
Combining Theorem Proving with Static Analysis for

Data Structure Consistency

Karen Zee, Patrick Lam, Viktor Kuncak, and Martin Rinard

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

{kkz,plam,vkuncak,rinard}@csail.mit.edu

Abstract

We describe an approach for combining theorem
proving techniques with static analysis to analyze
data structure consistency for programs that ma-
nipulate heterogeneous data structures. Our sys-
tem uses interactive theorem proving and shape
analysis to verify that data structure implementa-
tions conform to set interfaces. A simpler static
analysis then uses the verified set interfaces to ver-
ify properties that characterize how shared objects
participate in multiple data structures. We have
successfully applied this technique to several pro-
grams and found that theorem proving within cir-
cumscribed regions of the program combined with
static analysis enables the verification of large-scale
program properties.

1 Introduction

A data structure is consistent if it satisfies the in-
variants necessary for the normal operation of the
program. Data structure consistency is important
for successful program execution—if an error cor-
rupts a program’s data structures, the program
can quickly exhibit unacceptable behavior and may
crash. Motivated by the importance of this prob-
lem, researchers have developed algorithms for ver-
ifying that programs preserve important consis-
tency properties [2, 10,12,27,33,35].

∗This research was supported in part by the Singapore-
MIT Alliance, DARPA award FA8750-04-2-0254, and NSF
grants CCR00-86154, CCR00-63513, CCR00-73513, CCR-
0209075, CCR-0341620, and CCR-0325283.

Ensuring data structure consistency in general
is a very difficult problem, because each class of
data structures potentially requires reasoning tech-
niques specific to that class. As a result, systems
for reasoning about data structure consistency face
a perpetual tradeoff between generality and au-
tomation.

On the one hand, static analysis techniques have
proven to be successful in achieving high levels of
automation for verifying the consistency of some
important classes of data structures such as linked
lists, trees, and graphs [12, 14, 27, 33]. Unfortu-
nately, while effective for data structures within
their targeted class, these tools are necessarily ei-
ther incomplete or unsound for many other data
structures. Data structure diversity presents a real
problem for verifying data structure consistency of
non-trivial applications, which typically contain a
range of different kinds of data structures.

On the other hand, theorem proving techniques
can in principle verify arbitrarily complicated con-
sistency properties; this statement especially ap-
plies to interactive theorem provers such as Is-
abelle [31] and Athena [1] that allow writing
general mathematical statements about program
state. The difficulty in using theorem proving tools
is that their application may require manual effort
and familiarity with their behavior. Because man-
ual effort is expensive, theorem proving is effective
only if it is focused on relevant parts of a program;
the assumptions used during theorem proving must
be guaranteed by the rest of the program. In this
paper we show how our system enables such fo-
cused application of theorem proving.

The Hob project. Our Hob project [21–25] ad-
dresses the difficulties of verifying programs with
heterogeneous data structures by applying differ-
ent verification techniques to different regions of
the program. Each verification technique is im-
plemented in an analysis plugin; the Hob system
applies a plugin to the appropriate region of the
program to verify that it conforms to its interface.
The verified interface information enables the dif-
ferent analyses to share information and effectively
interoperate. This approach enables us to apply
the most expensive analyses, such as interactive
theorem proving and shape analysis, to only the
most intricate sections of the program, with more
automated techniques verifying the rest of the pro-
gram.

The Hob system currently contains three anal-
ysis plugins: 1) the flags plugin, which analyzes
modules that use object flag fields to indicate the
typestate of the objects that they manipulate; 2)
the PALE plugin, which analyzes linked data struc-
tures by interfacing to the PALE tool [27]; and
3) the theorem proving plugin, which verifies arbi-
trary data structures specified in higher-order logic
using the Isabelle theorem prover [31].

We used Hob to analyze several programs. Our
experience shows that Hob can effectively 1) ver-
ify the consistency of data structures encapsulated
within a module and 2) combine analysis results
from different analysis plugins to verify properties
involving objects shared by multiple modules ana-
lyzed by different analyses.

Theorem proving plugin. The focus of this pa-
per is our experience with using the theorem prov-
ing plugin in conjunction with other plugins. We
identified data structures that implement dynami-
cally changing sets as good candidates upon which
to focus theorem proving effort. Using the ideas
of data refinement [8,16], we can naturally specify
the preconditions and postconditions on such data
structures using formulas in the boolean algebra
of sets. We can verify once and for all that the
data structure implementation conforms to its in-
terface; we then use the abstract characterization
of data structure operations, represented by their
set interfaces, to reason about data structures in

the context of a larger program. In this way, our
analysis system hides internal data structure com-
plexity from data structure clients, and amortizes
the verification effort over all programs that use
the data structure.

Our theorem proving plugin generates verifica-
tion conditions in classical higher-order logic and
uses the Isabelle theorem prover [31] to discharge
these verification conditions. Using this technique,
we verified implementations of a set in terms of
a linear array, as well as a partial specification
of a priority queue (heap) implemented as a bi-
nary search tree stored in an array. We found
that many of the verification conditions arising in
these examples are discharged automatically us-
ing Isabelle’s built-in simplification tactics; other
verification conditions require manual intervention.
We found the underlying language of the theo-
rem prover to be close to the mathematical lan-
guage used in informal reasoning and therefore con-
venient for formalizing fundamental properties of
data structures. In addition to verifying particu-
lar data structures, we found the theorem proving
plugin to be useful in identifying formal reasoning
patterns that can lead to the construction of future
specialized and more automated plugins.

Paper structure. The rest of this paper is or-
ganized as follows. Section 2 introduces the exam-
ple of a process scheduler that manipulates a pri-
ority queue data structure and a linked list data
structure. Section 3 outlines the key components
of the Hob system. Section 4 presents the theo-
rem proving plugin, and Section 5 summarizes our
static analysis plugins. Section 6 presents our ex-
perience in using the theorem proving plugins for
verifying consistency of data structures using our
system. Section 7 presents related work and Sec-
tion 8 presents concluding remarks.

