
Eliminating Synchronization Bottlenecks
Using Adaptive Replication

MARTIN C. RINARD
Massachusetts Institute of Technology
and
PEDRO C. DINIZ
University of Southern California

This article presents a new technique, adaptive replication, for automatically eliminating syn-
chronization bottlenecks in multithreaded programs that perform atomic operations on objects.
Synchronization bottlenecks occur when multiple threads attempt to concurrently update the
same object. It is often possible to eliminate synchronization bottlenecks by replicating objects.
Each thread can then update its own local replica without synchronization and without inter-
acting with other threads. When the computation needs to access the original object, it com-
bines the replicas to produce the correct values in the original object. One potential problem is
that eagerly replicating all objects may lead to performance degradation and excessive memory
consumption.

Adaptive replication eliminates unnecessary replication by dynamically detecting contention
at each object to find and replicate only those objects that would otherwise cause synchronization
bottlenecks. We have implemented adaptive replication in the context of a parallelizing compiler
for a subset of C++. Given an unannotated sequential program written in C++, the compiler au-
tomatically extracts the concurrency, determines when it is legal to apply adaptive replication,
and generates parallel code that uses adaptive replication to efficiently eliminate synchronization
bottlenecks.

In addition to automatic parallelization and adaptive replication, our compiler also implements
a lock coarsening transformation that increases the granularity at which the computation locks
objects. The advantage is a reduction in the frequency with which the computation acquires and
releases locks; the potential disadvantage is the introduction of new synchronization bottlenecks
caused by increases in the sizes of the critical sections. Because the adaptive replication transforma-
tion takes place at lock acquisition sites, there is a synergistic interaction between lock coarsening
and adaptive replication. Lock coarsening drives down the overhead of using adaptive replication,
and adaptive replication eliminates synchronization bottlenecks associated with the overaggressive
use of lock coarsening.

Our experimental results show that, for our set of benchmark programs, the combination of lock
coarsening and adaptive replication can eliminate synchronization bottlenecks and significantly

This research was supported in part by NSF grant CCR-9702297.
Authors’ address: M. C. Rinard, MIT Laboratory for Computer Science, 545 Technology Square,
NE43-620A, Cambridge, MA 02139; email: rinard@lcs.mit.edu; P. C. Diniz, USC/ISI, 4676 Admi-
ralty Way, Suite 1001, Marina del Rey, CA 90202; email: pedro@isi.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0164-0925/03/0500-0316 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003, Pages 316–359.

Eliminating Synchronization Bottlenecks • 317

reduce the synchronization and replication overhead as compared to versions that use none or only
one of the transformations.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Atomic operations, commutativity analysis, parallel computing,
parallelizing compilers, replication, synchronization

1. INTRODUCTION

Problems such as nondeterministic behavior and deadlock complicate the de-
velopment of multithreaded software. Programmers have responded to these
problems by adopting a programming methodology in which each thread per-
forms as a sequence of atomic operations on a unit of shared data such as a
static collection of variables or an object [Hoare 1974; Brinch-Hansen 1972].
The result is a more structured, tractable programming model. The advan-
tages of this model have led to its adoption in programming languages such as
Concurrent Pascal, Modula-2+, Mesa, and Java [Brinch-Hansen 1975; Rovner
1986; Lampson and Redell 1980; Arnold and Gosling 1996].

The research presented in this article attacks a performance problem, syn-
chronization bottlenecks, that arises in the context of multithreaded programs
that perform atomic operations on objects. Synchronization bottlenecks occur
when multiple threads attempt to concurrently update the same object. The
mutual exclusion synchronization required to make the updates execute atom-
ically serializes the execution of the threads performing the updates. This se-
rialization can harm the performance by limiting the amount of concurrency
available in the program. It can also lead to system-level anomalies such as lock
convoys and priority inversions [Lampson and Redell 1980; Sha et al. 1990].

1.1 Adaptive Replication

In many programs, it is possible to eliminate synchronization bottlenecks
by replicating frequently accessed objects that cause these bottlenecks. Each
thread that updates such an object creates its own local replica and performs
all updates locally on that replica with no synchronization and no interaction
with other threads. When the computation needs to access the final value of the
object, it combines the values stored in the replicas to generate the final value.

We have developed a program analysis algorithm (which determines when it
is legal to replicate objects), a compiler transformation, and a run-time system
that, together, automatically transform a program so that it replicates data to
eliminate synchronization bottlenecks. A key problem that this system must
solve is determining which objects to replicate. If the system eagerly replicates
all objects, the resulting memory and computation overheads can degrade the
performance. But as described above, failing to replicate objects that cause
synchronization bottlenecks can also cause serious performance problems.

Our technique uses adaptive replication to determine which objects to repli-
cate. As the automatically transformed program performs atomic operations on
objects, it measures the amount of time it spends waiting to acquire exclusive

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

318 • M. C. Rinard and P. C. Diniz

access to each object. The program uses this measurement to dynamically detect
and replicate objects that would otherwise cause synchronization bottlenecks.
In effect, the program dynamically adapts its replication policy so that it per-
forms well for the specific dynamic access pattern of each execution.

1.2 Lock Coarsening and Synchronization Overhead

If the parallel threads in the computation usually update different objects, each
lock is acquired immediately, and there is no synchronization bottleneck. In this
case, the primary source of overhead is the synchronization overhead associated
with executing the lock acquire and release operations. We have attacked this
source of overhead by using lock coarsening to increase the granularity at which
the computation locks objects [Diniz and Rinard 1998]. We have developed two
kinds of lock coarsening: computation lock coarsening and data lock coarsening.

The basic idea behind computation lock coarsening is to automatically find
sequences of operations that acquire and release the same lock. The compiler
then transforms the computation to acquire the lock once, perform the sequence
of operations without additional synchronization, then release the lock. Data
lock coarsening finds groups of objects that tend to be accessed together, then
transforms the computation so that all of the objects use the same lock. The
computation lock coarsening transformation can then eliminate all but the first
acquire and the last release from operations on objects that use the same lock.
In the original computation, of course, all of the objects used different locks. The
primary direct benefit of data lock coarsening is a reduction in the number of
allocated locks. An important indirect benefit is that it increases the effective-
ness of the computation lock coarsening transformation—data lock coarsening
converts sequences of operations that acquire and release different locks to se-
quences that acquire and release the same lock. The primary advantage of lock
coarsening in general is a decrease in the frequency with which the computation
acquires and releases locks. The primary drawback is that the increases in the
sizes of the critical sections may introduce new synchronization bottlenecks.

1.3 Interaction Between Adaptive Replication and Lock Coarsening

In previous research, we managed the trade-off between reducing the syn-
chronization frequency and introducing or exacerbating synchronization bot-
tlenecks by generating multiple versions of the code, each compiled with a
different lock coarsening policy. The policies varied in how aggressively they
applied the lock coarsening transformation to increase the sizes of the criti-
cal sections. The generated code then dynamically measured the overhead of
each policy to choose the version with the least overhead [Diniz and Rinard
1999]. But adaptive replication can eliminate the need to navigate the trade-off
between synchronization overhead and synchronization bottlenecks. There is
a synergistic interaction between lock coarsening and adaptive replication. If
lock coarsening introduces a synchronization bottleneck, adaptive replication
can eliminate the bottleneck. If lock coarsening simply reduces the lock over-
head without introducing a synchronization bottleneck, adaptive replication
eliminates any generation of unnecessary replicas. And because the overhead

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 319

of detecting contention and managing replicas takes place at the lock acquire
point, lock coarsening can reduce the overhead of using adaptive replication.

1.4 Concurrency Model

Our algorithm is designed to analyze structured parallel programs that exe-
cute an interleaved sequence of sequential and parallel phases. During each
sequential phase, only a single thread executes. At the beginning of each par-
allel phase, the computation generates a set of threads, all of which execute
in parallel; each parallel thread performs a sequence of atomic operations on
shared objects. When all of the parallel threads terminate, execution continues
on to the next sequential phase. Standard parallel constructs such as parallel
loops produce programs that conform to this model.

Our analysis is interprocedural but does not analyze the whole program as a
unit. It instead analyzes each parallel phase independently to find sets of objects
that are, within that phase, candidates for adaptive replication. In particular,
it may be possible to replicate a given set of objects in one parallel phase but
not in another.

1.5 Results and Contributions

We have implemented both adaptive replication and lock coarsening in
the context of a parallelizing compiler for object-based languages [Rinard and
Diniz 1997]. Given a sequential program written in a subset of C++, the com-
piler automatically generates parallel code that uses lock coarsening and adap-
tive replication to efficiently eliminate synchronization bottlenecks. This ar-
ticle presents experimental results that characterize the impact of these two
techniques on the performance of several benchmark applications. All of these
programs perform computations that are of interest in the field of scientific and
engineering computation. Our experimental results show that, for our set of
benchmark programs, the combination of lock coarsening and adaptive replica-
tion can eliminate synchronization bottlenecks and reduce the synchronization
and replication overhead as compared to the initial parallel version or versions
that use only one of the transformations.

This article makes the following contributions:

—Program Analysis: It presents a static program analysis algorithm that de-
termines when it is legal to replicate objects to eliminate synchronization
bottlenecks.

—Transformation: It presents a program transformation algorithm that en-
ables the generated code to correctly replicate objects.

—Adaptive Replication: It presents an adaptive replication algorithm that dy-
namically adapts to the access pattern of each execution of the program to
choose which objects to replicate.

—Interaction: It identifies a synergistic interaction between lock coarsening
and adaptive replication.

—Results: It presents experimental results that characterize the performance
impact of lock coarsening and adaptive replication on three benchmark

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

320 • M. C. Rinard and P. C. Diniz

Fig. 1. Example serial program.

applications. These results show that the combination of lock coarsening
and adaptive replication can eliminate synchronization bottlenecks and sig-
nificantly reduce the synchronization and replication overhead as compared
to versions that use none or only one of the transformations.

The remainder of the article is structured as follows: Section 2 presents an ex-
ample that illustrates the issues associated with lock coarsening and adaptive
replication. Section 3 presents the replication analysis and code generation al-
gorithms. Section 4 presents experimental results that characterize the impact
of lock coarsening and adaptive replication on the performance and memory
consumption. We discuss related work in Section 5 and conclude in Section 6.

2. AN EXAMPLE

We next provide an example that illustrates the issues associated with data lock
coarsening, computation lock coarsening, and adaptive replication. The compute
operation of the vector class in Figure 1 sequentially scans a vector to compute
the sum and the maximum of all of the elements that are greater than zero.
It uses three accumulator classes: the sumAccumulator class accumulates the
sum of the numbers passed to its update operation, the maxAccumulator class
accumulates the maximum of the numbers passed to its update operation, and
the accumulator class uses a sum accumulator and a maximum accumulator
to accumulate both sums and maximums.

