
�

�

�

�

�

�

�

�

88

Parallelizing Sequential Programs with Statistical Accuracy Tests

SASA MISAILOVIC, DEOKHWAN KIM, and MARTIN RINARD, MIT

We present QuickStep, a novel system for parallelizing sequential programs. Unlike standard parallelizing
compilers (which are designed to preserve the semantics of the original sequential computation), QuickStep
is instead designed to generate (potentially nondeterministic) parallel programs that produce acceptably ac-
curate results acceptably often. The freedom to generate parallel programs whose output may differ (within
statistical accuracy bounds) from the output of the sequential program enables a dramatic simplification
of the compiler, a dramatic increase in the range of applications that it can parallelize, and a significant
expansion in the range of parallel programs that it can legally generate.

Results from our benchmark set of applications show that QuickStep can automatically generate accept-
ably accurate and efficient parallel programs—the automatically generated parallel versions of five of our
six benchmark applications run between 5.0 and 7.8 times faster on eight cores than the original sequential
versions. These applications and parallelizations contain features (such as the use of modern object-oriented
programming constructs or desirable parallelizations with infrequent but acceptable data races) that place
them inherently beyond the reach of standard approaches.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Parallelization,accuracy, trade-off, interactive

ACM Reference Format:
Misailovic, S., Kim, D., and Rinard, M. 2013. Parallelizing sequential programs with statistical accuracy
tests. ACM Trans. Embed. Comput. Syst. 12, 2s, Article 88 (May 2013), 26 pages.
DOI:http://dx.doi.org/10.1145/2465787.2465790

1. INTRODUCTION

The dominant paradigm for reasoning about the behavior of software systems revolves
around hard binary correctness properties. A standard approach is to identify (either
formally or informally) a concept of correct behavior, then engineer with the goal of
producing a perfect system that delivers correct behavior in all circumstances.

One advantage of this approach is that it simplifies reasoning for modularity
purposes—perfect components that always behave correctly can significantly reduce
the number of scenarios that a developer must consider when using the components
in a larger system. The complexity reduction is so valuable that developers typically
operate under this assumption even though the components are almost never perfect—
virtually all components exhibit incorrect behavior in some (ideally rare) scenarios.

A key disadvantage, however, is overengineering. When attempting to build a perfect
system, developers often invest substantially more engineering effort and produce a

This research was supported by DARPA Cooperative Agreement FA8750-tion, and NSF Awards 0811397,
0835652, 0905244, and 1036241.
Authors’ address: S. Misailovic (corresponding author), D. Kim, and M. Rinard, MIT CSAIL, The Stata
Center, 32 Vassar St., Cambridge, MA 02139; email: misailo@csail.mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/05-ART88 $15.00
DOI:http://dx.doi.org/10.1145/2465787.2465790

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:2 S. Misailovic et al.

system that consumes more resources (such as time or power) than strictly required to
deliver acceptable behavior [Rinard 2003].

1.1. An Alternate Approach

Overengineering motivates an alternate approach whose goal is to produce systems
that deliver acceptably accurate results acceptably often. Instead of a guarantee that
the system will, on every execution, produce correct behavior, such systems may in-
stead come with a statistical or probabilistic guarantee.

This approach can provide both developers and automated systems with signifi-
cantly more engineering freedom than standard approaches. This freedom, in turn,
can translate directly into reduced engineering effort, reduced resource consumption,
or increased functionality.

1.2. QuickStep

This article presents a system, QuickStep, for automatically parallelizing sequential
programs. Freed from the constraint of preserving the precise semantics of the original
sequential program, QuickStep instead generates a search space of parallel programs
(whose performance and accuracy may vary), then searches this space to find a parallel
program that will, with high likelihood, produce outputs that are acceptably close to
the outputs that the original sequential program would have produced.

Because QuickStep does not aspire to preserve the semantics of the original sequen-
tial program, it has no need to analyze problematic constructs, such as pointers, object
references, and dynamic method invocations. It instead simply applies a statistical test
to determine if test executions are acceptably accurate. As a result, QuickStep is able
to effectively parallelize programs whose use of modern programming constructs place
them inherently beyond the reach of standard techniques. The fact that the field of tra-
ditional parallelizing compilers has been active for decades but still has yet to produce
a compiler capable of parallelizing programs that are within QuickStep’s reach demon-
strates the advantages of QuickStep’s statistical acceptability approach in comparison
with standard semantics-preserving approaches.

Note that because the programs that QuickStep generates only need to satisfy statis-
tical accuracy bounds, QuickStep has the freedom to generate efficient nondeterminis-
tic parallel programs (as long as these programs satisfy the desired accuracy bounds).
Our current QuickStep implementation generates parallel programs with two poten-
tial sources of nondeterminism (data races and variations in the execution order of
parallel loop iterations), but in general any parallel program, deterministic or nonde-
terministic, is acceptable as long as it satisfies the statistical accuracy guarantee. Such
efficient nondeterministic parallelizations, of course, lie inherently beyond the reach
of standard approaches.

1.3. Transformations

QuickStep deploys three kinds of transformations to generate its search space of par-
allel programs.

— Parallelism-Introduction Transformations. Transformations that introduce parallel
execution. QuickStep currently implements one parallelism introduction transfor-
mation: loop parallelization. Note that because the iterations of the resulting par-
allel loop execute without synchronization, anomalies such as data races may cause
the parallel program to crash or produce an unacceptably accurate result.

— Accuracy-Enhancing Transformations. Transformations that are designed to en-
hance the accuracy of the parallel program. If a parallelism-introduction

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:3

transformation produces an unacceptably accurate program, accuracy-enhancing
transformations may restore acceptably accurate execution. QuickStep implements
two accuracy-enhancing transformations: synchronization introduction, which
replaces unsynchronized operations with synchronized operations (the goal is to
eliminate data races), and privatization, which gives each thread its own copy of
otherwise shared local variables (the goal is to eliminate interference between par-
allel loop iterations).

— Performance-Enhancing Transformations. Transformations that are designed to
enhance the performance of the parallel program. QuickStep implements two
performance-enhancing transformations: replication introduction, which replicates
objects accessed by parallel tasks then combines the replicas for sequential access
(the goal is to eliminate bottlenecks associated with frequently executed synchro-
nized operations on shared objects) and loop scheduling, which applies different par-
allel loop scheduling algorithms (the goal is to find a scheduling policy that interacts
well with the specific characteristics of the loop).

1.4. Searching the Parallelization Space

Given an initial sequential program, the parallelization transformations induce a
space of corresponding parallel programs. QuickStep searches this space as follows.
QuickStep attempts to parallelize a single loop at a time, prioritizing the attempted
parallelization of loops that consume more execution time over the attempted paral-
lelization of loops that consume less execution time. QuickStep first applies the paral-
lelization transformation to the current loop. It then explores the parallelization space
for this loop by repeatedly applying accuracy- and performance-enhancing transfor-
mations (prioritizing accuracy-enhancing transformations until it has obtained accept-
ably accurate execution).

If it is unable to obtain an acceptably accurate parallelization, QuickStep abandons
the current loop and moves on to the next. Once it has processed the most time-
consuming loops and obtained the final parallelization, QuickStep produces an inter-
active parallelization report that a developer can navigate to evaluate the acceptability
of this parallelization and obtain insight into how the application responds to different
parallelization strategies.

1.5. Accuracy Metric

In many cases, it may be desirable to produce a parallel program that produces the
same result as the original sequential program. But in other cases, the best parallel
version may, because of phenomena such as infrequent data races or reordered parallel
accumulations, produce a result that differs within acceptable bounds from the result
that the sequential program produces. QuickStep is therefore designed to work with
an accuracy metric that quantifies the difference between an output from the origi-
nal sequential program and a corresponding output from the automatically generated
parallel program run on the same input [Rinard 2006, 2007]. The accuracy metric first
uses an output abstraction (which typically selects relevant output components or com-
putes a measure of the output quality) to obtain a sequence of numbers o1, . . . , om from
a sequential execution and a corresponding sequence ô1, . . . , ôm from a parallel execu-
tion on the same input. It then uses the following formula to compute the distortion d,
which measures the accuracy of the parallel execution.

d = 1
m

m∑
i=1

∣∣∣∣oi − ôi

oi

∣∣∣∣ .

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:4 S. Misailovic et al.

The closer the distortion d is to zero, the less the parallel execution distorts the output.
Given an accuracy metric, an accuracy bound b is an upper bound on the acceptable
distortion.

