Programs.
In Klaus Havelund and Grigore Rosu, editors, Electronic Notes in Theoretical
Computer Science, volume 55. Elsevier, 2001.

[17] R. Kowalski. Logic for Problem Solving. North-Holland, Amsterdam, 1979.

[18] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[19] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282, 1982.

[20] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[21] R. Milner. The use of machines to assist in rigorous proof. In C.A.R. Hoare and
J.C. Shepherdson, editors, Mathematical Logic and Programming Languages,
International Series in Computer Science, pages 77–87. Prentice Hall, 1985.

[22] Madanlal Musuvathi et al. CMC: A pragmatic approach to model checking real
code. In Proceedings of the Fifth Symposium on Operating Systems Design and
Implementation, December 2002.

17



Arkoudas, Rinard

[23] G. Necula and P. Lee. Safe kernel extensions without run-time checking.
In Proceedings of the Second Symposium on Operating Systems Design and
Implementation, Seattle, Washington, October 1996.

[24] George Necula and Peter Lee. The design and implementation of a certifying
compiler. In 1998 PLDI Proceedings, pages 333–344, 1998.

[25] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing
Company, 1994.

[26] Maria-Cristina Patron and Dexter Kozen. Certification of Compiler
Optimizations using Kleene Algebra with Tests. Technical Report TR99-1779,
Cornell University, Computer Science Department, 1999.

[27] L. Paulson. Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag, 1994.

[28] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Science of
Computer Programming, 5(2):143–169, 1985.

[29] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes
in Computer Science, 1384:151+, 1998.

[30] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings
of the 1999 Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

[31] J. L. Ruiz-Reina et al. Mechanical verification of a rule-based unification
algorithm in the Boyer-Moore theorem prover. In AGP’99 Joint Conference
on Declarative Programming, pages 289–304, 1999.

[32] A. Voronkov et al. The anatomy of Vampire (implementing bottom-up
procedures with code trees). JAR, 15(2):237–265, 1995.

[33] H. Wasserman and M. Blum. Software reliability via run-time result-checking.
Journal of the ACM, 44(6):826–849, 1997.

[34] W. Wechler. Universal Algebra for Computer Scientists. Springer-Verlag, 1992.

[35] J. Wing and V. Mandana. A case study in model checking software systems.
Science of Computer Programming, 28:273–299, 1997.

18