2.1 Commutativity Analysis and Automatic Parallelization

Our compiler first uses commutativity analysis to automatically parallelize the
computation [Rinard and Diniz 1997]. Commutativity analysis is designed to
parallelize object-based programs. Such programs structure the computation

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 321

as a set of operations on objects. Each object implements its state using a set of
instance variables. An instance variable can be a nested object, a reference to an
object, a primitive data item such as an int or a double, or an array of any of the
preceding types. Each operation has several parameters and a distinguished
object on which it operates. This distinguished object is syntactically identified
at the operation invocation site by its placement before the operation name,
separated from the operation name by either a period (if the distinguished
object is identified by name) or the symbol → (if the distinguished object is
identified using a reference to the object).

When an operation executes, it can read and write the instance variables of
the object on which it operates, access the parameters, or invoke other oper-
ations. While the structure present in this model of computation significantly
simplifies the application of dynamic replication to object-based programs, it is
possible to generalize our approach to handle programs with different models
of computation; Section 3.8 discusses this possibility in more detail.

The commutativity analysis algorithm analyzes the program at the granu-
larity of operations on objects to determine if the operations commute, that is,
if they generate the same result regardless of the order in which the operations
commute. If all operations in a given computation commute, the compiler can
automatically generate parallel code.

To test that two operations A and B commute, the compiler considers two
execution orders: the execution order A;B in which A executes first, then B
executes, and the execution order B;A in which B executes first, then A executes.
The two operations commute if they meet the following commutativity testing
conditions:

—Instance Variables: The new value of each instance variable of the objects
that A and B update under the execution order A;B must be the same as the
new value under the execution order B;A.

—Invoked Operations: The multiset of operations directly invoked by either
A or B under the execution order A;B must be the same as the multiset of
operations directly invoked by either A or B under the execution order B;A.

Both commutativity testing conditions are trivially satisfied if the two opera-
tions access different objects or if neither operation writes an instance variable
that the other accesses—in both of these cases the operations are independent.
If the operations may not be independent, the compiler uses symbolic execu-
tion and algebraic simplification to reason about the values computed in the
two execution orders.

In our example, the compiler determines that all of the operations in the
example commute. It can therefore parallelize the loop in the compute operation
that scans the elements of the vector.

2.2 Generating Parallel Code

Commutativity analysis assumes that the operations in the parallel phases
execute atomically. The compiler therefore augments each potentially updated
object with a mutual exclusion lock. If an operation accesses an object that

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

322 • M. C. Rinard and P. C. Diniz

Fig. 2. Generated parallel code for accumulator classes.

Fig. 3. Generated parallel loop.

is updated during the parallel phase, it first acquires the object’s lock, per-
forms its accesses to the object, then releases the lock. This synchronization
ensures that the operations execute atomically. In our example, the compiler
augments the sumAccumulator and maxAccumulator objects with locks. It also
augments the update operation in these classes with constructs that acquire
and release the updated object’s lock. Figure 2 presents these versions of the
two accumulator classes.

The generated parallel loop code exposes the concurrency to a run-time
system that schedules the iterations. To reduce the concurrency exploitation
overhead, the scheduler dynamically allocates blocks of iterations to proces-
sors instead of scheduling the parallel computation at the granularity of indi-
vidual loop iterations. Our implemented compiler uses guided self-scheduling
[Polychronopoulos and Kuck 1987]. The code in Figure 3, which presents a
high-level version of the generated parallel code, simply uses a fixed blocking
factor B.

At this point, the compiler has generated a parallel program with a simple
model of parallel computation. The program consists of a sequence of parallel
phases and sequential phases. In our example, the parallel phase starts when
execution reaches the parallel loop. The parallel phase ends when all of the
iterations of the loop complete, at which point a single sequential thread of
control continues executing after the loop. Each parallel phase executes a set of

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 323

Fig. 4. Accumulator classes after data lock coarsening.

operations on objects, with each operation executing atomically with respect to
all other operations in the parallel phase. It is important to note that the lock
coarsening and adaptive replication transformations are designed to operate
on any parallel program that conforms to this model of computation—they are
conceptually independent of the specific mechanism used to obtain the parallel
program.

2.3 Data Lock Coarsening

The generated code acquires two locks for each update: one for the
sumAccumulator object and the other for the maxAccumulator object. Data lock
coarsening lifts the locks out of these two objects, replacing them with a sin-
gle new lock in the enclosing accumulator object. It then transforms the code
to acquire this new lock whenever it updates one of the sumAccumulator or
maxAccumulator objects. Figure 4 presents the accumulator classes after data
lock coarsening.

Although this transformation does not reduce the number of executed syn-
chronization operations, it does reduce the number of locks that the program
allocates. It also transforms sequences of operations that acquire and release
several different locks into sequences that repeatedly acquire and release the
same lock. Once the sequence acquires and releases the same lock, the com-
putation lock coarsening algorithm described below can eliminate all acquires
and releases except the initial acquire and the final release. The net combined
effect is to convert a sequence of operations that acquire and release several
different locks into a computation that acquires one lock, performs the sequence
of operations without further synchronization, then releases the lock.

The key issues in data lock coarsening are determining which objects to
group together to use the same lock and ensuring the the correctness of the
transformation. We use a heuristic that attempts lift locks out of nested objects
into the enclosing object. To ensure the correctness of the transformation, the
compiler examines the call graph for the code in the parallel phase to ensure
that all accesses to the nested objects take place via operations that execute on
the enclosing object. By default, the new lock acquire and release operations

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

324 • M. C. Rinard and P. C. Diniz

Fig. 5. Vector and accumulator classes after computation lock coarsening.

are placed immediately before and after the calls to the operations on nested
objects. The compiler also attempts to reuse existing synchronization in the
enclosing object. If the enclosing object already has a lock, the compiler reuses
that lock for the nested objects and does not add another lock to the enclosing
object. If an operation on the enclosing object already acquires and releases the
enclosing object’s lock, the compiler does not insert additional synchronization
around the calls to operations on nested objects.

An obvious extension to our existing lock coarsening algorithm is to group
objects together based on their referencing relationships: if one object refers
to several other objects, lift the lock into the first object. Other researchers
have developed analyses that could be used to establish the correctness of ex-
tended data lock coarsening transformations that rely on the referencing infor-
mation [Dolby 1997; Aldrich et al. 1999].

2.4 Computation Lock Coarsening

The basic idea behind computation lock coarsening is to transform sequences
of operations that repeatedly acquire and release the same lock into sequences
that acquire the lock once, perform the operations without further synchro-
nization, then release the lock. In our example, after data lock coarsening,
each processor will repeatedly acquire and release the lock in the accumulator
object as it updates the sum and max accumulators. Computation lock coars-
ening reduces the synchronization frequency by eliminating the release and
acquire between the update to the sum and max accumulators, then lifting the
remaining acquire and release operations out of the update operation in the
accumulator object, and out of the sequential loop in the compute operation in
the vector object. Figure 5 presents the new accumulator and vector classes
after the computation lock coarsening transformation.

The computation lock coarsening transformation works by examining the call
graph for the code in the parallel phase. It finds closed operations, or operations

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 325

whose entire computation is sequential and acquires and releases only the lock
in the distinguished object that the closed operation accesses. For each closed
operation, the compiler generates code that acquires the lock at the beginning
of the operation and releases the lock at the end. The compiler also generates
specialized synchronization-free versions of each operation that the closed op-
eration (directly or indirectly) invokes, and transforms the closed operation to
invoke these synchronization-free versions. The compiler also treats the body
of each parallel loop as a separate operation, enabling it to lift the lock acquire
and release operations to include the entire body of the parallel loop.

While the computation lock coarsening transformation reduces the frequency
with which the computation acquires and releases locks, it can also intro-
duce a synchronization bottleneck. Even at the original lock granularity, the
accumulator object in our example can become a sequential bottleneck if many
of the elements in the vector are greater than zero. After lock coarsening, each
processor acquires the lock before it even starts to execute its next block of
iterations. The transformation therefore serializes the computation.

2.5 Adaptive Replication

One way to eliminate the sequential bottleneck is to use adaptive replication to
replicate the accumulator object. Figure 6 presents a high-level version of the
program after adaptive replication. The basic idea is to dynamically detect if
the accumulator object is creating a synchronization bottleneck. If so, the pro-
gram creates its own local version of the accumulator and performs all of the
updates on the local version. The program dynamically detects the synchroniza-
tion bottleneck using the l.tryAcquire() operation. This operation attempts
to acquire the lock l, returning true if the acquire was successful. If the lock is
held by a different processor, the operation returns false.

In our example, the generated code first uses the lookup operation to check
for an existing local replica. If one exists, it performs the updates locally on that
replica with no synchronization. If a local replica does not exist, it attempts to
acquire the lock on the accumulator object. If the lock acquire attempt succeeds,
the generated code updates the original accumulator object, then releases the
lock. Finally, if another processor holds the lock, the code creates a new local
replica, uses the insert operation to record the association between the original
object and the replica on that processor, and performs all of the updates on
the new replica. Whenever contention on the lock indicates the presence of a
synchronization bottleneck, the generated code uses replication to eliminate
the bottleneck. If there is no contention, the generated code avoids replication
overhead by simply performing the updates on the original object.

2.6 Issues

There are several issues associated with the automatic application of adaptive
replication. Our approach deals with each of these issues as follows:

—Determining Which Objects to Replicate: It is important to replicate only those
objects that would otherwise cause synchronization bottlenecks. The program
recognizes these objects using the tryAcquire construct. If a processor is

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

326 • M. C. Rinard and P. C. Diniz

Fig. 6. Vector and accumulator classes after adaptive replication.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 327

unable to acquire an object’s lock, it assumes that the object may cause a
synchronization bottleneck. It therefore obtains a local replica of the object
and performs the update locally on the replica.

—Limiting Memory Consumption: If a program replicates objects without limit,
it may consume an unacceptable amount of memory. Our compiler generates
code that records the amount of memory devoted to object replicas. Before
it replicates an object, it checks that the amount of memory consumed by
replicas does not exceed a predefined limit. If the allocation of a replica would
exceed this limit, the code does not allocate the replica and instead forces the
operation to wait until it can acquire the lock and execute on the original
object. For clarity, the example code in Figure 6 eliminates this check.

—Retrieving Replicas: Each processor has its own local hash table in which
it stores references to its object replicas. Each replica is indexed under the
reference to the corresponding original object. The insert construct inserts
a mapping from the original object to a replica, and, given a reference to an
original object, the lookup construct retrieves the replica.

—Initializing Replicas: The updated instance variables in object replicas are
initialized to the zero for the operator used to compute the updated value. In
many cases objects also contain instance variables that are not updated dur-
ing the course of the parallel computation. Because operations that execute
on replicas may access these variables, their values from the original object
are copied into the replica when it is created.