1.6. Statistical Accuracy Test

QuickStep’s statistical accuracy test executes the generated parallel program multi-
ple times, treating each execution as a Bernoulli trial which succeeds if the execution
satisfies the accuracy bound b (i.e., if the observed distortion d is at most b) and fails
if it does not. The test terminates when QuickStep has observed enough executions to
make a statistically well-founded judgement to either accept or reject the paralleliza-
tion. QuickStep uses the Wald sequential probability ratio (SPR) test (see Section 4)
to make this judgement. During its search of the parallel program space, QuickStep
sets the parameters of this test to accept a parallelization if the program satisfies the
accuracy bound at least 90% of the time with a false positive rate of at most 10% (i.e.,
QuickStep accepts an unacceptably inaccurate program at most 10% of the time). Dur-
ing the final accuracy test, the program must satisfy the accuracy bound at least 99%
of the time with a false positive rate of at most 1%. See Section 4 for more details.

It is possible for a parallelization to cause the program to fail to produce a well-
formed output (typically because the program crashes). In such cases, QuickStep re-
jects the parallelization (although it would be possible to configure QuickStep to accept
parallelizations that have a low likelihood of failing in this way).

1.7. Parallelization Reports

We anticipate that some developers may wish to examine the QuickStep paralleliza-
tion or use it as a foundation for further development. QuickStep therefore produces
an interactive parallelization report that summarizes the applied transformations and
the accuracy and performance results. The developer can use this report to evaluate
the overall acceptability of the parallelization or to obtain the understanding required
to further modify the program.

1.8. Experimental Results

To evaluate the effectiveness of QuickStep’s approach, we obtained a set of benchmark
sequential programs, then used QuickStep to parallelize this set of programs and gen-
erate corresponding parallelization reports. Our results show that QuickStep is able
to effectively parallelize five out of the six programs, with the final parallel versions
running, on our test inputs, between a factor of 5.0 and 7.8 faster (on eight cores) than
the corresponding sequential versions.

We used the parallelization reports to evaluate the acceptability of the final paral-
lelizations. Our evaluation shows that, for the programs in our benchmark set, Quick-
Step is able to produce parallelizations that are acceptable for all inputs (and not just
the representative inputs that it uses to drive the exploration of the search space).
Moreover, each final parallel program contains at most a handful of parallel loops,
each of which requires at most only several synchronization or replication transfor-
mations to produce an acceptably accurate program with good parallel performance.
The parallelizations are therefore amenable to developer evaluation with reasonable
developer effort.

1.9. Contributions

This article makes the following contributions.

— Basic Approach. It introduces the basic QuickStep approach of developing a set
of parallelization transformations then searching the resulting induced space of

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:5

parallel programs to find a program that maximizes performance while preserving
acceptably accurate execution. It also identifies specific parallelization transforma-
tions that work together to produce efficient and accurate parallel programs.

— Search Algorithm. It presents an algorithm for automatically searching the induced
space of parallel programs. This algorithm uses profiling information, performance
measurements, and accuracy results from executions on representative inputs to
guide the search.

— Statistical Accuracy Tests. It introduces the use of statistical accuracy tests to deter-
mine if the likelihood that a candidate parallel program will produce an acceptably
accurate result is acceptable.

— Interactive Parallelization Reports. It introduces interactive parallelization reports
that present the performance and accuracy characteristics of the candidate parallel
programs, identify the applied transformations for each program, and summarize
the overall search process. These reports are designed to facilitate developer eval-
uation of the automatically generated parallel programs and to help the developer
obtain insight into how the original sequential program responds to various paral-
lelization strategies.

— Experimental Results. It presents experimental results obtained by using QuickStep
to parallelize a set of benchmark sequential applications. These results show that
QuickStep is able to produce accurate and efficient parallel versions of five of the six
applications. And our examination of the resulting parallelizations indicates that
they are acceptable for a wider set of inputs than just the representative inputs
used to drive the parallelization process.
A comparison with parallelizations produced by the Intel icc compiler shows that the
icc compiler, in contrast, was able to parallelize only small inner loops and produced
no improvement in the performance of the application.

— Accuracy vs. Time Trade-off. It presents additional evidence that there is a fun-
damental trade-off between accuracy and performance. It also presents a specific
mechanism for exploiting this trade-off in the context of parallelizing compilers.

2. EXAMPLE

Figure 1 presents an example that we use to illustrate the operation of QuickStep.
The example computes pairwise interactions between simulated water molecules (both
stored temporarily in scratchPads for the purposes of this computation). The two loops
in interf generate the interactions. interact calls cshift to compute the results of
each interaction into two 3 × 3 arrays (Res1 and Res2). updateForces then uses the
two arrays to update the vectors that store the forces acting on each molecule, while
addval updates the VIR accumulator object which stores the sum of the virtual energies
of all the interactions.

2.1. Profiling Runs

QuickStep starts with the source code of the program, some representative inputs,
an accuracy abstraction (which identifies relevant outputs), and an accuracy bound
of 0.003, all specified by the developer. QuickStep next runs the sequential computa-
tion on the representative inputs and records the running times and outputs. It next
generates an instrumented version of the program that counts the number of instruc-
tions executed in each loop and records the dynamic loop nesting information. It then
runs this instrumented version of the program to obtain the loop profiling information
(which identifies the most time-consuming loops in the program and the dynamic nest-
ing relationships between these programs). QuickStep next generates an instrumented
version of the program that generates a trace of the addresses that the program reads

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:6 S. Misailovic et al.

Fig. 1. Example computation.

Fig. 2. Example accumulator.

and writes. It then runs this version to obtain the memory profiling information (which
identifies potentially interfering accesses from parallel loop iterations).

2.2. Search of the Parallelization Space

The loop profiling information indicates that almost all of the execution time is spent
in an outer loop that iterates over the time steps in the simulation. QuickStep’s at-
tempted parallelization of this loop fails because it produces computations with unac-
ceptable accuracy.

QuickStep next parallelizes the interf outer loop. The resulting parallel computa-
tion is close to accurate enough but, in the end, fails the statistical accuracy test. The
memory profiling information indicates that there are potential data races at multiple
locations in the parallel loop, with the densest races occurring within the accumulator
addval operation invoked from the interact method. Figure 2 presents (relevant meth-
ods of) the accumulator class. Each accumulator contains several additional implemen-
tations of the basic addval operation—the addvalSync operation, which uses a multiple

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:7

exclusion lock to make the addval execute atomically, and the addvalRepl operation,
which adds the contributions into local replicas without synchronization.1 Based on
the memory profiling information, QuickStep invokes the synchronized version of the
addval method, changing the call site in interact to invoke the addvalSync method
instead of the addval method.

This transformation produces a parallel program with statistically acceptable accu-
racy but unacceptable performance. In fact, the parallel program takes longer to exe-
cute than the original sequential program! QuickStep operates on the assumption that
there is a bottleneck on the synchronized addvalSync updates and replaces the call to
addvalSync with a call to the replicated version (addvalRepl) of the addval method.
This version has good accuracy—the remaining data races (which occur when the com-
putation updates the vectors that store the forces acting on each molecule) occur infre-
quently enough so that the computation produces acceptably accurate results.

After a similar parallelization process for the remaining time-intensive loop, the
outer loop in the poteng method (not shown) which accounts for the vast majority
of the remaining execution time, QuickStep has found several parallelizations that
exhibit both good performance and acceptably accurate output. QuickStep takes the
parallelization with the best performance and runs the final, more stringent, statistical
accuracy test on this parallelization, which passes the test to become the final accepted
parallelization.

2.3. Interactive Report

As it explores the induced space of parallel programs, QuickStep produces a log whose
entries specify the applied parallelization transformations, the performance, and the
accuracy for each execution of each generated parallel program. QuickStep processes
this log to produce an interactive report that the developer can navigate to evaluate
the final parallelization and gain insight into how the different transformations affect
the parallel behavior of the application. The interactive report takes the form of a set
of (dynamically generated) linked webpages.

Figure 3 presents a screen shot of the start page of the interactive report for the
Water application from our benchmark suite (the example presented in this section is
a simplified version of this application) running on the 1,000 input. This page sum-
marizes the final parallelization of this application. The header presents the revision
number (in this case, Revision 10) of the final parallelization, the mean speedup (in
this case, 6.869 on eight cores), and the mean distortion (in this case, 0.002).

The Transformation section of the page provides information about the applied
transformations for the final version, with links to the transformed source code. In
our example, the final parallel program has two parallel loops (at lines 1146 and 1686
of the file Water.C). The computation spends 36.5% of its time in the first loop and
62.6% of its time in the second. The links in the report take the developer directly
to these loops in the source code. Each loop has a single applied replication trans-
formation (the call to vecAdd at line 1159 of Water.C was replaced with a call to the
replicated version vecAddRepl of this operation, and the call to addval at line 1644
of Water.C was replaced with a call to the replicated version addvalRepl of this op-
eration), no private variables, and no applied synchronization transformations (other
parallel versions have applied synchronization transformations). The interf loop uses
the modulo loop scheduling policy, while the poteng loop uses the dynamic scheduling
policy. The Final Metrics section of the page summarize speedups and distortions from
the final statistical accuracy test. Histograms summarize speedups and distortions of

1The actual implementation of this accumulator uses padding to avoid potential false sharing interactions.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:8 S. Misailovic et al.