2 Example

We next present an example program that illus-
trates how we guarantee data structure consistency
properties. Our example program is a process
scheduler that maintains a list of running processes
and a priority queue of suspended processes. The

2

wakeUpFirst procedure selects a process from the
priority queue and moves it to the running list; the
suspend procedure removes the process from the
running list and inserts it back into the queue. Our
example contains three modules: the running list
module, the priority queue module, and the sched-
uler module. The scheduler module invokes proce-
dures in the running list and priority queue mod-
ules; its analysis therefore harnesses the power of
the PALE and theorem prover plugins, while using
a less powerful (and hence more scalable) analysis
to verify scheduler properties.

2.1 Suspended Queue Module

The priority queue module implements a priority
queue of suspended processes using a binary heap
[7].

Figure 1 presents the skeleton of the
SuspendedQueue implementation module. This
module introduces one field into the Process

format, namely the p field indicating the priority
of each process object. The priority queue con-
tains three public procedures and several private
procedures. The init procedure creates the back-
ing array for the queue. The insert procedure
inserts its parameter n as a node into the binary
heap with the given priority p1. The extractMax

procedure removes the highest-priority element
from the heap. Together with the private helper
procedures, these procedures implement a stan-
dard priority queue; we omit the implementation
details.

Figure 2 presents the specification of the
SuspendedQueue module. The specification sum-
marizes priority queue procedures in terms of the
set InQueue, which is the set of all Process ob-
jects stored in the queue: init initializes the set
to the empty set; insert(n) inserts object n into
the set; and extractMax removes an object from
the set and returns it as the result. The specifi-
cation of each procedures contains: 1) a requires

clause, which specifies the procedure precondition
necessary for correct operation of the procedure; 2)
a modifies clause, which lists the abstract compo-
nents of the state changed by the procedure; and
3) an ensures clause, which describes the effect
of the procedure as a relation between the initial

impl module SuspendedQueue {

format Process { p:int; }

var c:Process[];

var s:int;

proc init() { ... }

proc insert(n:PQEntry;p1:int) { ... }

proc extractMax() returns n:PQEntry { ... }

proc isEmpty() returns b:bool { ... }

private proc swap(a:int; b:int) { ... }

private proc bubbleDown(i:int) { ... }

}

Figure 1: Skeleton of the Priority Queue Imple-
mentation Module

spec module SuspendedQueue {

format Process;

sets InQueue : Process;

proc init()

requires true

modifies InQueue

ensures InQueue’ = {};

proc insert(n:Process; p1:int)

requires not (n in InQueue)

modifies InQueue

ensures InQueue’ = InQueue + n;

proc isEmpty() returns b:bool

ensures b <=> (InQueue = {});

proc extractMax() returns n:Process

requires InQueue != {}

modifies InQueue

ensures (n in InQueue) & (card(n)=1) &

(InQueue’ = InQueue - n);

}

Figure 2: Priority Queue Specification Module

abst module SuspendedQueue {

use plugin "vcgen";

InQueue = { x : Process |

"exists j. 1 <= j & j <= s & x = c[j]"};

invariant "0 <= s";

invariant "forall i. (forall j.

((1 <= i) & (i <= s) & (1 <= j) &

(j <= s) & (c[i] = c[j])) --> (i = j))";

}

Figure 3: Priority Queue Abstraction Module

3

and the final state of the procedure. The notation
InQueue’ denotes the new version of InQueue after
the procedure executes; the unprimed InQueue de-
notes the initial version of the variable, before the
procedure executes. We use sets with at most one
element to describe the values of references: a sin-
gleton set {x} indicates a reference to object x, an
empty set ∅ indicates a null reference. The nota-
tion card(n) indicates cardinality, i.e., the number
of elements in set n, so card(n)=1 indicates that
the variable n is not null.

Figure 3 presents the abstraction module that
establishes the connection between the implemen-
tation and the specification of the priority queue by
defining the set InQueue as the set of all objects
x contained in the array c between indices 1 and
s. Our analysis verifies that the implementation
of each procedure 1) preserves the priority queue
data structure consistency properties, and 2) has
the specified effect on the set InQueue defined by
the abstraction function.

The Hob analysis system enables the applica-
tion of an appropriate analysis to verify that the
priority queue implementation satisfies its specifi-
cation. Other modules subsequently use the prior-
ity queue specification to reason about the effects
of calls to that queue, because all specifications
are written in a common specification language.
We use the Isabelle theorem prover to show that
the priority queue implementation conforms to its
specification; Section 6.1 presents our experience in
constructing the conformance proof in our system.

2.2 Running List Module

Figure 4 presents the specification module for our
scheduler’s list of running processes. The specifica-
tion has a single abstract set, InList, which con-
tains all of the Process objects in the running list.
The requires clause of the specification of the add
procedure requires the parameter p to not already
be in InList. The ensures clause states that ef-
fect of the add procedure is to add the parameter
p to InList. The modifies clause indicates that
the procedure modifies the InList set only.

The list of running processes is implemented as
a linked list; we omit the implementation and ab-
straction modules. Our system uses the PALE plu-

spec module RunningList {

format Process;

sets InList : Process;

proc add(p : Process)

requires not (p in InList)

modifies InList

ensures InList’ = InList + p;

proc remove(p : Process)

requires p in InList

modifies InList

ensures InList’ = InList - p;

}

Figure 4: Running List Specification Module

gin [23] to verify the conformance of the linked list
to the set interface in Figure 4.