—Combining Values: At the end of the parallel phase, the generated code tra-
verses the hash tables (recall that there is one hash table per processor) to
find all of the replicas. As it visits each replica, it combines the updated val-
ues in the replica into the instance variables in the original object. It also
removes the replica from the hash table and deallocates it.

The current version of the compiler generates code that performs the
hash table traversals for different objects in parallel. For clarity, the code
in Figure 6 performs the traversals sequentially.

A final issue is the order in which the generated code checks for an existing
replica or attempts to acquire the lock in the original object. It is, unfortunately,
necessary to check for a local replica before attempting to acquire the lock in
the original object. We base our rationale for this order on two relative costs:
(1) the cost of hash table lookups relative to the cost of lock acquisition attempts
for objects that other processors frequently attempt to update and (2) the cost
of updating local object replicas relative to the cost of updating objects that
multiple processors frequently access.

Consider what may happen when a processor attempts to update an object
that other processors are also attempting to update. With current implemen-
tations of locking primitives, the resulting attempts to acquire the object’s lock
may often generate expensive accesses to remote data, even if the lock acqui-
sition attempts do not succeed.1 On current architectures, we expect such lock

1Efficient lock implementations typically use synchronization instructions such as load linked/store
conditional or compare and swap. When a processor uses these instructions to successfully acquire

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

328 • M. C. Rinard and P. C. Diniz

Fig. 7. Sequential graph traversal.

acquisition attempts to take significantly longer than looking up a value in a
locally available hash table. And even if a processor does acquire the lock and
perform the update, it may often be the case that another processor performed
the previous update. In this case, the update itself may generate additional
accesses to remote data. In fact, the performance of early versions of the gen-
erated code that first attempted to acquire the lock, then checked for a local
replica suffered from these two effects.

2.7 A Graph Traversal Example

The preceding accumulator example illustrates the interaction between lock
coarsening and adaptive replication. We next present an example that illus-
trates the application of adaptive replication to a more complex graph traversal
computation.

The program in Figure 7 implements a sequential graph traversal. The visit
operation traverses a single node. It first adds the parameter p into the running
sum stored in the sum instance variable, then recursively invokes the operations
required to complete the traversal. The way to parallelize this computation is
to execute the two recursive invocations of the visit operation in parallel. Our
compiler is able to use commutativity analysis to statically detect this source
of concurrency [Rinard and Diniz 1997].

Figure 8 presents the code that the compiler generates when it does not use
adaptive replication. The transitions from sequential to parallel execution and
from parallel back to sequential execution take place inside the visit operation.
This operation first invokes the parallelVisit operation, then invokes the wait
construct, which blocks until all parallel tasks created by the current task or its
descendant tasks finish. The parallelVisit operation executes the recursive
calls concurrently using the spawn construct, which creates a new task for each
operation. A straightforward application of lazy task creation can increase the
granularity of the resulting parallel computation [Mohr et al. 1990].

a lock, on most current machines it acquires exclusive access to the cache line in which the state of
the lock is stored. When other processors attempt to acquire the lock, they fetch the current version
of the cache line from the cache of the processor that most recently acquired the lock. These remote
fetches typically take as much as two orders of magnitude longer than fetching a cache line from
the local cache.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 329

Fig. 8. Parallel traversal without adaptive replication.

A problem with the code in Figure 8 is that it may suffer from synchroniza-
tion bottlenecks if many of the nodes in the graph all refer to the same node.
Because all of the updates use an operator (the + operator)2 that is associative,
commutative, and has a zero, it is possible to apply adaptive replication to elim-
inate these bottlenecks. Figure 9 presents a high level version of the code that
the compiler generates when it uses this approach.

This computation illustrates several of the complications associated with
applying adaptive replication in the context of general object-based computa-
tions. Computations may access an unbounded set of objects whose identities
are determined only as the computation executes. It is, in general, not feasible
to statically identify which objects will be involved in the computation, which
objects will cause synchronization bottlenecks, or even if the computation will
suffer from any synchronization bottlenecks at all. We believe that these uncer-
tainties will negate any attempt to statically identify and replicate only those
objects that will be potential sources of bottlenecks. We therefore developed an
replication approach that adapts to the dynamic characteristics of the appli-
cation by dynamically detecting bottlenecks and replicating only those objects
required to eliminate the bottlenecks.

3. REPLICATION ANALYSIS AND CODE GENERATION

To generate code that uses adaptive replication, a compiler contains a replica-
tion analysis algorithm, which determines when it is legal to replicate objects,

2There may be some confusion between the two terms operator and operation. An operator is a
binary function such as + that is used to combine two values. An operation is a piece of code
associated with a class that executes on objects of that class. An example of an operation is the
visit operation in Figure 7.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

330 • M. C. Rinard and P. C. Diniz

Fig. 9. Parallel traversal with adaptive replication.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 331

and a code generation algorithm, which generates code that uses adaptive repli-
cation to eliminate synchronization bottlenecks. We have implemented these
algorithms in the context of a parallelizing compiler for object-based programs.
The compiler uses commutativity analysis as its primary parallelization tech-
nique [Rinard and Diniz 1997]. Commutativity analysis is capable of paral-
lelizing computations (such as marked graph traversals and computations that
swap the values of instance variables) to which it is illegal to apply adaptive
replication. We have therefore decoupled the commutativity analysis and repli-
cation analysis algorithms in the compiler. Replication analysis runs only after
the commutativity analysis algorithm has successfully parallelized a phase of
the computation. Note that the replication analysis cannot simply reuse the
results of the commutativity analysis to find replicatable objects (objects that it
can replicate without changing the semantics of the program). It is not always
possible to replicate an object that is updated in a parallel phase, even if all of
the operations on the object commute.

This section presents the replication analysis and code generation algo-
rithms. In practice, we run the replication analysis after the lock coarsening
transformation. As mentioned earlier, the synergistic interaction between these
two transformations enables this combination to reduce the synchronization
and replication overhead without risking the introduction of synchronization
bottlenecks.

3.1 Notation

We next present some notation that we will use when we present the algorithms.
The program defines a set of classes cl ∈ CL, a set of instance variables v ∈ V,
and a set of operations op ∈ OP. We assume that no two classes share an in-
stance variable. The program also defines a set of instance variables v ∈ V. The
function instanceVariables(cl) returns the instance variables of the class cl.
No two classes share an instance variable—that is, instanceVariables(cl1)∩
instanceVariables(cl2) = ∅ if cl1 6= cl2.

3.2 Program Representation

As part of the parallelization process, the commutativity analysis algorithm
produces the set of operations that the parallel phase may invoke and the set of
instance variables that the phase may update [Rinard and Diniz 1997]. It de-
termines each of these sets by traversing the call graph of the phase. The set of
operations is simply the set of operations in the call graph of the phase; the set of
instance variables is simply the union of the sets of instance variables that the
invoked operations may update. For each operation, the compiler also produces
a set of update expressions that represent how the operation updates instance
variables and a multiset of invocation expressions that represent the multiset
of operations that the operation may invoke. There is one update expression for
each instance variable that the operation modifies and one invocation expres-
sion for each operation invocation site. Except where noted, the update and
invocation expressions contain only instance variables and parameters—the
algorithm uses symbolic execution to eliminate local variables from the update

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

332 • M. C. Rinard and P. C. Diniz

and invocation expressions [King 1976; Rinard and Diniz 1997]. The compiler
manipulates the following kinds of update expressions:

—v=exp: An update expression of the form v=exp represents an update to a
scalar instance variable v. The symbolic expression exp denotes the new
value of v.

—v[exp′]=exp: An update expression of the form v[exp′]=exp represents an up-
date to the array instance variable v.

—for (i=exp1; i<exp2; i+=exp3) upd: An update expression of this form repre-
sents a loop that repeatedly performs the update upd. In this case, < can be
an arbitrary comparison operator and += can be an arbitrary assignment op-
erator. The induction variable i may appear in the symbolic expressions of
upd.

—if (exp) upd: An update expression of the form if (exp) upd represents an
update upd that is executed only if exp is true.

The compiler manipulates the following kinds of invocation expressions:

—exp0→op(exp1, . . . , expn): An invocation expression exp0→op(exp1, . . . , expn)
represents an invocation of the operation op. The symbolic expression exp0
denotes the distinguished object on which the operation will operate and the
symbolic expressions exp1, . . . , expn denote the parameters.

—for (i=exp1; i<exp2; i+=exp3) inv: An invocation expression of this form rep-
resents a loop that repeatedly invokes the operation inv. In this case, < can
be an arbitrary comparison operator and += can be an arbitrary assignment
operator. The induction variable i may appear in the symbolic expressions
of inv.

—if (exp) inv: An invocation expression of the form if (exp) inv represents an
operation inv that is invoked only if exp is true.

For some operations, the compiler may be unable to generate update and
invocation expressions that accurately represent the multiset of invoked oper-
ations. The commutativity analysis algorithm is unable to parallelize phases
that may invoke such operations. Because the replication analysis and code
generation algorithms run only after the commutativity analysis algorithm
has successfully parallelized a phase, invocation expressions are available for
all operations that the parallel phase many invoke.

3.3 Replication Conditions

The replication analysis algorithm is based on updates of the form v = v ⊕
exp, where ⊕ is an associative and commutative operator with a zero and exp
does not depend on variables that are updated during the parallel phase.3 We
call such updates replicatable updates, because if all updates to a given instance
variable v are of this form and use the same operator, then the final value of

3A zero for an operator ⊕ is an element z that has the property that z ⊕ v = v for all v. Note
that the zero may be different for different operators: the zero for addition is 0, but the zero for
multiplication is 1.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 333

v is the same regardless of the order in which the individual contributions (the
values of exp in the updates) are accumulated to generate the final result. In
particular, accumulating locally computed contributions in local replicas, then
combining the replicas at the end of the parallel phase, yields the same final
result as sequentially accumulating the contributions into the original object.
If all accesses to a variable v take place in replicatable updates to v, and all of
the updates use the same operator, we call v a replicatable variable.

The replication analysis algorithm builds on the concept of replicatable vari-
ables as follows. In the transformed program, updates to replicated objects take
place at the granularity of operations in the original program. For the generated
program to produce the correct result, all operations that execute on replicated
objects may update only replicatable variables. To determine if it is legal for an
operation to execute on a replicated object, the analysis algorithm checks that
the operation satisfies two conditions. The first condition is that the operation
updates only replicatable variables. The second condition is that if the opera-
tion may invoke (either directly or indirectly) another operation with a replica
as the distinguished object that the operation may update, then the invoked
operation updates only replicatable variables.4 If an operation satisfies these
two conditions, we call the operation a replicatable operation. It is always legal
to invoke a replicatable operation on a replica.