Fig. 3. QuickStep interactive report screen shot.

individual runs of the final parallel programs. Note that only 5 of the 1,606 runs ex-
ceeded the accuracy bound 0.003. Clicking on the green + sign (following the Final
Metrics title) opens up a table with results from the individual executions.

The All Parallelizations section summarizes the search process. A single graph plots
the speedup (left Y axis) and distortion (right Y axis) as a function of the revision num-
ber of the generated parallel program (QuickStep assigns the next available revision
number every time it generates a new parallel program).

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:9

The final section (below the graphs and truncated in this screen shot at Revision 3
of 33 total parallel versions) contains links to similarly formatted pages that summa-
rize the applied parallelization transformations, performance results, and distortion
results for the full set of parallel programs that QuickStep visited (starting with Revi-
sion 1) as it explored the parallel program search space.

3. ANALYSIS AND TRANSFORMATION

QuickStep is structured as a source-to-source translator that augments the original
sequential program with OpenMP directives to obtain a parallel program. The Quick-
Step analysis phases use the LLVM compiler infrastructure [Lattner and Adve 2004].

3.1. Loop Profiler

The QuickStep loop profiler produces an instrumented version of the sequential pro-
gram that, when it runs, counts the number of times each basic block executes. The
instrumentation also maintains a stack of active nested loops and counts the num-
ber of (LLVM bit code) instructions executed in each loop, propagating the instruction
counts up the stack of active nested loops so that outermost loops are credited with
instructions executed in nested loops.

The loop profiler produces two outputs. The first is a count of the number of instruc-
tions executed in each loop during the loop profiling run. The second is a directed graph
that captures the dynamic nesting relationships between different loops (note that the
loops may potentially be in different procedures).

3.2. Memory Profiler

The QuickStep memory profiler produces an instrumented version of the sequential
program that, when it executes, generates a trace of the addresses that it reads and
writes. Given the memory profiling information for a given loop, the memory profiler
computes the interference density for each store instruction s, that is, the sum over all
occurrences of that store instruction s in the trace of the number of store instructions p
in parallel iterations that write the same address. Conceptually, the interference den-
sity quantifies the likelihood that a store instruction p in a parallel iteration will inter-
fere with a sequence of (otherwise atomic) accesses that completes with the execution
of the store instruction s. The interference density is used to prioritize the applica-
tion of the synchronization and replication transformations, with the transformations
applied first to operations that contain store instructions with the higher interfer-
ence density. QuickStep is currently configured to apply synchronization introduction
transformations only to loops in which all writes to a given address are preceded by
a corresponding read from that address. The goal is to apply the transformation only
within loops that access the object exclusively with atomic read/write updates (and not
other accesses such as initializations).

3.3. Parallelization and Privatization

QuickStep uses OpenMP directives to specify parallel loops. The following example
illustrates the use of these directives.

int t;
#pragma omp parallel for private(t) schedule(static)
for (i = 0; i < n; i++) { t = a[i]+b[i]; c[i] = t; }

This parallel for OpenMP directive causes the iterations of the loop to execute
in parallel. When the parallel loop executes, it uses the static scheduler (we discuss
available schedulers below in Section 3.5) to schedule its iterations onto the under-
lying parallel machine. Each iteration of the loop is given its own private version of

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:10 S. Misailovic et al.

the variable t so that its accesses to t do not interfere with those of other parallel
iterations.

QuickStep uses a simple intraprocedural dataflow analysis to determine which vari-
ables to privatize. This analysis finds all local scalar variables that iterations of the
parallel loop first write, then read. The parallelization transformation inserts all such
variables into the private clause of the OpenMP loop parallelization directive.

3.4. Synchronization and Replication Transformations

QuickStep’s synchronization and replication transformations operate on objects that
provide multiple implementations of standard operations. Some operations are syn-
chronized for atomic execution in parallel environments. Others operate on thread-
local replicas of the object state (with the replicas coalesced when appropriate). Quick-
Step can work with any object that provides synchronized or replicated methods. We
have implemented a QuickStep component that, given a class, automatically generates
an augmented class that contains synchronized and replicated versions of the methods
in the class. This component performs the following steps.

— Synchronization. It augments instances of the class with a mutual exclusion lock
then generates synchronized versions of each method. Each synchronized method
acquires the lock, invokes the standard (unsynchronized) version of the method,
then releases the lock.

— Replication. It augments instances of the class with an array of replicas. Each array
element contains a replica of the state of the object. There is one array element (and
therefore one replica) for each thread in the parallel computation. It also generates
the replicated version of each method (this version accesses the local replica).

— Caching. It modifies the original versions of the methods to check whether the object
state is distributed across multiple replicas and, if so, to combine the replicas to
obtain a single cached version of the state. The method then operates on this cached
version. The specific combination mechanism depends on the object. In our current
system, the automatically generated code simply adds up the values in the replicas.
QuickStep, of course, supports arbitrary combination mechanisms.

— Padding. It generates additional unused memory (pads) to separate the replicas so
that they fall on different cache lines. The goal is to eliminate any false sharing
[Bolosky and Scott 1993] that might otherwise degrade the performance.

QuickStep can work with instances of any class that use any mechanism to obtain
alternate implementations of standard operations. So a developer could, for example,
provide implementations that use atomicity mechanisms, such as transactional mem-
ory or other lock-free synchronization mechanisms [Herlihy and Moss 1993].

As it searches the space of parallel programs, the QuickStep search algorithm may
direct the QuickStep compiler to perform synchronization or replication introduction
transformations. The QuickStep compiler implements each such transformation by
modifying the corresponding call site to invoke the appropriate synchronized or repli-
cated version of the method instead of the original version.

3.5. Loop Scheduling

OpenMP supports a variety of loop scheduling policies via the schedule clause of the
parallel for directive [Dagum and Menon 1998]. In general, these policies may vary
in the cache locality, load balancing, and scheduling overhead that they elicit from the
loop, with different policies working well for different loops. Note that the policies may
also have an effect on the result of the computation due to different orders of accessing
and processing data.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:11

QuickStep currently searches three loop scheduling policies: dynamic (when a thread
goes idle, it executes the next available loop iteration), static (each thread executes
a single contiguous chunk of iterations, with the chunks assigned at the start of the
parallel loop), and static,1 (each thread executes a discontiguous set of iterations,
with the iterations assigned to threads at the start of the parallel loop in a round-
robin manner). The parallelization reports refer to the static,1 scheduling strategy
as modulo scheduling.

4. STATISTICAL ACCURACY TEST

QuickStep uses the Wald sequential probability ratio (SPR) test [Wald 1947] as its sta-
tistical accuracy test. The SPR test works with a sequence of independent, identically-
distributed (IID) Bernoulli variables Xi ∈ {0, 1} from a distribution with unknown
reliability (i.e., probability of success) p = P (X = 1). The test takes as parameters a
desired reliability r, an approximate false positive bound α, an approximate false neg-
ative bound β, a lower accuracy interval ε0, and an upper accuracy interval ε1. The
SPR test accepts one of two disjoint hypotheses H0 : p ≤ p0 or H1 : p ≥ p1, where
p0 = r − ε0 and p1 = r + ε1, after observing n Bernoulli variables (the number n is
dynamically determined by the parameters and the values of the previously observed
Bernoulli variables). The decision of the test will be correct with high probability, de-
termined by the bounds α and β.

Program Executions as Random Variables. QuickStep’s statistical accuracy test
works with a candidate parallelized application (QuickStep automatically generates
this parallelization) an accuracy bound b, and an accuracy metric. The test repeatedly
executes the parallelized application; for each execution, the accuracy metric produces
a distortion d. We represent the ith program execution as a random variable Xi which
has as the value a result of comparison of the distortion di with the bound b.

Xi =
{

1 if di ≤ b;
0 if di > b.

Reliability Tolerances. The probability that the program will produce an acceptable
result p = P (X = 1) is, in general, unknown—the test uses observations to reason
about the relationship between p and a user-provided reliability goal r, but (in general)
will never obtain complete information about p. The SPR test therefore works with a
tolerance around r within which it may give arbitrary answers. Specifically, the user
needs to provide a lower accuracy interval ε0 and an upper accuracy interval ε1. To-
gether, r, ε0, and ε1 define the lower target probability p0 = r − ε0 and the upper
target probability p1 = r + ε1. Since we typically view incorrectly accepting a bad par-
allelization as less acceptable than incorrectly rejecting a good parallelization, we use
a one-sided test in which ε0 = 0 (i.e., p0 = r).

Hypotheses. We represent the acceptability of a parallel program as two hypotheses
H0 : p ≤ p0 (i.e., the probability that the application produces an acceptable result
is at most p0) and H1 : p ≥ p1 (i.e., the probability that the application produces
an acceptable result is at least p1). If the test accepts H0, QuickStep will reject the
parallelization. If the test accepts H1, QuickStep will accept the parallelization.