2.3 Scheduler Module

Figure 5 presents the Scheduler implementation
module. This module contributes a status field
to Process objects; this field is 1 if the process is
suspended and 2 if the processes is running, thus
encoding the conceptual state of each process (ei-
ther running or suspended) and enabling the mod-
ule to quickly determine the status of a process.
The implementation of the Scheduler module uses
the RunningList and SuspendedQueue modules to
actually store sets of running and suspended pro-
cesses. Section 2.4 explains how Hob uses the scope

construct to verify that the set of processes stored
in the RunningList and SuspendedQueue modules
coincides with the sets of processes with status set
to 2 or 1, respectively.

The specification module in Figure 6 declares
two abstract sets: the Running set of running
processes and the Suspended set of suspended
processes. These sets correspond to the con-
ceptual states that Process objects can be in.
The specifications of the procedures (suspend,
hasSuspended, and wakeUpFirst) therefore re-
flect the movement of objects between the various
states.

The abstraction module in Figure 7 uses the
status flag to define the Running and Suspended

sets. The flag plugin [23] uses this abstraction func-
tion to verify that the scheduler implementation
correctly implements its specification. We designed
the flag plugin to be scalable and to operate fully

4

impl module Scheduler {

format Process { status : int; }

proc suspend(p : Process; priority : int) {

p.status = 1;

RunningList.remove(p);

SuspendedQueue.insert(p, priority);

}

proc hasSuspended() returns b : bool {

b = !SuspendedQueue.isEmpty();

}

proc wakeUpFirst() {

Process p = SuspendedQueue.extractMax();

p.status = 2;

RunningList.add(p);

}

}

Figure 5: Scheduler Implementation Module

spec module Scheduler {

format Process;

sets Running, Suspended;

proc suspend(p : Process; priority : int)

requires (p in Running) & (card(p)=1)

modifies Running, Suspended,

RunningList.InList, SuspendedQueue.InQueue

calls RunningList, SuspendedQueue

ensures (Suspended’ = Suspended + p) &

(Running’ = Running - p);

proc hasSuspended() returns b : boolean

calls SuspendedQueue

ensures b <=> (Suspended!={});

proc wakeUpFirst()

requires Suspended != {}

modifies Running, Suspended

RunningList.InList, SuspendedQueue.InQueue

calls SuspendedQueue, RunningList

ensures exists p:Process.

(p in Suspended) &

(Suspended’ = Suspended - p) &

(Running’ = Running + p);

}

Figure 6: Scheduler Specification Module

abst module Scheduler {

use plugin "flags";

Suspended = {x : Process | "x.status=1"};

Running = {x : Process | "x.status=2"};

}

Figure 7: Scheduler Abstraction Module

automatically; we target it towards modules which
coordinate the actions of worker modules.

When verifying the conformance of the suspend
procedure, the flag plugin must take into account
the effects of the RunningList.extractMax and
SuspendedQueue.insert procedures, which are lo-
cated in modules outside the Scheduler mod-
ule. It turns out that the relevant modules,
RunningList and SuspendedQueue, are analyzed
using entirely different plugins (the PALE plu-
gin and the theorem proving plugin, respectively).
Nevertheless, our flag plugin can take into account
the effect of these procedures using their specifica-
tions, because these specifications are expressed in
the common specification language based on sets.

2.4 Scope Invariants

The process scheduler should satisfy several prop-
erties that involve data structures in multiple mod-
ules. Specifically, the Running set from the sched-
uler module should contain the same objects as
the running list, the Suspended set should contain
the same objects as the priority queue, and the
Running and Suspended sets should be disjoint.

Note that these properties are legitimately (but
temporarily) violated when the scheduler is run-
ning as it assigns the status flag and calls proce-
dures in the running list and priority queue mod-
ules. Note also that there must be some mechanism
to prevent external modules from calling running
list and priority queue procedures directly without
going through the scheduler module — such un-
coordinated calls could cause the scheduler data
structures to fall out of sync with each other, vio-
lating the three properties listed above.

We address these issues with analysis scopes;
Figure 8 presents the analysis scope for our exam-
ple. In general, scopes are a collection of modules
and invariants; each scope may have private mod-
ules and exported modules. The purpose of scopes
is to specify invariants that involve multiple mod-
ules, specify a policy on when the invariants should
hold, and control access to module procedures from
outside the scope.

Our example ProcessScheduler scope contains
an invariant with three clauses that together ex-
press the set equality and disjointness properties

5

scope ProcessScheduler {

modules Scheduler, RunningList, SuspendedQueue;

exports Scheduler;

invariant

(Scheduler.Running = RunningList.InList) &

(Scheduler.Suspended = SuspendedQueue.InQueue) &

disjoint(Scheduler.Running, Scheduler.Suspended);

}

Figure 8: Scope Declarations

discussed above. It also identifies a list of mod-
ules within which the invariant may be violated
(these include the Scheduler, RunningList, and
SuspendedQueue modules). Finally, it exports
only the Scheduler module, indicating that the
RunningList and SuspendedQueue modules can
be called only from within the other modules in the
scope. Scheduler procedures, on the other hand,
can be invoked from outside the scope. The flag
analysis of the Schedulermodule assumes that the
invariant holds at the start of each procedure and
must show that it holds at the exit of the proce-
dure.

Note that the flag analysis uses the specifica-
tions of the SuspendedQueue and RunningList

modules (which are expressed in terms of abstract
sets) to verify the invariant. By encapsulating the
complexity of the internal data structure properties
inside the relevant modules, our technique enables
the use of expensive analyses in those modules that
require them, while allowing the use of simpler and
faster analyses in the remainder of the program.

3 The Hob Analysis System

We next discuss the basic strategy that we ex-
pect analysis plugins to implement, and discuss
the tasks that they must perform to verify that
each implementation section correctly implements
its specification. In general, an analysis plugin
must ensure that the implementation of a module
conforms to its specification, and that any calls
originating in the module it is analyzing satisfy
their preconditions.