3.4 The Replication Analysis Algorithm

Figure 10 presents the replication analysis algorithm. The presented algorithm
is simplified in the sense that it assumes that there is exactly one commutative,
associative operator ⊕ with a zero.

The algorithm takes as parameters the set of invoked operations in the par-
allel phase, the set of updated variables, a function updates(op), which returns
the set of update expressions that represent the updates that the operation op
performs, and a function invocations(op), which returns the multiset of invo-
cation expressions that represent the multiset of operations that the operation
op invokes. There is also an auxiliary function called variables; variables(exp)
returns the set of variables in the symbolic expression exp, variables(upd) re-
turns the set of free variables in the update expression upd, and variables(inv)
returns the set of free variables in the invocation expression inv.5 The algo-
rithm produces a set of instance variables that may be replicated and a set of
operations that may execute on replicated versions of objects.

The algorithm first identifies the set of replicatable variables. It performs
this computation by scanning all of the instance variable updates, eliminating

4The restrictions on replicatable variables and replicatable operations ensure that references to
replicated objects are never stored in application data—they are stored only in the hash table that
the generated program uses to look up replicas. The only way for one operation executing on a
replicated object to invoke another operation on a replicated object is to use the this keyword at
the operation invocation site. Any other expression used to identify the distinguished object of an
invoked operation will never evaluate to a replica.
5The free variables of an update or invocation expression include all variables in the expression ex-
cept the induction variables in expressions that represent for loops. In particular, the free variables
in an update expression include the updated variable.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

334 • M. C. Rinard and P. C. Diniz

Fig. 10. Replication analysis algorithm.

variables with updates that are not replicatable updates. The algorithm next
scans the set of operations to identify the set of replicatable operations. For
each operation, it tests if all of the operation’s updates update replicatable
variables and if the operation never invokes a nonreplicatable operation on a
replica. If the operation passes both of these tests, it is classified as a replicatable
operation.

The algorithm generalizes in a straightforward way to handle computations
that contain multiple commutative and associative operators as follows. The

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 335

isReplicatableUpdate function accepts, as replicatable, updates performed
using any of these operators. For each potentially replicatable variable, the
algorithm records all of the operators used to update the variable. The algo-
rithm has a notion of compatible operators; two operators are compatible if
updates using these operators commute, reassociate, and have the same zero.
For example, + and − are compatible operators, while + and / are not com-
patible. If all of the operators used to update a given variable are compati-
ble, the variable is replicatable; otherwise, it is not replicatable. The part of
the algorithm that deals with replicatable operations is unchanged. The ver-
sion implemented in our prototype compiler can apply adaptive replication to
computations that contain multiple commutative, associative operators with
a zero.

Conceptually, the analysis divides the set of update expressions into equiva-
lence classes, then checks that all update expressions in the same equivalence
class use compatible operators. Any partition into equivalence classes is sound
as long as any two update expressions that may update the same memory lo-
cation are in the same equivalence class. Our current algorithm groups update
expressions into the same equivalence class based on the names of the instance
variables that they update—if two update expressions update the same in-
stance variable, they are in the same equivalence class. It would be possible,
however, to use memory disambiguation analyses such as pointer or array index
analysis to come up with a finer and more precise partition.

3.5 Complexity of the Analysis

For each parallel phase, the replication analysis examines each update and
invocation expression from each operation in the parallel phase. The complex-
ity is therefore determined by the complexity of extracting and simplifying
the update and invocation expressions. In the worst case, these operations as
implemented in our compiler can take time exponential in the size of the ex-
pressions in the original program, although we have not observed this behavior
in practice. If the update and invocation expressions were to be used only for
replication analysis, we believe it would be possible to develop algorithms that
do not use algebraic laws to fully simplify the expressions and therefore do not
suffer from the possibility of exponential execution time.

In practice, the execution time of the compiler is dominated by the commuta-
tivity analysis algorithm, which examines all pairs of operations in each paral-
lel phase. The replication analysis examines each operation once. For all of our
benchmark programs, the commutativity analysis algorithm executes in less
than two seconds on a Sun Microsystems Ultra I workstation with 64 Mbytes
of memory [Rinard and Diniz 1997]. The addition of the replication analysis to
this compiler does not significantly increase the compilation time.

3.6 The Code Generation Algorithm

The generic code generation algorithm starts with the set of replicatable vari-
ables and replicatable operations. It generates two versions of each replicatable
operation: the standard version and the replica version.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

336 • M. C. Rinard and P. C. Diniz

The standard version executes on original objects, not replicas. If it may
update an object, it first checks to see if a replica has already been created. If
so, it invokes the replica version to perform the update on the replica. If not, it
uses a tryAcquire construct to attempt to acquire the lock in the object that it
will update. If the lock is acquired, the standard version performs the updates
as in the original program, then releases the lock and completes its execution by
invoking the standard version of each operation that it should invoke. If the lock
is not acquired, the standard version invokes the replica creation operation to
create a replica. If the replica creation operation returns NULL, it was unable
to create a replica because of memory consumption constraints. In this case,
the standard version waits until it acquires the lock in the original object,
then performs the update on the object. If the replication creation operation
successfully created a replica, the standard version invokes the replica version
to perform the update on the replica.

The replica version executes on replicas, not original objects. It performs all
of its updates to the replica without synchronization. It invokes the standard
version of each operation that it should invoke unless (1) the invoked operation
will operate on the same object as the replica version, and (2) this object is
identified at the call site using the this keyword (which denotes distinguished
object that the replica version executes on). In this case, it invokes the replica
version of the invoked operation. This invocation strategy reduces the overhead
by eliminating the trip through the standard version for sequences of operations
on the same replicated object.

The code generation algorithm also produces a replica creation operation.
This operation first performs a memory consumption check: it checks if allo-
cating a replica would exceed the predefined limit on the amount of memory
consumed by replicas. If not, it allocates a replica, initializes all of the repli-
catable variables in the object to the zero for the operator used to accumulate
contributions to the variable, and initializes all of the other instance variables
to the values in the original object. It then inserts the replica in the hash table,
indexed under the original object, and returns the replica.

If the replica allocation would exceed the predefined limit, the replica cre-
ation operation returns NULL. In this case, the standard version waits un-
til it acquires the lock on the original object and performs the operation
on that object. In the example in Figure 6, the replicate operation is the
replica creation operation. For clarity, we omitted the memory consumption
check.

Finally, the code generation algorithm produces a combine function that is
invoked at the end of the parallel phase. This function traverses the hash ta-
ble to find all of the replicas, combines the values in the replicas to generate
the correct final values in the original objects, then clears the hash table and
deallocates the replicas. We considered several different ways to traverse the
hash table. The first sequentially combines all of the values in the hash table.
While this approach minimizes the amount of exploited concurrency, in many
cases the size of the combination computation is small enough relative to the
previous parallel phase to make it a feasible alternative. The second approach
assigns different objects to different processors, with each processor combining

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 337

the values in all of the replicas of its assigned objects. This is the approach
we use in our implemented compiler. It often effectively parallelizes the combi-
nation and is simple to implement. The potential drawbacks include memory
traffic as the processors fetch the data in remote replicas and the possibility
of limited concurrency if the computation replicated few objects. The third al-
ternative would combine the replicas for each object in parallel using some
sort of parallel reduction operation. An advantage of this alternative is that it
would parallelize the combination even for computations that replicate small
numbers of objects. It would also manage the communication of remote replicas
more effectively than the other alternatives.

3.7 Interaction with Lock Coarsening

There is a synergistic interaction between lock coarsening and adaptive replica-
tion. The lock coarsening transformation reduces the frequency with which the
program attempts to acquire locks and look up replicas. The adaptive replication
transformation eliminates any synchronization bottlenecks that the lock coars-
ening transformation may have introduced. Our current compiler first applies
the lock coarsening transformation, then the adaptive replication transforma-
tion. The result is an efficient program that maximizes the amount of exposed
concurrency while minimizing the overhead of acquiring locks and looking up
replicas.

3.8 Programs Written in Different Styles

To ensure the legality of the replication transformation, the replication analysis
algorithm tests that, within a given phase, all updates to a given replicated piece
of data are in fact replicatable updates. The compiler must therefore character-
ize the shared data that each atomic operation updates and check all updates
to each piece of shared data. In general, aliasing can significantly complicate
the static characterization of the association between atomic operations and
updated data. Our current analysis uses the structure of the object-based ap-
proach to simplify these tasks.

In object-based computations, each atomic operation accesses only (1) the
instance variables of the object on which the operation executes, (2) local data
that is not shared between threads, and (3) data that may be read but not writ-
ten during the analyzed parallel phase. These restrictions enable the compiler
to apply the replication analysis algorithm at the granularity of the instance
variables of each object. The absence of aliasing ensures that all updates to
each instance variable access that variable directly using its name, instead of
performing the access anonymously and indirectly using a pointer to the vari-
able. This restriction allows the compiler to find all accesses to a given instance
variable by scanning the program to find all accesses that mention the instance
variable’s name.

To use adaptive replication with programs written in a different style, the
compiler would have to use a different approach to associate updated shared
data with atomic operations. For programs that use dynamic allocation and
pointers in their full generality, we anticipate that the compiler would have to

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

338 • M. C. Rinard and P. C. Diniz

use some form of pointer analysis to disambiguate accesses via pointers [Emami
et al. 1994; Wilson and Lam 1995; Rugina and Rinard 1999]. For programs with-
out aliasing, the program could simply use the names of the accessed variables
to perform the association. We anticipate that this approach would work well
for traditional scientific programs that access global variables and statically
allocated arrays.

Once the compiler had determined the legality of replication, it would have to
decide on a replication granularity. To simplify the code generation algorithm,
our current compiler replicates data at the granularity of objects, even though
the program may never access some of the instance variables in the replicas. For
programs that access statically allocated arrays, the compiler could replicate
data either at the granularity of the entire array (potentially wasting space if
there is little or no contention for most of the array elements) or at the gran-
ularity of individual array elements (increasing the overhead associated with
updating each element).

Another issue involves the recognition of sequential and parallel phases.
Our current implementation relies on the commutativity analysis algorithm
to identify the phases that it has parallelized. The application of adaptive
replication to general parallel programs would require an analysis that rec-
ognized parallel phases. The difficulty of this task depends on characteristics
of the constructs used to express the parallel computation. For structured
constructs such as parallel loops and parbegin/parend, a simple control flow
analysis would suffice. For more general languages with unstructured forms
of multithreading (e.g., Java), the analysis would have to match thread cre-
ation and termination constructs to separate the sequential and parallel
phases.