True and False Positive Bounds. Ideally, QuickStep’s statistical accuracy test should
select all parallelizations with a high enough probability of producing an acceptable
result (“good” parallelizations), and reject all other parallelizations (“bad” paralleliza-
tions). In practice, however, the statistical accuracy test may encounter an unlikely
sequence of samples that cause it to make an incorrect decision (either rejecting a

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:12 S. Misailovic et al.

good parallelization or accepting a bad parallelization). We therefore consider the fol-
lowing four probabilities: PG is the probability that the test will correctly accept a good
parallelization, 1 − PG is the probability that the test will incorrectly reject a good
parallelization, PB is the probability that the test will incorrectly accept a bad paral-
lelization, 1 − PB is the probability that the test will correctly reject a bad paralleliza-
tion. Together, PG and PB completely characterize the risks associated with making a
wrong decision. Ideally, PG should be close to 1 and PB should be close to 0. Note that
the accuracy test uses an approximate false positive bound α and an approximate true
positive bound β. To ensure that the true desired bounds PB and PG are guaranteed
by the test, we can use Inequalities (5) and (6) from Section 4.1 to calculate α and β.

IID Executions. The statistical accuracy test assumes that test executions of the par-
allel application are independent and identically distributed. To promote the validity
of this assumption, we ensure that executions do not reuse results from previous exe-
cutions and that no two executions run at the same time.

We note that in the presence of execution schedule dependent phenomena such as
data races, changing aspects of the underlying execution environment (such as the
computational load, thread scheduler, number of cores, or other hardware character-
istics) may change the probability that an execution of the program will satisfy the
accuracy bound b. So the statistical accuracy tests are valid only for the specific execu-
tion environment in which they were performed.

4.1. SPR Test Detailed Description

We now provide an overview of the mechanism that the SPR test uses to determine
which hypothesis to accept. Given two hypotheses, H0 : p ≤ p0 and H1 : p ≥ p1, the
test performs a minimal number of trials (corresponding to a parallel program execu-
tion) before accepting one of the hypotheses. The test accepts the correct hypothesis
with high probability, as determined by the correctness bounds PG and PB. If the true
probability p lies between p0 and p1, the test nondeterministically accepts one of the
hypotheses.

The SPR test executes for multiple iterations, performing a single trial in each itera-
tion. Let Xi be a Bernoulli variable from single test iteration and �X = (X1, X2, ... Xn) be
an n-dimensional vector of variables observed in the first n iterations. At each iteration
n, the test collects the observation of the variable Xn and calculates the log likelihood
ratio L(�X) between the two interpretations of the observations seen so far.

L(�X) = log
P (�X|H1)

P (�X|H0)
. (1)

The algorithm defines two stopping conditions, A and B (B < A), which can be calcu-
lated using the probabilities PG, and PB. The algorithm performs trials until L(�X) ≥ A,
when it accepts the hypothesis H1, or L(�X) ≤ B, when it accepts the hypothesis H0.

For a single execution, P (Xi|H0) = P (Xi|p ≤ p0) ≤ p0 (the inequality follows imme-
diately from P (Xi|p ≤ p0) = p), and P (Xi|H1) = P (Xi|p ≥ p1) ≥ p1. The function L(Xi)
has a minimum value when P (Xi|H0) = p0 and P (Xi|H1) = p1. Using these equalities
will provide the most conservative decision by the test.

Since all random variable Xi are independent, P (�X|Hk) = ∏n
i=0 P (Xi|Hk) = (1 −

pk)f pn−f
k (k ∈ {0, 1}), where f is the number of executions that failed to produce an

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:13

acceptable result, and n − f is the number of executions that produced an acceptable
result. The formula for the log likelihood ratio becomes

L(�X) = (n − f) log
p1

p0
+ f log

1 − p1

1 − p0
. (2)

The values A and B used as stopping conditions for the test are related to the risk
that the test may make a wrong decision. Specifically, we derive the relation between
A and B and the probabilities of accepting a good parallelization, PG = P [H1|H1], and
accepting a bad parallelization, PB = P [H1|H0]. For the approximate bounds α and β,
assume the following.

PB

PG
≤ α

β
≤ e−A; (3)

1 − PG

1 − PB
≤ 1 − β

1 − α
≤ eB. (4)

To find the values for A and B that satisfy the previous inequalities, Wald showed
that A = log β

α
and B = log 1−β

1−α
are the computationally simplest solutions [Wald 1947].

Since PB, PG ∈ (0, 1), then PB ≤ PB
PG

and 1 − PG ≤ 1−PG
1−PB

, and so

PB ≤ α

β
; (5)

1 − PG ≤ 1 − β

1 − α
. (6)

While, in general, the values of α and β are not equal to PB and PG when A and B
have the values described in the previous paragraph, it is possible to use Inequalities
(5) and (6) to calculate appropriate values of parameters α and β that yield the desired
probabilities PB and PG. For example, if α = 0.091 and β = 0.91, then PG ≥ 0.9 and
PB ≤ 0.1. As a special case, when α → 0, and β → 1, the bounds can be approximated
to PB ≤ α and β ≤ PG. In that case, α ≈ PB and β ≈ PG. For example, if α = 0.01 and
β = 0.99, PG = 0.9898 . . . (which is very close to β), and PB = 0.0101 . . . (which is very
close to α).

4.2. Accuracy vs. Time Trade-offs

The values of α, β, p0, and p1, together with the (at the start of the test) unknown
number of failed executions f , determine the number of iterations required for the
SPR test to terminate and the overall execution time of the test.

Higher accuracy requires more observations, that is, more executions of the parallel
application, for the SPR test to accept or reject the parallelization. We can see from
Equation (2) that the coefficient log 1−p1

1−p0
will have a significantly larger absolute value

(but the opposite sign) compared to log p1
p0

when p1 and p0 are close to 1. As a conse-
quence, the number of failed executions in previous steps, f , will have a major impact
on the total number of steps of the test. Note that if the true value of p is close to p1,
the number of failed executions is likely to increase as the test progresses, requiring a
substantially larger total number of steps.

For example, if p0 = 0.9, p1 = 0.95, α = 0.091, and β = 0.91, the SPR test requires
43 executions in order to accept the parallelization if all results are acceptable. In
contrast, the test requires only 4 executions to reject the parallelization if all results
are unacceptable. If there is one execution that produced unacceptable result, the SPR
test requires 57 executions before accepting the parallelization. For stricter bounds,

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:14 S. Misailovic et al.

p0 = 0.99, p1 = 0.995, α = 0.01, and β = 0.99, the parallelization is accepted after
at least 913 executions (if all executions are acceptable) and rejected after at least 7
executions (if none of the executions is acceptable). Accepting a parallelization when a
single failed execution is observed will require 1051 executions in total.

In general, it is necessary to make a trade-off between the accuracy of the statistical
test and the time required to perform the test. QuickStep uses two sets of accuracy
bounds to improve the speed of exploration. The bounds are relaxed during the in-
termediate steps in the search space exploration, resulting in a significantly smaller
number of required executions, but also a larger probability of an incorrect decision.
QuickStep performs the final accuracy test with stronger accuracy bounds, and there-
fore a smaller probability of an incorrect decision. This design promotes a more rapid
exploration of the search space at the potential cost of the search producing a final
parallelization that the final test rejects (in which case the final test moves on to try
the next best parallelizations until it finds a parallelization that it can accept).

During the parallelization space search, we set r = 0.90, ε0 = 0, ε1 = 0.05, α = 0.091,
and β = 0.91. The probability that the SPR test will accept a good parallelization is
PG ≥ 0.9 and the probability that it will accept a bad parallelization is PB ≤ 0.1.
During the final accuracy test we set r = 0.99, ε0 = 0, ε1 = 0.005, α = 0.01, and
β = 0.99. The probabilities that the SPR test will accept good and bad parallelizations,
are, respectively PG ≥ 0.99 and PB ≤ 0.01.

The Hoeffding Inequality. In previous work [Misailovic et al. 2010a], we used the
Hoeffding inequality [Hoeffding 1963], to determine if a candidate parallelization sat-
isfies a desired statistical accuracy bound. The test performs test executions to obtain
an estimator p̂ of the unknown probability p that the parallelization will produce an
acceptably accurate result. It works with a desired precision 〈δ, ε〉 and performs enough
test executions so that it can use the Hoeffding inequality P (p̂>p+ε) ≤ δ. Unlike the
SPR test, the number of test executions is fixed in advance as a function of δ and ε—the
test does not use results from completed test executions to determine if it has enough
information to determine if the parallelization is acceptably accurate and terminate.
In general, using the Hoeffding inequality requires the test to perform substantially
more executions than the SPR test to obtain comparable statistical guarantees.