3.1 Implementation Language

Implementation sections for modules in our system
are written in a standard memory-safe imperative

language supporting arrays and the dynamic allo-
cation of objects.1 Analysis plugins use our sys-
tem’s core libraries to easily manipulate abstract
syntax trees for this imperative language. Using
these libraries, we have implemented an interpreter
for our language; it would also be straightforward
to write a compiler.

We point out one special feature of our imper-
ative language, which we call formats. Formats
aid modular reasoning about shared objects by en-
capsulating fields while allowing modules to share
objects. When the program creates an object with
format T , the newly-created object contains the
fields contributed to format T by all modules in
the program [6]. A simple type checker for the im-
plementation language statically ensures that each
module accesses only fields that it has contributed
to an object. Note that no analysis plugin needs
the full layout of an object; it will only need the
fields which the module under analysis has con-
tributed to that object.

The implementation language supports (but
does not require) assertions and loop invariants,
which enable fine-grained communication with the
analysis plugin. The syntax of assertions is specific
to the analysis plugin used to analyze the module.
Assertions are ignored by the implementation lan-
guage interpreter; once statically verified, they do
not affect the run-time behavior of the program.

3.2 Specification Language

Figure 9 presents the syntax for the module spec-
ification language. A specification section con-
tains a list of set definitions and procedure spec-
ifications, and lists the names of formats used in
set definitions and procedure specifications. Set
declarations identify the module’s abstract sets,
while boolean variable declarations identify the
module’s abstract boolean variables. Each proce-
dure specification contains a requires, modifies,
and ensures clause. The modifies clause identi-
fies sets whose membership may change as a re-
sult of executing the procedure. The requires

1A formal context-free grammar for our language can be
downloaded from our publicly-readable Subversion source
code repository at http://plam.csail.mit.edu/svn/

repos/trunk/module-language/formatlanguage.sablecc.

6

M ::= spec module m {F ∗D∗I∗PV ∗P ∗}
F ::= format t∗;

PV ::= predvar b∗;
I ::= invariant B;

D ::= sets S∗ : t;
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t]

[requires B] [modifiesS∗] [callsm∗]
ensuresB

B ::= SE1 = SE2 | SE1 ⊆ SE2 | p in SE

| B ∧ B | B ∨ B | ¬B | ∃S.B | card(SE)=k

SE ::= ∅ | [m.] S | [m.] S′

| SE1 ∪ SE2 | SE1 ∩ SE2 | SE1 \ SE2

Figure 9: Syntax of Module Specification Lan-
guage

clause identifies the precondition that the proce-
dure requires to execute correctly; the ensures

clauses identifies the postcondition that the pro-
cedure ensures when called in program states that
satisfy the requires condition. Both requires

and ensures clauses use arbitrary first-order for-
mulas B in the language of boolean algebras ex-
tended with cardinality constraints. Specification
sections may also contain invariants in the same
language; these invariants are automatically con-
joined with requires and ensures clauses of pro-
cedures in that module. Free variables of these for-
mulas denote abstract sets declared in specification
sections. The expressive power of such formulas is
the first-order theory of boolean algebras, which is
decidable [19, 26]. The decidability of the specifi-
cation language ensures that analysis plugins can
precisely propagate the specified relations between
the abstract sets.

3.3 Analysis Overview

The analysis of a module M is performed by the
analysis plugin specified in the abstraction section
of module M . The abstraction section of module
M establishes the connection between the specifi-
cation and implementation sections of module M .
Each analysis plugin augments the generic syntax
of abstraction sections with a plugin-specific plugin

annotation language. The plugin annotation lan-
guage is used to define the mapping between the
concrete and abstract representations of sets. The

abstraction section of module M may additionally
state representation invariants for the data struc-
ture implementing the abstract sets. The respon-
sibility of each plugin is to guarantee that each
procedure satisfies its specification; it may do so
by any means practical. The specification of a
procedure is derived from the abstract requires,
modifies, and ensures clauses using the defini-
tions of abstract sets as well as the representation
invariants [21]. We also require that a procedure
never violate the preconditions of its callees.

Figure 10 illustrates our analysis of the
Scheduler module from our example: to ensure
that Scheduler meets its specification, the flag
plugin needs to read the implementation, abstrac-
tion and specification sections of the Scheduler

module and only the specifications from the
SuspendedQueue and RunningList modules.

We have implemented three plugins in our anal-
ysis framework: a flags plugin, which assigns set
membership based on field values, a PALE plu-
gin, which assigns set membership based on heap
reachability, and a theorem proving plugin, which
can use theorem proving techniques to verify ar-
bitrary implementations of sets. In Section 4 we
describe the theorem proving plugin at the core of
this paper; in Section 5 we briefly discuss the other
two plugins in our system.

Figure 10: Checking process scheduler implemen-
tation

7

4 The Theorem Proving Plugin

The theorem proving plugin generates verification
conditions using weakest precondition computa-
tion and discharges them using the Isabelle the-
orem prover. This technique is applicable for veri-
fying arbitrarily complicated data structure imple-
mentations. The logic for specifying abstraction
functions is based on classical higher-order logic
and proof obligations can be discharged using au-
tomated theorem proving or a proof checker for
manually generated proofs. As a result, there is
no a priori bound on the complexity of the data
structures (and data structure consistency prop-
erties) that can be verified. In our current imple-
mentation we have explored this technique for data
structures that implement sets by storing objects
in global arrays. For example, we have verified the
operations on abstract set Content given by an ab-
straction function

Content = {x|∃j. 0 ≤ j ∧ j < s ∧ x 6= null ∧ x = d[j]}

where d is a global array of objects and s is an
integer variable indicating the currently used part
of the array (see Section 6).