4. EXPERIMENTAL RESULTS

We next present experimental results that characterize the performance and
memory impact of both adaptive replication by itself and the combination of
lock coarsening and adaptive replication. We present results for three auto-
matically parallelized applications: Water [Singh et al. 1992], which simulates
water molecules in the liquid state, Barnes-Hut [Barnes and Hut 1986], a hi-
erarchical N-body solver, and String [Harris et al. 1990], which builds a ve-
locity model of the geology between two oil wells. Each application performs a
complete computation of interest to the scientific computing community. Water
consists of approximately 1850 lines of sequential C++ code, Barnes-Hut con-
sists of approximately 1500 lines of sequential C++ code, and String consists of
approximately 2050 lines of sequential C++ code.

4.1 Application History

We obtained all three applications as part of our previous research on com-
mutativity analysis [Rinard and Diniz 1997]. Our goal was to obtain a set of
representative computations that were expressed in object-based form, with
the data grouped into objects and the computation expressed as operations on

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 339

these objects. We recoded all of the applications into this form starting with
versions written in C. The history of the applications is as follows.

—Water: Water computes the energy potential of a set of water molecules in the
liquid state. The main data structure is an array of molecule objects. Almost
all of the compute time is spent in two O(N2) phases, where N is the number
of molecules. One phase computes the total force acting on each molecule; the
other phase computes the potential energy of the collection of molecules.

The original source of Water is the Perfect Club benchmark MDG, which is
written in Fortran [Berry et al. 1989]. Several students at Stanford Univer-
sity translated this benchmark from Fortran to C as part of a class project. We
obtained the sequential C++ version by translating this existing sequential
C version to C++. As part of this translation process, we identified intuitively
appealing groupings of related data into objects and restructured the compu-
tation as a sequence of operations on these objects. For example, we developed
a class with a three-dimensional vector of values, then used this class as a
building block in a variety of higher-level classes such as atom and molecule
classes.

As part of the translation process, we converted the O(N 2) phases to use
auxiliary objects tailored for the way each phase accesses data. Before each
phase, the computation loads relevant data into an auxiliary object. At the
end of the phase, the computation unloads the computed values from the
auxiliary object to update the molecule objects. This modification increases
the precision of the data usage analysis in our base parallelizing compiler,
enabling it to recognize the concurrency in the phase.

—Barnes-Hut: Barnes-Hut simulates interactions between a set of bodies. It
performs well, in part, because it employs a sophisticated pointer-based data
structure: a space subdivision tree that dramatically improves the efficiency
of a key phase in the algorithm. The space subdivision tree organizes the data
as follows. The bodies are stored at the leaves of the tree; each internal node
represents the center of mass of all bodies below that node in the tree. Each
iteration of the computation first constructs a new space subdivision tree for
the current positions of the bodies. It then computes the center of mass for all
of the internal nodes in the new tree. The force computation phase executes
next; this phase uses the space subdivision tree to compute the total force
acting on each body. The final phase uses the computed forces to update the
positions of the bodies.

We obtained sequential C++ code for this computation by acquiring the
explicitly parallel C version from the SPLASH-2 benchmark set [Woo et al.
1995], then removing the parallel constructs to obtain a sequential version
written in C. We then translated the sequential C version into sequential
C++, obtaining a clean object-based version of the program. Most of the mod-
ifications involved the conversion of C structs into C++ objects. We preserved
the memory allocation strategy of the C program, which allocated its data
structures as a unit in the form of large arrays of structs, then overlaid linked
data structures on this array using pointers to individual C structs within

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

340 • M. C. Rinard and P. C. Diniz

the array. The C++ version uses basically the same allocation strategy, but
allocates large arrays of objects instead of structs. Once we had encapsulated
the key data structures in objects, we restructured the computation to use
operations on these objects instead of directly accessing the fields of the
objects.

As part of the translation, we eliminated several computations that dealt
with parallel execution. For example, the parallel version used costzones
partitioning to schedule the force computation phase [Singh 1993]. The se-
quential version eliminated the costzones code and the associated data struc-
tures. We also split a loop in the force computation phase into three loops.
This transformation exposed the concurrency in the force computation phase,
enabling the compiler to recognize that two of the resulting three loops could
execute in parallel. As part of this transformation, we also introduced a new
instance variable into the body class. The new variable holds the force acting
on the body during the force computation phase.

When we ran the C++ version, we discovered that abstractions introduced
during the translation process degraded the sequential performance. We
therefore hand optimized the computation by removing abstractions in the
performance-critical parts of the code until we had restored the original per-
formance. These optimizations do not affect the parallelization; they simply
improve the base performance of the computation.

—String: String uses seismic travel-time inversion to construct a two-
dimensional discrete velocity model of the geology between two oil wells. Each
element of the velocity model records how fast sound waves travel through
the corresponding part of the geology. The seismic data are collected by firing
nondestructive wave sources in one well and recording the waves digitally as
they arrive at the other well. The travel times of the waves can be measured
from the resulting seismic traces. The application uses the travel-time data to
iteratively compute the velocity model. The computationally intensive phase
of the application traces rays from one well to the other. The velocity model
determines both the simulated path and the simulated travel time of each ray.
The computation records the difference between the simulated and the mea-
sured travel times and backprojects the difference linearly along the path of
the ray. At the end of the phase, the computation uses the backprojected dif-
ferences to construct an improved velocity model. The process continues for
a specified number of iterations. The serial computation stores the velocity
model in a one-dimensional array and the backprojected differences in an-
other one-dimensional array. Each element of the difference array stores the
running sum of the backprojected differences for the corresponding element
of the velocity model.

The first author obtained a version of the String application from re-
searchers in the Stanford Geophysics department [Harris et al. 1990]. This
version was written in a combination of Fortran and C, with the majority
of the computation written in Fortran and some dynamic memory alloca-
tion procedures written in C. As part of the first author’s Ph.D. research,
this Fortran version was translated first into C, then into Jade, an implicitly

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 341

parallel extension of C [Rinard and Lam 1998]. We translated the Jade ver-
sion into C++; the primary modifications involved the encapsulation of the
velocity model and backprojected difference arrays into a class that exported
operations on the arrays and restructuring the computation to use these
operations.

4.2 Application Characteristics

All of the applications have access patterns that are difficult to analyze stat-
ically. Water uses references to manipulate a statically unbounded number of
objects. The contention patterns depend on the precise timing of the execu-
tions of the parallel threads, which varies from run to run. Barnes-Hut uses
a linked data structure (a space subdivision tree) and even though there is no
contention in this application, the compiler would need to use some form of
shape analysis [Chase et al. 1990; Ghiya and Hendren 1996; Sagiv et al. 1998]
to statically recognize this fact. Unlike Water and Barnes-Hut, String allocates
a small number of objects and it would be possible at compile time to determine
the precise referencing pattern of the application at the granularity of these
objects. But the primary object in this computation contains two large arrays.
The computation does not access the elements of these arrays in any statically
predictable way, in fact, the access pattern is a function of the input contents of
the array and is therefore irregular and determined only as the program runs.

The parallel phases in all of the computations can be viewed as generalized
reductions in the sense that all accesses to shared data combine a set of com-
puted contributions. However, the parallel phases typically update multiple
dynamically determined locations in multiple dynamically determined objects
rather than computing a simple reduction into a single variable or performing
a regular parallel prefix operation.

We believe that these applications are reasonably representative of a range
of scientific computations written in object-based style, and that the adaptive
replication optimization will prove to be useful for other such applications. Its
utility for other kinds of multithreaded computations will depend in large part
on the characteristics of these computations. We expect the technique to be
useful whenever a group of threads computes results that are combined into
a shared data structure. Potential situations where this might arise include
bookkeeping operations in a multithreaded web server and optimized imple-
mentations of atomic operations in multithreaded database systems [Gray and
Reuter 1993].

4.3 Methodology

We implemented a prototype parallelizing compiler that uses commutativity
analysis as its basic analysis approach [Rinard and Diniz 1997]. The compiler
includes an automatic lock coarsening algorithm and an automatic replication
algorithm [Diniz and Rinard 1998; Rinard and Diniz 1999]. Flags determine the
lock coarsening and replication policies that the generated code uses. We used
the compiler to generate code with the following replication and lock coarsening

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

342 • M. C. Rinard and P. C. Diniz

Table I. Execution Times for Water (seconds)

Processors
Version 1 4 8 16 24
Sequential 164.26 — — — —
No Coarsening, No Replication 174.65 52.43 29.80 25.62 29.25
No Coarsening, Adaptive Replication 184.14 50.73 26.34 14.16 10.15
No Coarsening, Full Replication 197.57 51.69 27.12 14.94 10.94
Coarsening, No Replication 170.66 49.63 26.27 38.57 49.56
Coarsening, Adaptive Replication 169.27 46.99 24.75 13.08 9.54
Coarsening, Full Replication 166.57 45.05 22.97 12.40 8.98

policies:

—No Coarsening: The compiler applies no lock coarsening transformation.
There is one lock per object and each operation that accesses an updated
object acquires and releases that lock.

—Coarsening: The compiler applies both data lock coarsening and computation
lock coarsening at the most aggressive level.

—No Replication: There is no replication of updated objects.
—Adaptive Replication: The generated code uses adaptive replication.
—Full Replication: Whenever possible, the generated code performs updates

on local replicas.

We ran the applications with all possible combinations of the lock coarsening
and replication policies. The exception is String, for which we did not run the
Coarsening and No Replication combination. For this application, this combi-
nation completely serializes the execution.

We collected experimental results for the applications running on an SGI
Challenge XL multiprocessor with 24 100 MHz R4400 processors and 768
Mbytes of memory running IRIX version 6.2. We compiled the generated paral-
lel programs using version 7.1 of the MipsPro compiler from Silicon Graphics.
The generated code uses the most efficient lock implementation available on
this platform. The acquire is implemented as an inlined code sequence that
uses ll and sc to atomically test and set a value that indicates whether the
lock is free or not [Heinrich 1993]. The release simply clears the value.

4.4 Water

Table I presents the execution times for Water. In all applications, we report the
minimum time from four runs for the one and two processor executions. For all
other numbers of processors, we report the minimum time from at least eight
runs. Half of the runs have profiling turned on;6 half have profiling turned off.
Table II presents the standard deviations of the execution times for the runs
without profiling. Figure 11 presents the speedup curves. The speedup curves
plot the running time of the original sequential version of each application
divided by the running time of the automatically parallelized version as a func-
tion of the number of processors executing the parallel version. The original

6This profiler uses program-counter sampling [Graham et al. 1982; Knuth 1971].