5. PARALLELIZATION SEARCH SPACE ALGORITHM

The parallelization algorithm explores the search space induced by the possible par-
allelizations, looking for the parallel program that delivers the largest performance
increase while keeping the distortion within the accuracy bound for the representa-
tive inputs. The algorithm consists of two main parts—the first part of the algorithm
explores the parallelization space associated with a single loop; the second part of the
algorithm combines single-loop parallelizations into parallelizations involving multi-
ple loops (in the process invoking the single-loop algorithm).

5.1. Parallelization Search for Individual Loops

Figure 4 presents the algorithm that searches the parallelization space associated with
a single loop. The algorithm takes as input a loop � whose parallelization to explore, a
set P of loops that are already parallelized, and a set A of information about previously
explored parallelizations. Specifically, A contains, for each such parallelization, sets S
and T of synchronizations and replications (respectively) applied to call sites in the
parallelized loops, a set T of scheduling policies for the parallelized loops, and a mean
speedup s and distortion d for the parallelization.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:15

Fig. 4. Parallelization space search algorithm for one loop.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:16 S. Misailovic et al.

The algorithm searches the space of parallel programs for the candidate loop � as
follows.

(1) Initial Parallelization. QuickStep first generates a parallelization that executes �
in parallel (with no applied synchronization or replication transformations) in the
context of the previous parallelization of the loops in P (this parallelization in-
cludes any applied synchronization and replication transformations for these pre-
viously parallelized loops). It uses the statistical accuracy test to determine if this
parallelization is acceptably accurate.

(2) Synchronization Transformations. If the current parallelization is not acceptably
accurate, QuickStep next applies synchronization introduction transformations to
� in an attempt to restore acceptably accurate parallel execution. It applies these
transformations according to the priority order established by the memory profil-
ing information, with operations containing higher interference-density store in-
structions prioritized over operations containing lower interference-density store
instructions. As it applies the transformations, it builds up a set S� of call sites to
apply synchronization introduction transformations. It only places a transforma-
tion into S� if it improves the accuracy of the parallelization.

(3) Replication Transformations. QuickStep next applies replication introduction
transformations in an attempt to maximize the performance while preserving ac-
ceptably accurate execution. For each synchronization introduction call site in S�, it
replaces the synchronization introduction transformation with the corresponding
replication introduction transformation. As it applies the transformations, it builds
up a set R� of replication introduction transformations. It only places a replication
transformation into R� (and removes it from S�) if it improves performance while
maintaining acceptable accuracy.
Note that it is possible for the performance improvements associated with repli-
cation to increase the data race density within the loop. In the worst case, this
increase can cause the parallelization to exceed its accuracy bound. In this case,
the algorithm returns back to apply additional synchronization transformations
(potentially followed by additional replication transformations) to restore accept-
ably accurate execution.

(4) Loop Scheduling. QuickStep finally tries all of the different loop scheduling policies
for the current loop �. If it encounters an acceptably accurate parallelization with
better performance than the previous best alternative, it accepts this new schedul-
ing policy. Note that since they change data access patterns of individual threads,
scheduling policies may also influence accuracy and we need to ensure that the
parallel program remains within the accuracy bound b.

5.2. Exploring the Search Space

Figure 5 presents the algorithm for the exploration of the entire parallelization space.
While, in general, finding the optimal parallel program (the one with the highest per-
formance increase subject to the accuracy bound) may require exploring all loops,
Quickstep uses the profiling information to search only a part of the optimization space
that is likely to contain parallel programs that substantially improve the performance.
In particular, QuickStep prioritizes the parallelization of the most time-consuming
loops by traversing the dynamic loop nesting graph G. It starts from the most time-
consuming loops in priority order, with the priority determined by the amount of time
spent in the loop (as indicated by the loop profiling information). QuickStep explores
the graph in depth-first fashion, pruning the search space (1) when the resulting par-
allelization is unacceptably inaccurate and (2) once it has successfully parallelized an

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:17

Fig. 5. QuickStep search algorithm.

outer loop, it does not attempt to parallelize any inner loops which can be executed
only from the body of the outer loop.

QuickStep tries to discover the synchronization, replication, and scheduling policies
for the current loop that, when applied together with previously parallelized loops,
maximally increase performance while keeping the accuracy within the bound b. The
algorithm maintains a set of all acceptable parallelizations A. For each such paral-
lelization A, it records the sets S and R of applied synchronization and replication
transformations, the set T of loop scheduling policies, and the observed mean speedup
s and distortion d. It updates A whenever it successfully parallelizes another loop.

When QuickStep finishes exploring the parallel program search space, it orders the
accepted parallelizations according to the performance then runs the final statistical
accuracy test on these programs. As we noted in Section 4.2, QuickStep relaxes the
accuracy bounds in the intermediate steps of the algorithm to improve the speed of the
exploration. The algorithm may therefore return more parallel programs that pass the
relaxed test. In the final step QuickStep performs SPR test on these candidate paral-
lelizations with the desired, stronger accuracy bounds. Quickstep returns the parallel
program with the best performance that passes the final accuracy test as the final
parallelization.

5.3. Interactive Parallelization Report

The report generator, written in Ruby programming language, processes the log gen-
erated by the search algorithm, extracting the relevant information and placing this

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:18 S. Misailovic et al.

Table I. Quantitative Results for Benchmark Applications

Application Input
Best

Parallel
Version

Speedup Distortion
Search
Time
(min)

Check
Run/Fail

Check
Time
(min)

Barnes-Hut
16K bodies 2 of 16 6.168 0.0000 27.4 913/0 41.3
256K bodies 2 of 16 5.760 0.0000 47.4 913/0 77.6

Search
500 particles 16 of 16 7.743 0.0000 63.6 913/0 33.5
750 particles 16 of 16 7.756 0.0000 92.9 913/0 50.0

String
big 4 of 10 7.608 0.0005 8.98 913/0 18.0
inv 4 of 13 7.582 0.0005 17.1 913/0 34.3

Volume Rendering
head 3 of 7 6.153 0.0000 23.5 913/0 52.4

head-2 3 of 7 5.047 0.0000 6.8 913/0 15.3

Water (b = 0.003)
1000 molecules 10 of 33 6.869 0.0021 180.2 1606/5 64.5
1728 molecules 11 of 34 7.009 0.0010 228.9 913/0 43.9

Water (b = 0.0)
1000 molecules 12 of 35 6.183 0.0000 189.2 913/0 40.7
1728 molecules 12 of 35 6.123 0.0000 231.5 913/0 50.1

information in an SQLite database. It uses the Ruby on Rails Web development frame-
work2 to retrieve the appropriate information from the database and dynamically gen-
erate webpages that present this information to the developer.

6. EXPERIMENTAL RESULTS

We used QuickStep to parallelize five scientific computations.

— Barnes-Hut. A hierarchical N-body solver that uses a space-subdivision tree to or-
ganize the computation of the forces acting on the bodies [Barnes and Hut 1986].
Barnes-Hut is implemented as an object-oriented C++ computation.

— Search. Search uses a Monte-Carlo technique to simulate the elastic scattering of
each electron from the electron beam into a solid [Browning et al. 1995]. Search is
implemented in C.

— String. String constructs a two-dimensional discrete velocity model of the geological
medium between two oil wells [Harris et al. 1990]. String was originally developed
as part of the Jade project [Rinard 1994] and is implemented in C.

— Volume Rendering. Volume Rendering renders a three-dimensional volume dataset
for graphical display [Nieh and Levoy 1992]. Volume Rendering appears in the
SPLASH-2 benchmark suite [Woo et al. 1995] and is implemented in C.

— Water. Water evaluates forces and potentials in a system of water molecules in the
liquid state. Water is an object-oriented C++ version of the Perfect Club benchmark
MDG [Blume and Eigenmann 1992].

We also applied QuickStep to Panel Cholesky (a program that factors a sparse positive-
definite matrix). Because the parallelism in this application is not available by execut-
ing loops in parallel, it is beyond the reach of the current set of QuickStep transforma-
tions [Misailovic et al. 2010a, 2010b].

6.1. Methodology

We obtained the applications in our benchmark suite along with two representative
inputs for each application. We specified appropriate accuracy bounds for each ap-
plication and used QuickStep to automatically parallelize the applications, using the
representative inputs to perform the required profiling and parallel executions. We

2http://rubyonrails.org/

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:19

configured QuickStep to search the parallelization space for each input independently
with the final accuracy test performed on both inputs. Note that it also makes sense to
perform the validation on the input used during the search because the final accuracy
step provides stronger statistical bounds than the exploration steps.

We performed all executions on an Intel Xeon E5520 dual quad-core machine run-
ning Ubuntu Linux, using LLVM 2.7 to compile all versions of the applications. All
parallel executions use eight threads. We set the accuracy bound b to be 0.003 for
Water and String and 0.01 for the other benchmarks.