Our theorem proving plugin analyzes each pro-
cedure independently, showing that it conforms to
its specification using the following phases:

1. Concretization: Conjoin each postcondition
with the frame condition derived from modi-
fies clauses. Apply the definitions of sets from
the abstraction section to preconditions and
postconditions in the specification sections, as
well as loop invariants and assertions. The
results are conditions expressed in terms of
the concrete data structure state. For exam-
ple, the postcondition Content′ = Content − e

translates into the formula

{x | ∃j. 0 ≤ j ∧ j < s′ ∧ x 6= null ∧ x = d′[j]} =
{x | ∃j. 0 ≤ j ∧ j < s ∧ x 6= null ∧ x = d[j]} − {e}

2. Representation invariants: Conjoin both pre-
condition and postcondition with representa-
tion invariants specified in the abstraction sec-
tion. In our example we need a representation
invariant 0 ≤ s.

3. Statement desugaring: translate statements
into a loop-free guarded command language
(e.g. [13]).

4. Verification condition generation: using weak-
est precondition semantics, create the formula
whose validity implies the conformance of the
procedure with respect to its specification.

5. Separation: Separate the verification condi-
tion into as many conjuncts as possible by per-
forming a simple non-backtracking natural-
deduction search through connectives ∀, ⇒,
∧.

6. Verification: Attempt to verify each conjunct
in turn. Verify if the conjunct is in the li-
brary of proved lemmas; if not, attempt to
discharge it using the proof hint supplied in
procedure code; if no hint is supplied, invoke
the Isabelle’s built-in simplifier and classical
reasoner with array axioms.

In our example, most of the generated verification-
condition conjuncts are discharged automatically
using array axioms. For the remaining conjuncts,
the fully automated verification fails and they are
printed as “not known to be true”. After interac-
tively proving these difficult cases in Isabelle, our
system stores these cases in its library of verified
lemmas and subsequent verification attempts pass
successfully without assistance. Our system com-
pares conjuncts against the library of proved lem-
mas by comparing abstract syntax trees of formu-
las, taking into account some basic properties of
logical operations. This enables the reuse of exist-
ing lemmas even when the verification conditions
have changed slightly.

5 Static Analysis Plugins

This section summarizes two static analysis plug-
ins currently available in the Hob analysis system:
the flag analysis plugin and the PALE plugin (see
the report [23] for additional details). These plug-
ins are more automated than the theorem proving
plugin, but are limited in the class of modules that
they can verify. The flag analysis plugin verifies
typestate properties determined by object field val-
ues and coordinates the work done by other mod-

8

ules, whereas the PALE plugin uses the PALE off-
the-shelf shape analysis tool to verify consistency
properties of linked heap data structures.

The flag analysis plugin verifies that modules
implement set specifications in which integer or
boolean flags indicate abstract set membership.
The developer uses abstraction functions to specify
the correspondence between the concrete flag val-
ues and the abstract sets from the specification, as
well as the correspondence between the concrete
and abstract boolean variables. The flag analy-
sis plugin then carries out a dataflow analysis over
boolean formulas for each procedure, updating set
contents after procedure calls and flag field mu-
tations. The flag plugin uses the MONA decision
procedure [18] as well as a range of formula simplifi-
cations [23] to perform operations on these boolean
formulas.

The PALE analysis plugin [27] implements a
shape analysis that can verify detailed properties of
complex linked data structures. We incorporated
the PALE analysis system into our pluggable anal-
ysis framework by 1) using abstraction sections to
translate our common set-based specifications into
PALE specifications, 2) translating statements into
the imperative language accepted by PALE, and 3)
translating loop invariants into PALE loop invari-
ants.

By combining the PALE plugin with the scal-
able flag analysis plugin and the powerful theorem
proving plugin, the Hob system can analyze pro-
grams that simultaneously use heterogeneous data
structures; we report on our experience with Hob
in Section 6.

6 Experience

This section presents our experience in using the
Hob system to verify non-trivial data structure
consistency in two examples. Section 6.1 presents
our experience with the process scheduler exam-
ple, which we have already introduced in Sec-
tion 2. Section 6.2 presents our experience with the
minesweeper game implementation. In addition to
these examples, we ran our analysis on computa-
tional patterns from scientific computations, air-
traffic control, and program transformation passes
with data structures such as singly and doubly

linked lists, trees, set iterators, queues, stacks, and
priority queues.2

The examples we present below illustrate the
strengths and the typical usage scenarios of the
currently available Hob plugins. The theorem
proving plugin successfully analyzed sets defined
using membership in an array, which requires ab-
straction functions that are not expressible in ei-
ther of the other two plugins. The PALE plugin
successfully analyzed linked data structures, which
are beyond the reach of the flag analysis mod-
ule, and which contain heap reachability properties
that would likely require many inductive proofs
in the theorem proving plugin. Finally, the flag
analysis plugin effectively discharged many veri-
fication conditions about abstract data structure
inclusion, disjointness and equality properties on
shared objects, which fall outside the restrictions
on the memory model placed by the PALE plugin.

6.1 Process Scheduler and the Priority

Queue

Our process scheduler example introduced in Sec-
tion 2 uses a priority queue implemented as a bi-
nary heap [7]. Recall the implementation (Fig-
ure 1), specification (Figure 2), and abstraction
(Figure 3) modules of the priority queue data
structure.

We illustrate the verification of the priority
queue through the example of the insert operation
in Figure 11. Our theorem proving plugin uses
the abstraction function in Figure 3 to concretize
the specifications in Figure 2, which are expressed
in terms of sets. The plugin conjoins the result-
ing concrete preconditions and postconditions with
the data structure representation invariants in Fig-
ure 3, and uses them along with the loop invariant
to generate a guarded command language state-
ment.

Computing the weakest precondition of the re-
sulting guarded command statement yields a veri-
fication condition, which our system splits into 11
conjuncts. Out of these conjuncts, Isabelle dis-
charges 5 automatically. We proved the remaining

2Full source code for the Hob implementation, example
programs, and our revision control repository are available
from http://cag.csail.mit.edu/∼plam/mpa.

