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This paper presents a novel interprocedural, flow-sensitive, and context-sensitive pointer analysis
algorithm for multithreaded programs that may concurrently update shared pointers. The algo-
rithm is designed to handle programs with structured parallel constructs, including fork-join con-
structs, parallel loops, and conditionally spawned threads. For each pointer and each program point,
the algorithm computes a conservative approximation of the memory locations to which that pointer
may point. The algorithm correctly handles a wide range of programming language constructs,
including recursive functions, recursively generated parallelism, function pointers, structures, ar-
rays, nested structures and arrays, pointer arithmetic, casts between different pointer types, heap
and stack allocated memory, shared global variables, and thread-private global variables. We have
implemented the algorithm in the SUIF compiler system and used the implementation to ana-
lyze a set of multithreaded programs written in the Cilk programming language. Our experimen-
tal results show that the analysis has good precision and converges quickly for our set of Cilk
programs.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; D.3.2 [Programming Languages]: Language Clas-
sifications—Concurrent, distributed, and parallel languages

General Terms: Analysis, Languages

Additional Key Words and Phrases: Pointer analysis

1. INTRODUCTION

The use of multiple threads of control is quickly becoming a mainstream
programming practice. Programmers use multiple threads for many reasons—
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to increase the performance of programs such as high-performance web servers
that execute on multiprocessors, to hide the latency of events such as fetching
remote data, for parallel programming on commodity SMPs, to build sophisti-
cated user interface systems [Reppy 1992], and as a general structuring mech-
anism for large software systems [Hauser et al. 1993].

But multithreaded programs present a challenging problem for a compiler
or program analysis system: the interactions between multiple threads make
it difficult to extend traditional program analysis techniques developed for se-
quential programs to multithreaded programs.

One of the most important program analyses is pointer analysis, which ex-
tracts information about the memory locations to which pointers may point.
Potential applications of pointer analysis for multithreaded programs include:
the development of sophisticated software engineering tools such as race de-
tectors and program slicers; memory system optimizations such as prefetching
and moving computation to remote data; automatic batching of long latency
file system operations; and to provide information required to apply traditional
compiler optimizations such as constant propagation, common subexpression
elimination, register allocation, code motion and induction variable elimination
to multithreaded programs.

The difficulty of applying sequential analyses and optimizations to mul-
tithreaded programs is well known [Midkiff and Padua 1990]. A straight-
forward adaptation of these techniques would analyze all the possible inter-
leavings of statements from the parallel threads [Cousot and Cousot 1984;
Chow and Harrison 1992a]. However, this approach is not practical because
of the combinatorial explosion in the number of potential program paths. An-
other adaptation of existing sequential analyses is to use flow-insensitive tech-
niques [Andersen 1994; Steensgaard 1996] for the analysis of multithreaded
programs [Hicks 1993; Zhu and Hendren 1997; Ruf 2000]. Such analyses ignore
the flow of control in the program; they represent the program as a set of state-
ments which can execute multiple times, in any possible order. Hence they au-
tomatically model all the interleavings of statements from the parallel threads.
However, flow-insensitive analyses are known to be less precise than their flow-
sensitive counterparts [Ryder et al. 2001]. The focus of this paper is the efficient,
flow-sensitive analysis of pointers in multithreaded programs.

The key difficulty associated with the flow-sensitive pointer analysis for
multithreaded programs is the potential for interference between parallel
threads. Two threads interfere when one thread writes a pointer variable that
another thread accesses (i.e. reads or writes). Interference between threads in-
creases the set of locations to which pointers may point. Any pointer analysis
algorithm for multithreaded programs must therefore characterize this inter-
ference if it is to generate correct information.

This paper presents a new interprocedural, flow-sensitive, and context-
sensitive pointer analysis algorithm for multithreaded programs. The algo-
rithm is designed to analyze programs with structured parallel constructs, in-
cluding fork-join constructs, parallel loops, and conditionally spawned threads;
the algorithm ignores synchronization constructs such as semaphores, locks,
and critical sections, thus being conservative for programs that use these
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constructs. For each program point, our algorithm generates a points-to graph
that specifies, for each pointer, the set of locations to which that pointer may
point. To compute this graph in the presence of multiple threads, the algorithm
extracts interference information in the form of another points-to graph that
captures the effect of pointer assignments performed by the parallel threads.
The analysis is adjusted to take this additional interference information into
account when computing the effect of each statement on the points-to graph for
the next program point.