6.2. Quantitative Results

Table I presents the quantitative results for each application. All of the numbers in
this table either appear directly in the corresponding interactive report or are com-
puted from numbers that appear in this report. The table contains one row for each
combination of application and input. The third column (Best Parallel Version) con-
tains entries of the form x of y, where x is the revision number of the final parallel
version of the application (i.e., the version with the best performance out of all parallel
versions that satisfy the accuracy requirement) and y is the number of revisions that
QuickStep generated during its exploration of the search space. The fourth column
(Speedup) presents the mean speedup (over all test executions) of the final version
of the application when run on eight cores. The speedup is calculated as the mean
execution time of the original sequential program (with no parallelization overhead
whatsoever) divided by the mean execution time of the final version. The fifth col-
umn (Distortion) presents the mean measured distortion over all executions of the
final parallel version; the number of executions is equal to the sum of the numbers in
the column Check Run/Fail. The sixth column (Search Time) presents the total time
(in minutes) required to search the space of parallel programs. The seventh column
(Check Run/Fail) shows the number of executions that were required in order to pass
the statistical accuracy test. Five of the 1,606 executions of Water failed to satisfy the
accuracy bound b. For all of the other benchmarks all of the executions satisfied the
accuracy bound. The eighth and final column (Check Time) presents the total time (in
minutes) required to perform the test executions during the final statistical accuracy
test for the final version of the application.

We note that, with the exception of String, both inputs induce identical paralleliza-
tions. As discussed further, for String, the two different parallelizations are acceptable
and produce roughly equivalent performance for both inputs.

Barnes-Hut. The representative inputs for Barnes-Hut differ in the number of bod-
ies they simulate and the number of time steps they perform. The accuracy metric
computes the relative differences between the various aspects of the state of the final
system, specifically the total kinetic and potential energy and the position and velocity
of the center of mass.

The report indicates that Barnes-Hut spends almost all of its time in the outer loop
that iterates through the time steps in the simulation. The attempted parallelization
of this loop crashes with a segmentation violation. QuickStep proceeds on to the main
force computation loop which iterates over all the bodies, using the space subdivision
tree to compute the force acting on that body. This loop is nested within the time step
loop; the report indicates that Barnes-Hut spends the vast majority of its time in this
loop. Because there are no cross-iteration dependences in the force computation loop,
QuickStep’s parallelization of this loop produces a parallel program that deterministi-
cally produces the same result as the original sequential program. QuickStep proceeds
on to attempt to parallelize several more loops (both alone and in combination with
each other and the main force computation loop), but even after the application of

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:20 S. Misailovic et al.

replication introduction transformations in these loops it is unable to produce a par-
allelization that outperforms the parallelization of the main force computation loop
by itself. We attribute the performance loss to unsuccessfully amortized overhead of
initialization of the replicated versions of data structures.

Search. The representative inputs for Search differ in the number of traced particles.
The accuracy metric computes the relative difference between the number of particles
that scatter out of the front of the solid in the sequential and parallel computations.

The report indicates that Search spends almost all of its computation time within
a single inner loop. All parallelizations that attempt to execute this loop in parallel
fail because the program crashes with a segmentation fault. QuickStep also explores
the parallelization of various combinations of five outer loops, each of which executes
the inner loop. Together, these loops account for almost all of the computation time.
QuickStep is able to parallelize all of these loops with no applied synchronization or
replication transformations and no distortion. An examination of the source code re-
veals that all iterations of these loops are independent and the parallelization is valid
for all inputs.

String. The representative inputs for String differ in the starting geology model and
in the number of rays that they trace through the velocity model. The accuracy metric
computes the mean scaled difference between corresponding components of the veloc-
ity models from the sequential and parallel computations.

The report indicates that String spends almost all of its time within a single outer
loop that updates the velocity model. QuickStep is able to parallelize this loop. Our ex-
amination of the source code indicates that parallel iterations of this loop may contain
(infrequent) data races—it is possible for two iterations to update the same location in
the geology model at the same time. The fact that the distortion is small but nonzero
(0.0005 for the representative inputs) reinforces our understanding that while some
data races may actually occur in practice, they occur infrequently enough so that they
do not threaten the acceptable accuracy of the computation.

For each input, QuickStep is also able to successfully parallelize an additional loop.
The search for the big input finds an outer loop in a loop nest, while the search for
the inv input finds an inner loop from the same loop nest. In both cases, the loop nest
contributes to less than 4% of the execution time. Manual inspection shows that the
iterations of these loops are independent, and therefore parallelizing the loops does
not affect the accuracy.

We executed each final parallelization on the input used to derive the other paral-
lelization, with the number of executions determined by the statistical accuracy test.
All executions on all inputs satisfied the statistical accuracy bounds. The parallel ver-
sion from the inv input produced a mean speedup of 7.55 and distortion of 0.0004
for the big input; the parallel version from the big input produced a mean speedup
of 7.57 and distortion of 0.0005 for the inv input. These numbers suggest that both
parallelizations are acceptable; inspection of the source code via the interactive report
confirms this acceptability.

Volume Rendering. The representative inputs for Volume Rendering differ in the
size of the input volume data. The accuracy metric is based on the final image that
the application produces—specifically, it computes the mean scaled difference between
corresponding pixels of the images from the sequential and parallel computations.

The report indicates that Volume Rendering spends almost all of its time in three
nested loops: an outer loop that iterates over the views in the view sequence, a nested
loop that iterates over the y-axis of the current view, and an inner loop that, given
a y-axis from the enclosing loop, iterates over the x-axis to trace the rays for the

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:21

corresponding x,y points in the view. QuickStep first tries to parallelize the outer
loop. This parallelization fails because the application crashes with a segmentation
violation.

QuickStep next attempts to parallelize the nested loop (which iterates over the y-
axis). This parallelization succeeds and produces a parallel computation with good
performance and no distortion. QuickStep also succeeds in parallelizing the inner loop
by itself but this parallelization does not perform as well as the parallelization of the
nested loop (which contains the inner loop). An examination of the source code indi-
cates that the ray tracing computations are independent and that the parallelization
is valid for all inputs.

Water. The representative inputs for Water differ in the number of water molecules
they simulate. The accuracy metric for Water is based on several values that the sim-
ulation produces as output, specifically the energy of the system, including the kinetic
energy of the system of water molecules, the intramolecular potential energy, the in-
termolecular potential energy, the reaction potential energy, the total energy, the tem-
perature, and a virtual energy quantity.

The reports indicate that the vast majority of the computation time in Water is con-
sumed by an outer loop that iterates over the time steps in the simulation. The at-
tempted parallelization of this loop fails because the resulting distortion is much larger
than the accuracy bound. As discussed in Section 2, QuickStep proceeds to successfully
parallelize the outer loops in the interf and poteng computations.

While the final computation has some unsynchronized data races, these data races
occur infrequently enough to keep the final distortion (0.002) within the accuracy
bound (0.003 for this example). When running the statistical test on the input 1000,
five of the executions produce output whose distortion is over the accuracy bound. For
that reason, the test must perform more executions to obtain the evidence that the
likelihood of a parallel execution satisfying the accuracy bound is acceptable.

When we set the accuracy bound b to 0.0, QuickStep is able to discover a parallel
version of the computation which does not have unsynchronized data races. This par-
allel version is over six times faster than the sequential program. Manual code inspec-
tion reveals that this parallelization produces valid results for all inputs. However,
because of the additional synchronizations in the interf computation, this parallel
version is 11% slower than the parallel version with infrequent data races. This exam-
ple highlights QuickStep’s ability to produce the most appropriate parallelization for
the specific accuracy bound.

6.3. Comparison with icc Compiler

To provide at least one comparison point with standard parallelizing compiler tech-
niques, we attempted to use the Intel icc compiler 113 to parallelize our benchmark
applications. In this section we summarize the comparison presented in Misailovic
et al. [2010b]. We used three values of the Intel icc par-threshold parameter, which
determines how aggressively the compiler parallelizes loops. Higher threshold levels
direct icc to parallelize only loops that are more likely to improve the performance.

At the default threshold level 100, icc parallelizes no loops. At threshold level 99,
icc parallelizes zero loops in String, Water, and Barnes-Hut, one loop in Search, and
five loops in Volume Rendering. At threshold level 0 icc parallelizes all loops that it
identifies as parallelizable. At this level, it parallelizes 12 loops in String, 13 in Search
and Volume Rendering, 21 loops in Water, and 22 loops in Barnes-Hut. However, only
one of these loops accounts for more than 1% of the execution time of the application.

3http://software.intel.com/en-us/intel-compilers/

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:22 S. Misailovic et al.

The loops discovered by icc are all small inner loops whose parallelization never
significantly improves the performance and in many cases significantly degrades the
performance. Intel icc did not select any of the loops parallelized by QuickStep. These
results highlight the difficulty of performing the static analysis required to parallelize
large outer loops using standard techniques and the effectiveness of the QuickStep
approach in parallelizing programs that use modern programming constructs.