9

6 conjuncts by hand. We found the proofs to be
mostly straightforward, given an intuitive under-
standing of how the insert operation works. Most
of the manual intervention involved specifying the
appropriate case splits. Several verification con-
dition conjuncts required showing the equality of
set expressions containing set comprehensions. We
used the built-in Isabelle tactic (auto) to reduce
such expressions to quantifier-free formulas involv-
ing array accesses that are discharged using simpli-
fication with array axioms. In some cases, it was
necessary to indicate instantiations of existential
quantifiers in the goal. The proofs also required
some basic properties of integer arithmetic such as
monotonicity of integer division.

In the verification process we discovered a bor-
derline behavior of the bubbleDown procedure on
queues containing one element, where the proce-
dure is called on a non-existing element. By ruling
out such boundary cases by an appropriate pre-
condition, we simplified the reasoning about the
correctness of bubbleDown and extractMax oper-
ations.

We similarly verified several other procedures in
the priority queue implementation; we found that
the fraction of verification condition conjuncts that
must be manually discharged is generally much
lower than for the insert procedure.

While the most time-consuming part of the veri-
fication was discharging the verification conditions,
the most challenging aspect was coming up with
appropriate loop invariants. (In that respect, it
would be useful to consider techniques for auto-
mated loop invariant inference that are applica-
ble to data structures implemented in an array.)
On the other hand, we found it relatively straight-
forward to identify data structure representation
invariants. Nevertheless, to control the scope of
the verification task, it was important to iden-
tify which invariants were necessary for proving
the conformance of the implementation with re-
spect to the set interface. For example, the cor-
rectness of the insert procedure by itself only re-
quires nothing but the simple representation in-
variant 0 ≤ s. However, verifying the partial cor-
rectness of extractMax requires the array injec-
tivity invariant stating that all array elements are

distinct; this invariant must then be preserved by
insert as well. Note that the heap ordering con-
dition is not necessary for verifying conformance
with respect to the set interface. Although there
is no reason why the heap ordering property could
not be verified in the theorem proving plugin, it
would require more effort to do so. This example
illustrates how partial specifications can be useful
in showing important data structure consistency
properties while reducing the necessary verification
effort.

Another way in which our approach simplifies
reasoning about data structures is the use of strong
enough preconditions. For example, our imple-
mentation maintains an invariant that the set of
all elements in the array is distinct, which allows
the extractMax operation to ensure that the re-
moved element is not contained in the resulting set.
To preserve this representation invariant, our im-
plementation requires the argument of the insert

procedure not to be contained in the array. While
it may appear difficult to ensure such precondition,
our scheduler example in Section 2 successfully en-
sures precisely this precondition by using a flag
field that indicates the membership of an object in
the priority queue data structure, and maintaining
a global invariant that implies the equality of the
set of objects with the particular value of the flag
and the set of objects stored in the array. Note
that the global invariant is maintained outside the
theorem proving plugin, using a more automated
flag analysis plugin based on the first-order theory
of boolean algebras of sets [23], which illustrates
another benefit of the approach of combining anal-
yses in the Hob system.

6.2 Minesweeper

As another example, we implemented and verified
the popular minesweeper game in our system. Our
minesweeper implementation has several modules
(see Figure 12): a game board module (which rep-
resents the game state), a controller module (which
responds to user input), a view module (which pro-
duces the game’s output), an exposed cell module
(which stores the exposed cells in an array), and
an unexposed cell module (which stores the un-
exposed cells in an instantiated linked list). We

10

format Process { p:int; }

var c:Process[];

var s:int;

proc insert(n:Process;p1:int) {

n.p = p1;

s = s + 1;

int i = s;

while

"1 <= i’ & i’ <= s’ &

InQueue = { x. exists j.

1 <= j & j <= s’ & ~(j = i’) & x = c’[j] } &

(forall j. forall k.

((1 <= j & j < k & k <= s’ & j ~= i’ &

(k ~= i’ | i’ ~= s’)) --> c’[j] ~= c’[k]))"

(i > 1 && c[i/2].p < p1)

{

c[i] = c[i/2];

i = i / 2;

}

c[i] = n;

}

Figure 11: Implementation and Loop Invariant for
Priority Queue Insertion

created a Model scope containing the game board
and the exposed and unexposed cell modules; this
scope encapsulates both the concrete and abstract
states of the game board. There are 750 non-blank
lines of implementation code in the 6 implemen-
tation sections of minesweeper, and 236 non-blank
lines in its specification and abstraction sections;
the array set accounts for 77 lines of implementa-
tion and 35 lines of specification.

Figure 12: Modules in Minesweeper implementa-
tion

The Hob system verifies that our implementa-
tion has the following properties (among others):

• Unless the game is over, the set of mined cells
is disjoint from the set of exposed cells.

• The sets of exposed and unexposed cells are

disjoint.

• At the end of the game, all cells are revealed;
i.e. the set of unexposed cells is empty.

• The set of unexposed cells maintained in the
Board module is identical to the set of unex-
posed cells maintained in the UnexposedList

list.

• The set of exposed cells maintained in the
Board module is identical to the set of exposed
cells maintained in the ExposedSet array.

Note that the truth of several of these proper-
ties depends on information obtained from multiple
analysis plugins. Here we focus on the ExposedSet
module, which implements a set of exposed cells us-
ing an array; we checked the validity of this module
using the theorem prover plugin.

Array Set Specification and Implementa-

tion. Figure 13 is our specification module for
the set encapsulated in the Arrayset module.
The set interface includes procedures init, add

and remove. The init procedure guarantees that
the set is initialized (represented by the setInit

boolean predicate) and that the Content set is
empty upon successful completion. The add proce-
dure ensures that the Content set contains the ele-
ment e after its execution, while the remove proce-
dure ensures that the Content set does not contain
e in the post-state. These specifications allow the
clients of the array set to reason about the content
of the array in terms of the stored elements, with-
out worrying about the complexity of array index
dereferencing.