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 343

Table II. Standard Deviations of Execution Times for Water (seconds)

Processors
Version 1 4 8 16 24
Sequential 25.65 — — — —
No Coarsening, No Replication 0.12 0.29 0.64 0.05 0.89
No Coarsening, Adaptive Replication 31.04 0.55 0.07 0.14 0.20
No Coarsening, Full Replication 2.37 0.53 0.35 0.15 0.12
Coarsening, No Replication 0.13 0.44 0.50 0.99 2.87
Coarsening, Adaptive Replication 0.41 0.64 4.21 2.08 0.78
Coarsening, Full Replication 0.14 1.94 0.30 0.08 0.18

Fig. 11. Speedups for Water.

sequential version is a standard sequential C++ program that executes with no
parallelization or synchronization overhead.

For this application, replication eliminates a key synchronization bottleneck,
enabling the application to scale well with the number of processors. Applying
the lock coarsening transformation without replication exacerbates the syn-
chronization bottleneck, but the combination of lock coarsening and replication
both eliminates the synchronization bottleneck and reduces the synchroniza-
tion and replication overhead.

We used program counter sampling [Graham et al. 1982; Knuth 1971] to
measure how much time each version spends in different parts of the parallel
computation. We break the execution time down into the following components:

—Replication: Time spent because of replication. This component includes time
spent allocating and deallocating replicas, initializing replicas, looking up
replicas, and combining the values in replicas back into the original objects

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

344 • M. C. Rinard and P. C. Diniz

Fig. 12. Time breakdowns for Water (Note change of axis on No Replication versions).

at the end of parallel phases, including the time spent idle waiting for other
processors to finish combining replicas.

—Synchronization: Time spent acquiring and releasing locks, including time
spent waiting to acquire locks held by other threads. Synchronization bottle-
necks show up as a large amount of time spent in this component.

—Idle: Time spent idle. All but one processor is idle during sequential phases
of the computation; processors may also be idle during parallel phases if the
program has poor load balancing. In all of our applications, idle time during
sequential phases accounts for the vast majority of the total idle time.

—Compute: Time spent performing useful computation from the application.

Figure 12 presents the time breakdowns for Water.7 These breakdowns
clearly show the synchronization bottleneck in the versions without replica-
tion and the elimination of the bottleneck in the versions with replication.
Lock coarsening has different effects depending on the presence or absence

7For each component, the size of the part of the bar dedicated to that component corresponds to
the sum over all processors of the amount of time the processor spends in that component. The
total height of the bar divided by the number of processors is therefore the running time of the
application on that number of processors.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 345

Fig. 13. Peak memory usage for Water.

of adaptive replication. Without replication, lock coarsening makes the syn-
chronization bottleneck worse. With adaptive replication or full replication, it
reduces the replication overhead.

Figure 13 presents the peak memory usage for Water. The peak memory us-
age measures the maximum amount of memory allocated to original objects
or replicas during the computation. The peak memory usage for the versions
without replication does not vary with the number of processors. With adap-
tive replication, the peak memory usage increases slightly with the number of
processors. Lock coarsening slightly increases the amount of replication in the
adaptive replication version. We attribute this slight increase to the increase
in size of the critical sections. With full replication, the peak memory usage
increases significantly with the number of processors.

The combination of lock coarsening and adaptive replication works well for
Water. It eliminates the synchronization bottlenecks that degrade the perfor-
mance of the versions without replication and it reduces the lock and repli-
cation overheads of the versions without lock coarsening. The peak memory
usage of the adaptive replication versions is significantly less than that of the
full replication versions, which indicates that it is possible to eliminate the
synchronization bottleneck by replicating only a small amount of data.

We combine the experimental results for Water with an analysis of its be-
havior to obtain an analytic performance model for this application and appli-
cations with similar characteristics. To obtain this model we first subdivide the
compute time into the parallel time (the time spent in parallel phases) and
the sequential time (the time spent in sequential phases). We then characterize
the effect of the replication on the performance. For both adaptive replication

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

346 • M. C. Rinard and P. C. Diniz

Fig. 14. Analytically generated speedups for Water.

and full replication, the replication overhead is dominated by the execution of
the code that checks for the presence of replicas. We refer to this component
as the replica check time. This component of the execution time is part of the
normal execution of each parallel task and remains relatively constant as the
number of processors increases. The time spent creating and combining repli-
cas, on the other hand, grows (at most linearly) as the number of processors
(and hence the contention) increases. We model this overhead as the replica
processing time, which is the amount of time each processor spends creating
and combining replicas. If each shared object is replicated by all processors,
and there are enough shared objects to parallelize the combination computa-
tion, the replica processing time should (disregarding memory system effects)
not vary as the number of processors increases. Note that in Water, all of these
replication overheads are parallelized along with the computation in the paral-
lel phases. In particular, the computation tends to replicate enough objects so
that the replica combinations execute in parallel.

Given this analysis, we can model the execution time with the following
expression:

parallel time
number of processors

+ sequential time+ replica check time
number of processors

+ replica processing time

Using the profiling information, we chose the following representative val-
ues: a parallel time of 165 seconds, a sequential time of 1 second, a replica check
time of 5 seconds, and replica processing times of .1 seconds for full replication
and 0 seconds for adaptive replication. Figure 14 presents speedup curves from
this model up to 64 processors. While this analysis fails to model important as-
pects of the parallel computation such as load imbalancing and memory system
effects, it does provide some insight into the reasons for the performance of the
Water application and similar applications.

4.5 Barnes-Hut

Table III presents the execution times for Barnes-Hut, Table IV presents the
standard deviations of these execution times and Figure 15 presents the cor-
responding speedups. Figure 16 presents the time breakdowns. Without lock
coarsening, the application has significant synchronization and/or replication

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 347

Table III. Execution Times for Barnes-Hut (seconds)

Processors
Version 1 4 8 16 24
Sequential 136.33 — — — —
No Coarsening, No Replication 165.47 45.83 24.37 14.30 10.99
No Coarsening, Adaptive Replication 242.61 64.19 34.03 19.28 14.33
No Coarsening, Full Replication 246.70 58.60 30.60 17.36 13.07
Coarsening, No Replication 139.78 37.63 20.79 12.47 9.67
Coarsening, Adaptive Replication 139.85 38.02 21.16 12.67 9.94
Coarsening, Full Replication 164.28 41.02 22.26 13.00 10.21

Table IV. Standard Deviations of Execution Times for Barnes-Hut (seconds)

Processors
Version 1 4 8 16 24
Sequential 0.67 — — — —
No Coarsening, No Replication 0.24 0.55 0.20 0.46 0.52
No Coarsening, Adaptive Replication 0.21 0.40 1.68 0.32 1.46
No Coarsening, Full Replication 1.14 0.27 0.21 2.06 1.22
Coarsening, No Replication 1.13 0.35 0.29 0.24 0.11
Coarsening, Adaptive Replication 0.10 0.31 16.53 5.88 5.10
Coarsening, Full Replication 0.44 0.75 0.18 0.12 6.07

Fig. 15. Speedups for Barnes-Hut.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

348 • M. C. Rinard and P. C. Diniz

Fig. 16. Time breakdowns for Barnes-Hut.

overhead. With lock coarsening, this overhead drops to negligible levels. The
peak memory usage results in Figure 17 show that the versions with adap-
tive replication use the same amount of memory as the versions without
replication—for this application, the adaptive replication versions never repli-
cate an object. Note that the generated code for the adaptive replication ver-
sions looks up a potential replica before attempting to acquire the lock on a
replicatable object. The adaptive replication versions therefore have replica-
tion overhead even though they never replicate an object. The full replication
version has the same space overhead for all numbers of processors. This com-
putation simulates the interactions of number of bodies. It stores the bodies in
the leaves of a space subdivision tree with the parallelized versions executing
one task for each leaf of the tree. That task updates the leaf and reads other
data structures. With this computation pattern, each leaf object is updated by
one and only one processor, so the full replication version replicates each leaf
object once regardless of the number of processors executing the computation.
The resulting space overhead does not vary with the number of processors.

For Barnes-Hut, lock coarsening by itself generates the best performance,
with the combination of lock coarsening and adaptive replication coming in
a close second. Without lock coarsening, there is significant synchronization
and/or replication overhead; with full replication, the application uses more

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 349

Fig. 17. Peak memory usage for Barnes-Hut.

memory than it needs to. Lock coarsening also drives down the peak memory
usage for the versions with replication. We attribute this reduction to the fact
that lock coarsening replaces multiple locks in one of the classes of objects with
a single lock, driving down the size of the objects.

The analytical performance model for Barnes-Hut differs slightly from that
of Water. In Barnes-Hut, each updated object is accessed by only one proces-
sor and there is no contention. Thus, with adaptive replication, there is no
replica processing time at all; with full replication, the replica processing time
decreases as the number of processors increases because each processor is re-
sponsible for combining the replicas of fewer objects. The total amount of time
that the application spends on replication overhead (the total replica time) does
not vary as the number of processors increases. Given this analysis, we can
model the execution time with the following expression:

parallel time
number of processors

+ sequential time+ total replica time
number of processors

.

Using the profiling information, we chose the following representative val-
ues: a parallel time of 135 seconds, a sequential time of 4 seconds, and a total
replica time of .5 seconds for adaptive replication and 7.5 seconds for full repli-
cation. Figure 18 presents speedup curves from this model up to 64 processors.
The primary reason the application does not scale is the sequential time, which
becomes an increasingly large percentage of the wall-clock execution time of
the application as the number of processors increases. The primary sequential
bottleneck is the subcomputation that constructs the space subdivision tree. It
is possible to parallelize this subcomputation, and hand-parallelized versions

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

350 • M. C. Rinard and P. C. Diniz

Fig. 18. Analytically generated speedups for Barnes-Hut.

Table V. Execution times for String (seconds)

Processors
Version 1 4 8 16 24
Sequential 881.27 — — — —
No Coarsening, No Replication 896.99 236.36 126.86 78.76 89.60
No Coarsening, Adaptive Replication 921.86 233.49 116.10 59.54 42.18
No Coarsening, Full Replication 912.85 229.95 117.10 59.74 42.32
Coarsening, Adaptive Replication 892.70 224.45 113.78 60.38 45.06
Coarsening, Full Replication 897.98 223.73 113.89 60.61 44.91

Table VI. Standard Deviations of Execution Times for String (seconds)

Processors
Version 1 4 8 16 24
Sequential 3.45 — — — —
No Coarsening, No Replication 2.71 1.96 0.35 2.25 27.99
No Coarsening, Adaptive Replication 22.57 4.10 9.59 0.59 0.60
No Coarsening, Full Replication 0.42 1.87 0.47 0.33 0.39
Coarsening, Adaptive Replication 4.29 3.63 0.64 0.20 0.18
Coarsening, Full Replication 6.85 1.58 0.76 0.11 0.55

do so, but the resulting parallel computation is nondeterministic in the sense
that the detailed structure of the new tree may vary depending on the execu-
tion speed of the parallel tasks. Our parallelizing compiler therefore does not
exploit the concurrency available in this subcomputation.