7. RELATED WORK

We discuss related work in parallelizing compilers, interactive profile-driven paral-
lelization, statistical accuracy models for parallel computations, unsound program
transformations, and data race detection and repair.

Parallelizing Compilers. There is a long history of research in developing compil-
ers that can automatically exploit parallelism available in programs that manipulate
dense matrices using affine access functions. This research has produced several ma-
ture compiler systems, including Open644 with demonstrated success at exploiting
this kind of parallelism [Blume et al. 1995; Hall et al. 1996]. Our techniques, in con-
trast, are designed to exploit parallelism available in loops regardless of the specific
mechanisms the computation uses to access data. Because the acceptability of the par-
allelization is based on an analysis of the output of the parallelized program rather
than an analysis of the program itself with the requirement of generating a parallel
program that produces identical output to the sequential program, QuickStep is dra-
matically simpler and less brittle in the face of different programming constructs and
access patterns. To cite just one example, our results show that it can effectively par-
allelize object-oriented computations written in C++ that heavily use object references
and pointers. The use of any one of these programming language features is typically
enough to place the program beyond the reach of standard parallelizing compilers.

Commutativity analysis [Aleen and Clark 2009; Kim and Rinard 2011; Rinard and
Diniz 1997] analyzes sequential programs to find operations on objects that produce
equivalent results regardless of the order in which they execute. If all of the operations
in a computation commute, it is possible to execute the computation in parallel (with
commuting updates synchronized to ensure atomicity). QuickStep takes a simpler ap-
proach that can successfully parallelize a broader range of programs.

Motivated by the difficulty of exploiting concurrency in sequential programs by a
purely static analysis, researchers have developed approaches that use speculation.
These approaches (either automatically or with the aid of a developer) identify poten-
tial sources of parallelism before the program runs, then run the corresponding pieces
of the computation in parallel with mechanisms designed to detect and roll back any
violations of dependences that occur as the program executes [Bridges et al. 2007;
Prabhu and Olukotun 2005; Rauchwerger and Padua 1995; Tinker and Katz 1988].
These techniques typically require additional hardware support, incur dynamic over-
head to detect dependence violations, and do not exploit concurrency available between
parts of the program that violate the speculation policy. Our approach, in contrast, op-
erates on stock hardware with no dynamic instrumentation. It can also exploit concur-
rency available between parts of the program with arbitrary dependences (including
unsynchronized data races) as long as the violation of the dependences does not cause
the program to produce an unacceptably inaccurate result.

Another approach to dealing with static uncertainty about the behavior of the pro-
gram is to combine static analysis with runtime instrumentation that extracts addi-
tional information (available only at runtime) that may enable the parallel execution

4Open64: Open Research Compiler. http://www.open64.net.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:23

of the program [Ding and Li 2003; Rauchwerger and Padua 1995; Rauchwerger et al.
1995; Rus et al. 2007]. Once again, the goal of these approaches is to obtain a par-
allel program that always produces the same result as the sequential program. Our
approach, on the other hand, requires no runtime instrumentation of the parallel pro-
gram and can parallelize programs even though they violate the data dependences of
the sequential program (as long as violations do not unacceptably perturb the output).

Profile-Driven Parallelization. Profile-driven parallelization approaches run the pro-
gram on representative inputs, dynamically observe the memory access patterns, then
use the observed access patterns to suggest potential parallelizations that do not vi-
olate the observed data dependences [Ding et al. 2007; Rul et al. 2008; Tournavitis
et al. 2009]. The dynamic analysis may be augmented with a static analysis to recog-
nize parallel patterns, such as reductions.

QuickStep uses a fundamentally different parallelization approach—instead of at-
tempting to preserve the data dependences, it deploys a set of parallelization strategies
that enable it to explore a much broader range of potential parallelizations, including
parallelizations with synchronized commuting operations, acceptable data races, and
acceptable reorderings that violate the data dependences. Our experimental results
show that QuickStep’s broader reach is important in practice. The final paralleliza-
tions of two of the applications in our benchmark set (String and Water) contain un-
synchronized data races that violate the underlying data dependences, which places
these efficient parallelizations beyond the reach of any technique that attempts to pre-
serve these dependences.

Alter provides a deterministic execution model that supports parallelizations that
read stale data or otherwise violate the data dependences of the sequential program
[Udupa et al. 2011]. QuickStep produces simpler parallelizations, including efficient
nondeterministic computations with acceptable unsynchronized data races.

Researchers have also studied the effects of program parallelizations with relaxed
data dependencies on several data mining benchmarks [Meng et al. 2009, 2010]. The
researchers use profiling information to identify computational patterns that, when
parallelized with potential remaining data races, execute significantly faster while in-
curring only small accuracy losses. However, the parallelization is manual and does
not provide statistical accuracy bounds that the nondeterministic parallel program
will produce an acceptably accurate result. Kirsch et al. [2011] propose an approxi-
mate concurrent FIFO queue with the relaxed constraint on the order of the elements
and derive probabilistic bound on the amount of deviation of this approximate queue
from a perfect FIFO queue.

Statistical and Probabilistic Accuracy Models. Recent research has developed statis-
tical accuracy models for parallel programs that discard tasks, either because of fail-
ures or to purposefully reduce the execution time [Rinard 2006]. A conceptually related
technique eliminates idle time at barriers at the end of parallel phases of the compu-
tation by terminating the parallel phase as soon as there is insufficient computation
available to keep all processors busy [Rinard 2007]. The research presented in this ar-
ticle, on the other hand, uses user-defined accuracy tests in combination with the SPR
test to obtain a statistical guarantee of the accuracy of an envisioned parallelization.
In comparison with previous approaches, this approach requires fewer assumptions
on the behavior of the parallel computation but more test executions to obtain tight
statistical distortion bounds.

Loop perforation [Hoffmann et al. 2009; Misailovic et al. 2010; Sidiroglou et al. 2011]
can be seen as a specialization of discarding tasks in which the discarded tasks are loop
bodies. It would be possible to apply the statistical accuracy techniques presented in
this article to obtain statistical accuracy bounds for perforated programs. It is also

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:24 S. Misailovic et al.

possible to use Monte-Carlo simulation to obtain statistical models of the effect of per-
forating loops [Rinard et al. 2010]. Static analyses can produce probabilistic models
that characterize this effect [Chaudhuri et al. 2011; Misailovic et al. 2011a, 2011b].

Unsound Program Transformations. We note that this article presents techniques
that are yet another instance of an emerging class of unsound program transfor-
mations. In contrast to traditional sound transformations (which operate under the
restrictive constraint of preserving the semantics of the original program), unsound
transformations have the freedom to change the behavior of the program in principled
ways. Previous unsound transformations have been shown to enable applications to
productively survive memory errors [Berger and Zorn 2006; Rinard et al. 2004], code
injection attacks [Perkins et al. 2009; Rinard et al. 2004], data structure corruption
errors [Demsky and Rinard 2005; Demsky et al. 2006], memory leaks [Nguyen and
Rinard 2007], and infinite loops [Carbin et al. 2011]. The fact that all of these tech-
niques provide programs with capabilities that were previously unobtainable without
burdensome developer intervention provides even more evidence for the value of this
new approach.

Data Race Detection and Repair. Researchers have developed tools that detect the
presence of data races in parallel programs [Dinning and Schonberg 1991]. It is possi-
ble to use the synchronization introduction transformation presented in this article to
automatically eliminate data races (to the best of our knowledge, this is the first such
mechanism capable of automatically eliminating data races [Misailovic et al. 2010a,
2010b]). The AFix system introduces synchronization to eliminate single-variable
atomicity violations [Jin et al. 2011]. This mechanism could also be used to enhance
the accuracy of the parallel programs that QuickStep generates.

8. CONCLUSION

Parallelizing compilers have achieved demonstrated successes within specific compu-
tation domains, but many computations remain well beyond the reach of traditional
approaches. The difficulty of building compilers that use these approaches and the
large classes of programs that currently (and in some cases inherently) lie beyond
their reach leaves room for more effective techniques that can parallelize a wider
range of programs. Our results indicate that QuickStep’s basic approach, which in-
volves the combination of parallelization transformations and search of the resulting
induced space of parallel programs guided by test executions on representative inputs,
provides both the simplicity and broader applicability that the field requires.

ACKNOWLEDGMENTS

We would like to thank Dan Roy for his help with the statistical accuracy test and Stelios Sidiroglou and
Danny Dig for their useful comments on the earlier drafts of this work.

REFERENCES

Aleen, F. and Clark, N. 2009. Commutativity analysis for software parallelization: Letting program trans-
formations see the big picture. In Proceedings of ASPLOS.