Figure 15 presents the implementation of the
array set data structures in terms of a set, using
one global array and an integer indicating the used
part of the array. Our implementation of the re-
move procedure removes all occurrences of the el-
ement from the array by replacing them with null
values. Figure 14 presents the abstraction module
that specifies the connection between the specifi-
cation and the implementation: the content of the
set is given by all non-null elements stored in the
array.

The theorem proving plugin applies the abstrac-
tion function to map the abstract pre and post-

11

conditions into concrete pre and postconditions,
and conjoins the precondition and the postcondi-
tion with the representation invariant, which states
that the size of the array is non-negative. These
preconditions and postconditions allow the plugin
to generate a verification condition that is split
into 18 conjuncts that correspond to showing the
validity of the loop invariant and the postcondi-
tion. Out of these 18 conjuncts, Isabelle discharges
15 fully automatically using the built-in simplifier.
We discharged the three remaining conjuncts using
a manually constructed sequence of invocations of
Isabelle tactics. We similarly proved the correct-
ness of the remaining procedures.

7 Related Work

We survey related work in shape analysis, program
checking tools, theorem provers, and combining de-
cision procedures.

Shape Analysis. The goal of shape analysis is
to verify that programs preserve consistency prop-
erties of (potentially-recursive) linked data struc-
tures. Researchers have developed many shape
analyses and the field remains one of the most ac-
tive areas in program analysis today [20, 27, 33].
These analyses focus on extracting or verifying
detailed consistency properties of individual data
structures. These analyses are very precise on their
domain of applicability, but are forced to make con-
servative assumptions on programs outside their
domain. The Hob framework enables the use of
shape analysis techniques in conjunction with the-
orem proving techniques: using our framework, the
developer can select the most appropriate tech-
nique for guaranteeing data structure consistency
on a per-module basis.

Program Checking Tools. ESC/Java [12] is a
program checking tool whose purpose is to identify
common errors in programs using program spec-
ifications in a subset of the Java Modelling Lan-
guage [4]. ESC/Java sacrifices soundness in that
it does not model all details of the program heap,
but can detect some common programming errors.
Other tools focus on verifying properties of concur-
rent programs [3, 5] or device drivers [2, 15]. One
important difference between this research and our

spec module Arrayset {

format Node;

predvar setInit;

sets Content : Node;

proc init()

requires true

modifies Content, setInit

ensures setInit’ & card(Content’) = 0;

proc add(e:Node)

requires setInit & card(e) = 1

modifies Content

ensures (Content’ = Content + e);

proc remove(e:Node)

requires setInit

modifies Content

ensures (Content’ = Content - e);

proc contains(e:Node) returns b:bool

requires setInit & card(e)=1

ensures b <=> (e in Content);

}

Figure 13: Array Set Specification Module

abst module Arrayset {

use plugin "vcgen";

Content = { x : Node | "x ~= nullObj &

(exists j. (0 <= j) & (j < s) & x = d[j])"};

predvar setInit;

invariant "0 <= s";

}

Figure 14: Array Set Abstraction Module

impl module Arrayset {

format Node {}

var d : Node[]; /* array */

var s : int; /* array size */

var setInit : bool;

...

proc remove(e:Node) {

int i = 0;

while "0 <= i’ & i’ <= s &

(forall j. (i’ <= j & j < s) --> d’[j]=d[j]) &

({x. (exists j. 0 <= j & j < i’ & x = d’[j])} =

{x. (exists j. 0 <= j & j < i’ & x = d [j])} - e)"

(i < s) {

if (d[i] == e) d[i] = null;

i = i + 1;

}

}

}

Figure 15: Array Set Implementation Module

12

research is that our research is designed not to
develop a single new analysis algorithm or tech-
nique, but rather to enable the application of mul-
tiple analyses that check arbitrarily complicated
data structure consistency properties within a sin-
gle program.

Theorem Provers. We use the Isabelle inter-
active theorem prover [31] to discharge the verifi-
cation conditions generated by our analysis plu-
gin. Other interactive theorem provers include
Athena [1] and HOL [30]. The ACL2 [17] sys-
tem can apply theorem-proving and term rewriting
techniques to verify properties of large-scale sys-
tems, among them software systems [28].

Combinations of Decidable Theories. One
possible alternative to combining analyses is to use
a single analysis engine and combine the decision
procedures for different properties using Nelson-
Oppen techniques [29,32] and their generalizations
such as [36–38]. Theorem provers based on these
principles include Simplify [9], Verifun [11], and
CVC [34]. Our system can take advantage of com-
bined decision procedures, but also allows special-
ized analyses that use customized internal repre-
sentations of dataflow facts.

8 Concluding Remarks

In this paper, we presented our Hob analysis sys-
tem, focusing on how Hob combines theorem prov-
ing techniques with static analysis. Hob guaran-
tees data structure consistency in programs that
manipulate heterogeneous data structures by ap-
plying different verification techniques to different
regions of the program. We described our experi-
ence in using the theorem proving plugin for ver-
ifying array-based data structures. The Hob sys-
tem enabled us to prove meaningful data structure
properties in the context of a larger program. Note
that we did not have to use theorem proving tech-
niques for the entire program: Hob’s static analy-
sis plugins were able to step in and guarantee data
structure consistency for most parts of our example
programs.

In verifying data structures using the theorem
proving plugin we observed that partial specifica-
tions of insert operations require few data structure

invariants and can be verified without assuming the
usual ordering properties inherent to data struc-
tures. In contrast, removal from a data structure
often requires the invariant that the data structure
elements be distinct (if not ordered), and therefore
complicates the verification effort. In some cases,
object flags can be attached to objects to indicate
the membership in data structures, provided that
the appropriate global invariants are verified. In
other cases, detecting membership requires knowl-
edge of ordering properties. Even so, many data
structure invariants such as balancing affect only
the performance, not the correctness, of data struc-
ture operations, which simplifies the verification
task.