4.6 String

Table V presents the execution times for String. Table VI presents the stan-
dard deviations for these execution times. Figure 19 presents the corresponding
speedup curves. We omit performance results for the version with lock coars-
ening and no replication—this combination completely serializes the execution
and the program does not scale at all. With replication, lock coarsening has a
negligible effect on the performance. The time breakdowns in Figure 20 show
that the version without replication suffers from a serious synchronization bot-
tleneck at 24 processors. Replication completely eliminates this bottleneck, at
the cost of a modest amount of replication overhead. Without replication, the
performance peaks at 16 processors, then rapidly falls off. With replication,
the application scales almost linearly with the number of processors. The peak

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 351

Fig. 19. Speedups for String.

memory usage graphs in Figure 21 show that both adaptive replication and full
replication significantly increase the memory usage—both versions completely
replicate a large object. The overall memory usage is still acceptable, however.

The analytical performance model for String differs slightly from those of
Water and Barnes-Hut. In String, there is one large object that all threads
update. Thus, with both adaptive replication and full replication, one processor
is responsible for combining all of the replicas, and the other processors are
idle because there is only one replicated object. Our model therefore uses the
replication combination time, or the time required to combine one replica back
into the original object. Given this analysis, we can model the execution time
with the following expression:

parallel time
number of processors

+ sequential time+ replica combination time

×number of processors

Using the profiling information, we chose the following representative val-
ues: a parallel time of 890 seconds, a sequential time of 5 seconds, and a repli-
cation combination time of .3 seconds. Figure 22 presents speedup curves from
this model up to 64 processors. The primary reason the application does not
scale is the replica combination time, which acts as a sequential bottleneck at
large numbers of processors. The solution to this problem is to parallelize the
combination of replicas into the single object. One reasonable approach would
be to assign different array elements to different processors, with each processor
combining the values in its array elements back into the original object.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

352 • M. C. Rinard and P. C. Diniz

Fig. 20. Time breakdowns for string.

5. RELATED WORK

In this section we discuss related work in the area of reduction analysis, repli-
cation for concurrent read access in shared memory systems, using optimistic
synchronization primitives to eliminate synchronization bottlenecks, using dy-
namic feedback to choose an appropriate lock coarsening policy, and replication
in concurrent garbage collectors.

5.1 Reduction Analysis

Several existing compilers can recognize when a loop performs a reduction
of many values into a single value [Ghuloum and Fisher 1995; Fisher and
Ghuloum 1994; Pinter and Pinter 1991; Callahan 1991]. These compilers
recognize when the reduction primitive (typically addition) is associative.
They then exploit this algebraic property to eliminate the data dependence
associated with the serial accumulation of values into the result. The generated
program computes the reduction in parallel. Each processor has its own local
replica of the variable used to hold the result; at the end of the parallel
loop the partial contributions in the replicas are combined to produce the
correct final result. Researchers have recently generalized the basic reduction

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 353

Fig. 21. Peak memory usage for String.

Fig. 22. Analytically Generated Speedups for String.

recognition algorithms to recognize when a loop performs a reduction of an
array instead of a scalar. The reported results indicate that this optimization
is crucial for obtaining good performance for the measured set of applications
[Hall et al. 1995].

The research presented in this article applies a similar basic idea, but in
the much less structured context of irregular object-based programs instead of
regular loop nests in programs that access dense matrices using affine access
functions. The generality of our target application set means that we must solve
an additional set of problems that do not arise in the more restricted contexts
that previous research in reduction analysis is designed to handle. In the next
several paragraphs, we discuss how our adaptive replication algorithm solves
these problems.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

354 • M. C. Rinard and P. C. Diniz

Object-based programs typically use references to access a statically un-
bounded number dynamically allocated objects. It is therefore difficult or im-
possible to statically identify and name the data that should be replicated to
eliminate synchronization bottlenecks. Adaptive replication solves this prob-
lem by dynamically discovering the data that needs to be replicated to eliminate
bottlenecks. The computations addressed in previous research access statically
allocated variables and arrays. The compiler can therefore statically identify
the variables or arrays which may cause synchronization bottlenecks, then stat-
ically allocate a replica for each processor.

In object-based programs, it may be possible to eliminate bottlenecks by
replicating only a small subset of the updated data. In Water, for example, it is
possible to eliminate the bottlenecks by replicating only a small portion of the
updated objects. In Barnes-Hut, there is no bottleneck even without replication.
To minimize memory usage, it is necessary to identify and replicate only those
objects that would otherwise cause a bottleneck. The identification of these
bottleneck objects is complicated by the fact that their identity may depend on
the timing of the parallel computation, and therefore change from execution to
execution. In traditional computations that access statically allocated arrays,
a similar situation may occur if bottlenecks occur only at a small subset of
the elements of a shared updated array. Nevertheless, previous research in this
area did not attempt to address this issue at all, and simply replicated the entire
array as a unit, a strategy that the researchers found acceptable for their set
of applications.

Previous research in reduction analysis has demonstrated that accumulat-
ing partial contributions in replicated variables or arrays is often necessary to
achieve good performance for loop nests in programs that access dense matri-
ces using affine access functions. Our results show that accumulating partial
contributions in replicated objects enables similar performance improvements
in the more general context of parallel object-based programs; our techniques
effectively solve the additional problems that arise in this more general context.

5.2 Replication in Shared Memory Systems

Many shared memory systems replicate data to enable concurrent read ac-
cess [Lenoski 1992; Li 1986]. This optimization is clearly required to achieve
any reasonable level of performance—in systems that do not implicitly repli-
cate data for concurrent read access, programmers explicitly replicate the
data [Lumetta et al. 1993]. Our hardware platform, the SGI Challenge XL
multiprocessor, supports replication for concurrent read access via its cache
coherence protocol.

One perspective on our research is that it replicates data to enable concur-
rent write access. Conceptually, each replica is a local proxy for the replicated
object. The complications are that replication for concurrent write access may
not always be legal (so our compiler must analyze the program to identify sit-
uations in which it is legal), it may not always improve performance (so our
system only replicates objects that would otherwise cause synchronization bot-
tlenecks), and there is a need to combine the partial contributions to generate

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 355

the correct final result (so our compiler generates code to perform the reduc-
tion at the end of the parallel phase). One reasonable way to view our research
is that it generalizes the concept of replication for concurrent read access to
provide, when legal and appropriate, replication for concurrent write access.

The coherence unit in most shared memory systems is larger than an indi-
vidual memory word. Typical coherence units include cache lines in hardware
shared memory systems and pages in software distributed shared memory sys-
tems [Lenoski 1992; Li 1986; Amza et al. 1996]. To avoid problems such as false
sharing, these systems often include mechanisms such as relaxed memory con-
sistency protocols that efficiently support concurrent writes to disjoint locations
within the same coherence unit. Our research differs in that our goal is to en-
able concurrent writes to the same conceptual memory location, not concurrent
writes to different memory locations within the same coherence unit.

5.3 Optimistic Synchronization Primitives

We have also explored another approach for eliminating synchronization bottle-
necks: implementing atomic operations using optimistic synchronization prim-
itives such as load linked and store conditional instead of mutual exclusion
locks [Rinard 1999]. Our results show that optimistic synchronization can elim-
inate synchronization bottlenecks in applications (such as String) that use a
single lock to synchronize concurrent updates to different instance variables
of a large object. But optimistic synchronization is incapable of eliminating
bottlenecks in applications (such as Water) that concurrently update the same
instance variable. By contrast, the experimental results presented in this paper
show that adaptive replication can eliminate bottlenecks in both kinds of appli-
cations. And it works well for applications (such as Barnes-Hut) that perform
well without replication.

5.4 Dynamic Feedback

We have used dynamic feedback to find the best lock coarsening granularity
[Diniz and Rinard 1999]. A compiler that uses dynamic feedback produces sev-
eral different versions of the same source code; each version uses a different
optimization policy. For lock coarsening, the different versions use different lock
coarsening policies. The policies vary in how aggressively they apply the lock
coarsening transformation. The generated code alternately performs sampling
phases and production phases. Each sampling phase measures the overhead
of each version in the current environment. For lock coarsening, the sources
of overhead include locking overhead, which is time spent successfully acquir-
ing and releasing locks, and waiting overhead, which is time spent at a lock
acquire site waiting for another processor to release the lock. Each production
phase uses the version with the least overhead in the previous sampling phase.
The computation periodically resamples to adjust dynamically to changes in
the environment.

Dynamic feedback is quite effective at finding the best lock coarsening policy.
But because it does not replicate data, it cannot eliminate synchronization bot-
tlenecks that are inherently present in the computation. The Water application

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

356 • M. C. Rinard and P. C. Diniz

discussed in this paper, for example, has such a synchronization bottleneck.
Adaptive replication, like dynamic feeback, dynamically adapts the replication
policy to the run-time behavior of the application. It is also capable of replicat-
ing objects to eliminate synchronization bottlenecks, even if the bottlenecks are
present in the initial computation and are not introduced by the lock coarsening
transformation.

5.5 Concurrent Garbage Collection

Some concurrent copying garbage collectors replicate data in the sense that both
versions of an object (the versions in to space and from space) can be accessed
by the mutator and/or the collector. One approach is to allow the concurrently
executing mutator to access both the original version of immutable data in from
space and the replica in to space [Huelsbergen and Larus 1993]. This approach
allows the mutator to access immutable data freely during collection without
checking to verify that it has obtained the most up-to-date version of the object.
Accesses to mutable data require such a check and are therefore less efficient
than accesses to immutable data. Another approach is to use separate alloca-
tion mechanisms for mutable and immutable data [Doligez and Leroy 1993].
Mutable data is allocated in a single shared heap which uses a mark-and-sweep
collector; immutable data is allocated in private heaps which use a copying col-
lector. When immutable data allocated in the private heap becomes accessible
via objects allocated in the shared heap, the collector copies the immutable data
into the shared heap. Until the next collection, the versions in the two heaps
are both accessible. Finally, it is also possible to require the mutator to access
only from-space versions of objects while the collector concurrently replicates
objects into to space [O’Toole and Nettles 1994]. During collection, the mutator
generates a list of updates to mutable objects, which the collector must apply
to the replicas in to space before flipping the spaces.

It is possible to apply replication analysis to augment concurrent copying
collectors for computations that use associative and commutative operators
with a zero to combine a set of contributions into a single location in mutable
data. Instead of requiring all updates to be performed on the most up-to-date
copy, the system would let the mutator update replicas in both from space and
to space. When the collector finished traversing from space, it would combine
the value in from space into the location in to space, restoring the correct value.
To apply this transformation, the collector would have to initialize the to space
value to zero and ensure that the garbage collector finished combining the
values before the computation accessed the location in any way except to update
the value with another contribution.