Barnes, J. and Hut, P. 1986. A hierarchical O(NlogN) force calculation algorithm. Nature 324, 4, 446–449.
Berger, E. and Zorn, B. 2006. DieHard: Probabilistic memory safety for unsafe languages. In Proceedings of

PLDI.
Blume, W. and Eigenmann, R. 1992. Performance analysis of parallelizing compilers on the Perfect Bench-

marks programs. IEEE Trans. Parallel Distrib. Syst. 3, 6.
Blume, W., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P., Pottenger, W.,

Raughwerger, L., Tu, P., and Weatherford, S. 1995. Effective automatic parallelization with Polaris.
Int. J. Parallel Program.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

Parallelizing Sequential Programs with Statistical Accuracy Tests 88:25

Bolosky, W. and Scott, M. 1993. False sharing and its effect on shared memory performance. In Proceedings
of SEDMS.

Bridges, M., Vachharajani, N., Zhang, Y., Jablin, T., and August, D. 2007. Revisiting the sequential program-
ming model for multi-core. In Proceedings of MICRO.

Browning, R., Li, T., Chui, B., Ye, J., Pease, R., Czyzewski, Z., and Joy, D. 1995. Low-energy electron/atom
elastic scattering cross sections for 0.1-30keV. Scanning 17, 4, 250–253.

Carbin, M., Misailovic, S., Kling, M., and Rinard, M. 2011. Detecting and escaping infinite loops with Jolt.
In Proceedings of ECOOP.

Chaudhuri, S., Gulwani, S., Lublinerman, R., and Navidpour, S. 2011. Proving programs robust. In Proceed-
ings of ESEC/FSE.

Dagum, L. and Menon, R. 1998. OpenMP: An industry-standard API for shared-memory programming.
IEEE Comput. Sci. Eng. 5, 1, 46–55.

Demsky, B. and Rinard, M. 2005. Data structure repair using goal-directed reasoning. In Proceedings of
ICSE.

Demsky, B., Ernst, M., Guo, P., McCamant, S., Perkins, J., and Rinard, M. 2006. Inference and enforcement
of data structure consistency specifications. In Proceedings of ISSTA.

Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., and Zhang, C. 2007. Software behavior oriented paral-
lelization. In Proceedings of PLDI.

Ding, Y. and Li, Z. 2003. An adaptive scheme for dynamic parallelization. In Proceedings of LCPC, H. Dietz
Ed., Lecture Notes in Computer Science, vol. 2624. Springer-Verlag, 274–289.

Dinning, A. and Schonberg, E. 1991. Detecting access anomalies in programs with critical sections. In
Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging.

Hall, M., Anderson, J., Amarasinghe, S., Murphy, B., Liao, S., Bugnion, E., and Lam, M. 1996. Maximizing
multiprocessor performance with the SUIF compiler. IEEE Computer.

Harris, J., Lazaratos, S., and Michelena, R. 1990. Tomographic string inversion. In Proceedings of the 60th
Annual International Meeting, Society of Exploration and Geophysics, Extended Abstracts.

Herlihy, M and Moss, J. 1993. Transactional memory: Architectural support for lock-free data structures. In
Proceedings of ISCA.

Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables. J. Am. Stat.
Assoc. 58, 301, 13–30.

Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., and Rinard, M. 2009. Using code perforation to
improve performance, reduce energy consumption, and respond to failures. Tech. rep. MIT-CSAIL-TR-
2009-042, MIT, Cambridge, MA.

Jin, G., Song, L., Zhang, W., Lu, S., and Liblit, B. 2011. Automated atomicity-violation fixing. In Proceedings
of PLDI.

Kim, D. and Rinard, M. C. 2011. Verification of semantic commutativity conditions and inverse operations
on linked data structures. In Proceedings of PLDI.

Kirsch, C., Payer, H., Röck, H., and Sokolova, A. 2011. Performance, scalability, and semantics of concurrent
FIFO queues. Tech. rep. 2011-03, Department of Computer Sciences, University of Salzburg.

Lattner, C. and Adve, V. 2004. LLVM: A compilation framework for lifelong program analysis & transforma-
tion. In Proceedings of CGO.

Meng, J., Chakradhar, S., and Raghunathan, A. 2009. Best-effort parallel execution framework for recogni-
tion and mining applications. In Proceedings of IPDPS.

Meng, J., Raghunathan, A., Chakradhar, S., and Byna, S. 2010. Exploiting the forgiving nature of applica-
tions for scalable parallel execution. In Proceedings of IPDPS.

Misailovic, S., Kim, D., and Rinard, M. 2010a. Automatic parallelization with statistical accuracy bounds.
Tech. rep. MIT-CSAIL-TR-2010-007, MIT, Cambridge, MA.

Misailovic, S., Kim, D., and Rinard, M. 2010b. Parallelizing sequential programs with statistical accuracy
tests. Tech. rep. MIT-CSAIL-TR-2010-038, MIT, Cambridge, MA.

Misailovic, S., Roy, D., and Rinard, M. 2011a. Probabilistic and statistical analysis of perforated patterns.
Tech. rep. MIT-CSAIL-TR-2011-003, MIT, Cambridge, MA.

Misailovic, S., Roy, D., and Rinard, M. 2011b. Probabilistically accurate program transformations. In
Proceedings of SAS.

Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. 2010. Quality of service profiling. In Proceedings
of ICSE.

Nguyen, H. and Rinard, M. 2007. Detecting and eliminating memory leaks using cyclic memory allocation.
In Proceedings of ISMM.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

�

�

�

�

�

�

�

�

88:26 S. Misailovic et al.

Nieh, J. and Levoy, M. 1992. Volume rendering on scalable shared-memory MIMD architectures. Tech. rep.
CSL-TR-92-537, Computer Systems Laboratory, Stanford Univ., Stanford, CA.

Perkins, J., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F.,
Sidiroglou, S., Sullivan, G., Wong, W., Zibin, Y., Ernst, M. D., and Rinard, M. 2009. Automatically patch-
ing errors in deployed software. In Proceedings of SOSP.

Prabhu, M. and Olukotun, K. 2005. Exposing speculative thread parallelism in SPEC2000. In Proceedings
of PPoPP.

Rauchwerger, L. and Padua, D. 1995. The LRPD test: Speculative runtime parallelization of loops with
privatization and reduction parallelization. In Proceedings of PLDI.

Rauchwerger, L., Amato, N., and Padua, D. 1995. Runtime methods for parallelizing partially parallel loops.
In Proceedings of ICS.

Rinard, M. 1994. The design, implementation and evaluation of Jade, a portable, implicitly parallel pro-
gramming language. Ph.D. dissertation, Dept. of Computer Science, Stanford Univ., Stanford, CA.

Rinard, M. 2003. Acceptability-oriented computing. In Proceedings of OOPSLA Onwards! Session.
Rinard, M. 2006. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks. In

Proceedings of ICS.
Rinard, M. 2007. Using early phase termination to eliminate load imbalancess at barrier synchronization

points. In Proceedings of OOPSLA.
Rinard, M. and Diniz, P. 1997. Commutativity analysis: A new analysis technique for parallelizing compilers.

ACM Trans. Program. Lang. Syst. 19, 6.
Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., Leu, T., and William S. Beebee, J. 2004. Enhancing server

availability and security through failure-oblivious computing. In Proceedings of OSDI.
Rinard, M., Hoffmann, H., Misailovic, S., and Sidiroglou, S. 2010. Patterns and statistical analysis for un-

derstanding reduced resource computing. In Proceedings of OOPSLA Onwards!
Rul, S., Vandierendonck, H., and De Bosschere, K. 2008. A dynamic analysis tool for finding coarse-grain

parallelism. In Proceedings of HiPEAC Industrial Workshop.
Rus, S., Pennings, M., and Rauchwerger, L. 2007. Sensitivity analysis for automatic parallelization on multi-

cores. In Proceedings of ICS.
Sidiroglou, S., Misailovic, S., Hoffmann, H., and Rinard, M. 2011. Managing performance vs. accuracy trade-

offs with loop perforation. In Proceedings of ESEC/FSE.
Tinker, P. and Katz, M. 1988. Parallel execution of sequential Scheme with Paratran. In Proceedings of LFP.
Tournavitis, G., Wang, Z., Franke, B., and O’Boyle, M. 2009. Towards a holistic approach to auto-

parallelization: Integrating profile-driven parallelism detection and machine-learning based mapping.
In Proceedings of PLDI.

Udupa, A., Rajan, K., and Thies, W. 2011. Alter: Leveraging breakable dependences for parallelization. In
Proceedings of PLDI.

Wald, A. 1947. Sequential Analysis. John Wiley and Sons.
Woo, S., Ohara, M., Torrie, E., Singh, J., and Gupta, A. 1995. The SPLASH-2 programs: Characterization

and methodological considerations. In Proceedings of ISCA.

Received July 2011; revised September 2011; accepted November 2011

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 88, Publication date: May 2013.