In the future we expect to add more automation
to the theorem proving plugin using Nelson-Oppen
decision procedures, [9,34] while exploiting the spe-
cial structure of specifications that arise by apply-
ing abstraction functions for sets to eliminate sets
from verification conditions. We are also working
on incorporating additional analysis plugins into
Hob, and using further examples to evaluate the ef-
fectiveness of our techniques. Furthermore, we are
considering the applicability of our system towards
more-automatic verification of file system models.
We have previously proved file system model cor-
rectness exclusively using theorem provers [1], and
our experience suggests that the use of Hob would
greatly simplify the file system verification task.

References

[1] K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard.
Verifying a file system implementation. In Sixth
International Conference on Formal Engineering
Methods (ICFEM’04), volume 3308 of LNCS, Seattle,
Nov 8-12, 2004 2004.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K.
Rajamani. Automatic predicate abstraction of C
programs. In Proc. ACM PLDI, 2001.

[3] N. Bjørner, A. Browne, E. Chang, M. Colón,
A. Kapur, Z. Manna, H. B. Sipma, and T. E. Uribe.
STeP: Deductive-algorithmic verification of reactive
and real-time systems. In 8th CAV, volume 1102,
pages 415–418, 1996.

[4] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of JML tools and applications. Technical
Report NII-R0309, Computing Science Institute,
Univ. of Nijmegen, March 2003.

13

[5] S. Chaki, S. K. Rajamani, and J. Rehof. Types as
models: model checking message-passing programs. In
29th ACM SIGPLAN-SIGACT POPL, pages 45–57.
ACM Press, 2002.

[6] D. R. Cheriton and M. E. Wolf. Extensions for
multi-module records in conventional programming
languages. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 296–306. ACM Press,
1987.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (Second Edition).
MIT Press and McGraw-Hill, 2001.

[8] W.-P. de Roever and K. Engelhardt. Data
Refinement: Model-oriented proof methods and their
comparison. Cambridge University Press, 1998.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A
theorem prover for program checking. Technical
Report HPL-2003-148, HP Laboratories Palo Alto,
2003.

[10] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. Technical Report
159, COMPAQ Systems Research Center, 1998.

[11] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe.
Theorem proving using lazy proof explication. In
CAV, pages 355–367, 2003.

[12] C. Flanagan, K. R. M. Leino, M. Lilibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended Static
Checking for Java. In Proc. ACM PLDI, 2002.

[13] C. Flanagan and J. B. Saxe. Avoiding exponential
explosion: Generating compact verification conditions.
In Proc. 28th ACM POPL, 2001.

[14] P. Fradet and D. L. Métayer. Shape types. In Proc.
24th ACM POPL, 1997.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L.
McMillan. Abstractions from proofs. In 31st POPL,
2004.

[16] H. Jifeng, C. A. R. Hoare, and J. W. Sanders. Data
refinement refined. In ESOP’86, volume 213 of LNCS,
1986.

[17] M. Kaufmann, P. Manolios, and J. S. Moore, editors.
Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Publishers, 2000.

[18] N. Klarlund and A. Møller. MONA Version 1.4 User
Manual. BRICS Notes Series NS-01-1, Department of
Computer Science, University of Aarhus, January
2001.

[19] D. Kozen. Complexity of boolean algebras.
Theoretical Computer Science, 10:221–247, 1980.

[20] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proc. 29th POPL, 2002.

[21] P. Lam, V. Kuncak, and M. Rinard. On modular
pluggable analyses using set interfaces. Technical
Report 933, MIT CSAIL, December 2003.

[22] P. Lam, V. Kuncak, and M. Rinard. Generalized
typestate checking using set interfaces and pluggable
analyses. SIGPLAN Notices, 39:46–55, March 2004.

[23] P. Lam, V. Kuncak, and M. Rinard. On our
experience with modular pluggable analyses.
Technical Report 965, MIT CSAIL, September 2004.

[24] P. Lam, V. Kuncak, and M. Rinard. Verifying set
interfaces based on object field values. In 6th VMCAI,
2005.

[25] P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob
project web page.
http://catfish.csail.mit.edu/∼plam/hob/, 2004.

[26] L. Loewenheim. Über mögligkeiten im relativkalkül.
Math. Annalen, 76:228–251, 1915.

[27] A. Møller and M. I. Schwartzbach. The Pointer
Assertion Logic Engine. In Proc. ACM PLDI, 2001.

[28] J. S. Moore. Proving theorems about Java and the
JVM with ACL2, 2002.

[29] G. Nelson. Techniques for program verification.
Technical report, XEROX Palo Alto Research Center,
1981.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[31] L. C. Paulson. Isabelle: A Generic Theorem Prover.
Number 828 in LNCS. Springer-Verlag, 1994.

[32] H. Ruess and N. Shankar. Deconstructing shostak. In
Proc. 16th IEEE LICS, 2001.

[33] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM TOPLAS,
24(3):217–298, 2002.

[34] A. Stump, C. Barrett, and D. Dill. CVC: a
Cooperating Validity Checker. In 14th International
Conference on Computer-Aided Verification, 2002.

[35] G. Yorsh. Logical characterizations of heap
abstractions. Master’s thesis, Tel-Aviv University,
March 2003.

[36] C. G. Zarba. The Combination Problem in Automated
Reasoning. PhD thesis, Stanford University, 2004.

[37] C. G. Zarba. Combining sets with elements. In
N. Dershowitz, editor, Verification: Theory and
Practice, volume 2772 of Lecture Notes in Computer
Science, pages 762–782. Springer, 2004.

[38] C. G. Zarba. A quantifier elimination algorithm for a
fragment of set theory involving the cardinality
operator. In 18th International Workshop on
Unification, 2004.

14