6. CONCLUSION

This paper presents results that illustrate a synergistic interaction between
two program transformations: lock coarsening and adaptive replication. Adap-
tive replication eliminates synchronization bottlenecks by replicating the
frequently updated objects that cause the bottlenecks. Lock coarsening re-
duces synchronization overhead by reducing the frequency with which the

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 357

computation acquires and releases locks. But because it increases the size of
the critical sections, it may introduce synchronization bottlenecks.

We have implemented a compiler that automatically applies lock coarsen-
ing and adaptive replication. We used the compiler to generate different ver-
sions of several benchmark programs; these versions use different combina-
tions of the lock coarsening and replication transformations. Our results show
that the combination of lock coarsening and adaptive replication can eliminate
synchronization bottlenecks and significantly reduce the synchronization and
replication overhead as compared to versions that use none or only one of the
transformations.

ACKNOWLEDGMENTS

We would like to the anonymous referees of various versions of this article for
their thoughtful and helpful comments.

REFERENCES

ALDRICH, J., CHAMBERS, C., SIRER, E., AND EGGERS, S. 1999. Static analyses for eliminating unneces-
sary synchronization from Java programs. In Proceedings of the 6th International Static Analysis
Symposium.

AMZA, C., COX, A., DWARKADAS, S., KELEHER, P., LU, H., RAJAMONY, R., YU, W., AND ZWAENEPOEL, W. 1996.
TreadMarks: Shared memory computing on networks of workstations. IEEE Comput. 29, 2
(June), 18–28.

ARNOLD, K. AND GOSLING, J. 1996. The Java Programming Language. Addison-Wesley, Reading,
Mass.

BARNES, J. AND HUT, P. 1986. A hierarchical O(NlogN) force calculation algorithm. Nature 324, 4
(Dec.), 446–449.

BERRY, M., CHEN, D., KOSS, P., KUCK, D., LO, S., PANG, Y., POINTER, L., ROLOFF, R., SAMEH, A., CLEMENTI,
E., CHIN, S., SCHNEIDER, D., FOX, G., MESSINA, P., WALKER, D., HSIUNG, C., SCHWARZMEIER, J., LUE,
K., ORSZAG, S., SEIDL, F., JOHNSON, O., GOODRUM, R., AND MARTIN, J. 1989. The Perfect Club
benchmarks: Effective performance evaluation of supercomputers. ICASE Report 827, Center for
Supercomputing Research and Development, Univ. of Illinois at Urbana-Champaign, Urbana,
IL. May.

BRINCH-HANSEN, P. 1972. Structured multiprogramming. Commun. ACM 15, 7 (July), 574–
578.

BRINCH-HANSEN, P. 1975. The programming language Concurrent Pascal. IEEE Trans. Softw.
Eng. SE-1, 2 (June), 199–207.

CALLAHAN, D. 1991. Recognizing and parallelizing bounded recurrences. In Proceedings of the 4th
Workshop on Languages and Compilers for Parallel Computing (Santa Clara, Calif.). Springer-
Verlag, New York, 169–184.

CHASE, D., WEGMAN, M., AND ZADEK, F. 1990. Analysis of pointers and structures. In Proceedings of
the SIGPLAN ’90 Conference on Program Language Design and Implementation (White Plains,
N.Y.) ACM, New York, 296–310.

DINIZ, P. AND RINARD, M. 1998. Lock coarsening: Eliminating lock overhead in automatically
parallelized object-based programs. J. Parall. Distrib. Comput. 49, 2 (Mar.), 2218–244.

DINIZ, P. AND RINARD, M. 1999. Eliminating synchronization overhead in automatically par-
allelized programs using dynamic feedback. ACM Trans. Comput. Syst. 17, 2 (May), 89–
132.

DOLBY, J. 1997. Automatic inline allocation of objects. In Proceedings of the SIGPLAN ’97 Con-
ference on Program Language Design and Implementation (Las Vegas, Nev.). ACM, New York.

DOLIGEZ, D. AND LEROY, X. 1993. A concurrent, generational garbage collector for a multithreaded
implementation of ML. In Proceedings of the 20th Annual ACM Symposium on the Principles of
Programming Languages. ACM, New York.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

358 • M. C. Rinard and P. C. Diniz

EMAMI, M., GHIYA, R., AND HENDREN, L. 1994. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In Proceedings of the SIGPLAN ’94 Conference on Program
Language Design and Implementation (Orlando, Fl.) ACM, New York, 242–256.

FISHER, A. AND GHULOUM, A. 1994. Parallelizing complex scans and reductions. In Proceedings of
the SIGPLAN ’94 Conference on Program Language Design and Implementation (Orlando, Fla.)
ACM, New York, 135–144.

GHIYA, R. AND HENDREN, L. 1996. Is it a tree, a DAG or a cyclic graph? A shape analysis for heap-
directed pointers in C. In Proceedings of the 23rd Annual ACM Symposium on the Principles of
Programming Languages. ACM, New York, 1–15.

GHULOUM, A. AND FISHER, A. 1995. Flattening and parallelizing irregular, recurrent loop nests.
In Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Santa Barbara, Calif.). ACM, New York, 58–67.

GRAHAM, S., KESSLER, P., AND MCKUSICK, M. 1982. GPROF: A call graph execution profiler. In Proceed-
ings of the SIGPLAN ’82 Symposium on Compiler Construction (Boston, Mass.). ACM, New York.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan-
Kaufmann, San Francisco, CA.

HALL, M., AMARASINGHE, S., MURPHY, B., LIAO, S., AND LAM, M. 1995. Detecting coarse-grain par-
allelism using an interprocedural parallelizing compiler. In Proceedings of Supercomputing ’95
(San Diego, Calif.). IEEE Computer Society Press, Los Alamitos, Calif.

HARRIS, J., LAZARATOS, S., AND MICHELENA, R. 1990. Tomographic string inversion. In Proceed-
ings of the 60th Annual International Meeting, Society of Exploration and Geophysics, Extended
Abstracts. 82–85.

HEINRICH, J. 1993. MIPS R4000 Microprocessor User’s Manual. Prentice-Hall, Englewood Cliffs,
N.J.

HOARE, C. A. R. 1974. Monitors: An operating system concept. Commun. ACM 17, 10 (Oct.),
549–557.

HUELSBERGEN, L. AND LARUS, J. 1993. A concurrent copying garbage collector for languages that
distinguish (im)mutable data. In Proceedings of the 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (San Diego, Calif.). ACM, New York.

KING, J. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July), 385–394.
KNUTH, D. 1971. An empirical study of FORTRAN programs. Softw.—Pract. Exper. 1, 105–133.
LAMPSON, B. W. AND REDELL, D. D. 1980. Experience with processes and monitors in Mesa. Com-

mun. ACM 23, 2 (Feb.), 105–117.
LENOSKI, D. 1992. The design and analysis of DASH: A scalable directory-based multiprocessor.

Ph.D. thesis, Dept. of Electrical Engineering, Stanford Univ., Stanford, Calif.
LI, K. 1986. Shared virtual memory on loosely coupled multiprocessors. Ph.D. dissertation, Dept.

of Computer Science, Yale Univ., New Haven, Conn.
LUMETTA, S., MURPHY, L., LI, X., CULLER, D., AND KHALIL, I. 1993. Decentralized optimal power

pricing: The development of a parallel program. IEEE Parall. Distrib. Tech. 1, 4 (Nov.), 23–31.
MOHR, E., KRANZ, D., AND HALSTEAD, R. 1990. Lazy task creation: A technique for increasing

the granularity of parallel programs. In Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming. ACM, New York, 185–197.

O’TOOLE, J. AND NETTLES, S. 1994. Concurrent replicating garbage collection. In Proceedings of the
1994 ACM Conference on Lisp and Functional Programming (Orlando, Fla.). ACM, New York.

PINTER, S. AND PINTER, R. 1991. Program optimization and parallelization using idioms. In Pro-
ceedings of the 18th Annual ACM Symposium on the Principles of Programming Languages
(Orlando, Fla.). ACM, New York, 79–92.

POLYCHRONOPOULOS, C. AND KUCK, D. 1987. Guided self-scheduling: A practical scheduling scheme
for parallel computers. IEEE Trans. Comput. 36, 12 (Dec.), 1425–1439.

RINARD, M. 1999. Effective fine-grain synchronization for automatically parallelized programs
using optimistic synchronization primitives. ACM Trans. Comput. Syst. 17, 4 (Nov.), 337–371.

RINARD, M. AND DINIZ, P. 1997. Commutativity analysis: A new analysis technique for parallelizing
compilers. ACM Trans. Prog. Lang. Syst. 19, 6 (Nov.), 941–992.

RINARD, M. AND DINIZ, P. 1999. Eliminating synchronization bottlenecks in object-based programs
using adaptive replication. In Proceedings of the 1999 ACM International Conference on Super-
computing (Rhodes, Greece). ACM, New York.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

Eliminating Synchronization Bottlenecks • 359

RINARD, M. AND LAM, M. 1998. The design, implementation, and evaluation of jade. ACM Trans.
Prog. Lang. Syst. 20, 3 (May), 483–545.

ROVNER, P. 1986. Extending modula-2 to build large, integrated systems. IEEE Softw. 3, 6 (Nov.),
46–57.

RUGINA, R. AND RINARD, M. 1999. Pointer analysis for multithreaded programs. In Proceedings of
the SIGPLAN ’99 Conference on Program Language Design and Implementation (Atlanta, Ga.).
ACM, New York.

SAGIV, M., REPS, T., AND WILHELM, R. 1998. Solving shape-analysis problems in languages with
destructive updating. ACM Trans. Prog. Lang. Syst. 20, 1 (Jan.), 1–50.

SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. 1990. Priority inheritance protocols: An approach to real-
time synchronization. IEEE Trans. Comput. 39, 9 (Sept.), 1175–1185.

SINGH, J. 1993. Parallel hierarchical N-body methods and their implications for multiprocessors.
Ph.D. dissertation, Dept. of Electrical Engineering, Stanford Univ., Stanford, Calif.

SINGH, J., WEBER, W., AND GUPTA, A. 1992. SPLASH: Stanford parallel applications for shared
memory. Comput. Arch. News 20, 1 (Mar.), 5–44.

WILSON, R. AND LAM, M. 1995. Efficient context-sensitive pointer analysis for C programs. In
Proceedings of the SIGPLAN ’95 Conference on Program Language Design and Implementation
(La Jolla, Calif.). ACM, New York.

WOO, S., OHARA, M., TORRIE, E., SINGH, J., AND GUPTA, A. 1995. The SPLASH-2 programs: Charac-
terization and methodological considerations. In Proceedings of the 22nd International Sympo-
sium on Computer Architecture. ACM, New York.

Received June 2000; revised September 2001 and March 2002; accepted December 2002

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