We have developed a precise specification, in the form of dataflow equations,
of the interference information and its effect on the analysis, and proved that
these dataflow equations correctly specify a conservative approximation of the
actual points-to graph.1 We have also developed an efficient fixed-point algo-
rithm that runs in polynomial time and solves these dataflow equations.

We have implemented this algorithm in the SUIF compiler infrastructure
and used the system to analyze programs written in Cilk, a multithreaded ex-
tension of C [Frigo et al. 1998]. The implemented algorithm handles a wide
range of constructs in multithreaded programs, including recursive functions
and recursively generated parallelism, function pointers, structures and arrays,
pointer arithmetic, casts between different pointer types, heap allocated mem-
ory, stack allocated memory, shared global variables, and thread-private global
variables. Our experimental results show that the analysis has good overall
precision and converges quickly.

This paper makes the following contributions:

—Algorithm: It presents a novel flow-sensitive, context-sensitive, interpro-
cedural pointer analysis algorithm for multithreaded programs with struc-
tured parallelism. This algorithm is, to our knowledge, the first flow-sensitive
pointer analysis algorithm for multithreaded programs.

—Theoretical Properties: It presents several important properties of the al-
gorithm that characterize its correctness and efficiency. In particular, it shows
that the algorithm computes a conservative approximation of the result ob-
tained by analyzing all possible interleavings, and that the intraprocedural
analysis of parallel threads runs in polynomial time with respect to the size
of the program.

—Experimental Results: It presents experimental results for a sizable set of
multithreaded programs written in Cilk. These results show that the analysis
has good overall precision and converges quickly for our set of Cilk programs.

The rest of the paper is organized as follows. Section 2 presents an example
that illustrates the additional complexity that multithreading can cause for
pointer analysis. Section 3 presents the analysis framework and algorithm, and
Section 4 presents the experimental results. Section 5 discusses some potential
uses of the information that pointer analysis provides. We present related work
in Section 6, and conclude in Section 7.

1Conservative in the sense that the points-to graph generated by our algorithm includes the points-
to graph generated by first using the standard flow-sensitive algorithm for serial programs to
analyze all possible interleaved executions, and then merging the results.
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int x, y, z;

int *p;

main() {

1: x = y = z = 0;

2: p = &x;

3: par {

4: { *p = 1; }

5: { p = &y;

6: p = &z; }

7: }

8: *p = 2;

}

Fig. 1. Example multithreaded program.

2. EXAMPLE

Consider the simple multithreaded program in Figure 1. This program is writ-
ten in a conceptual multithreaded language which uses a generic parallel con-
struct par2 to express the creation and execution of concurrent threads. This
construct, also known as fork-join or cobegin-coend, is a basic parallel construct
in many multithreaded languages.

The program manipulates a shared pointer p, and, at lines 4 and 8, writes
the memory locations to which p points. To have information about the actual
memory locations that the indirect updates *p = 1 and *p = 2 write, further
analyses and optimizations of this program need to know where p points to
before these updates.

2.1 Parallel Execution

The execution of the program proceeds as follows. It first initializes all the
variables and makes p point to x. Then, at line 3, the program uses the par
construct to create two parallel threads which concurrently access the shared
pointer p. The first thread executes the statement at line 4, which writes the
value 1 into the memory location to which p points. The second thread executes
the statements at lines 5 and 6, which update p and make it point first to y, then
to z. Any interleaved execution of the statements from these parallel threads
may occur when the program runs, and all of these statements must complete
before the execution proceeds beyond the par construct. There are three possible
orders of execution of the statements from the parallel threads:

(1) The statement *p = 1 executes first, before the statements p = &y and
p = &z. In this case p still points to x when the statement *p = 1 executes.

(2) The statement *p = 1 executes second, after p = &y and before p = &z.
Then p points to y when *p = 1 executes.

2The parallel construct par is not part of the Cilk multithreaded language. This construct is ex-
pressed in Cilk by several spawn statements, each of which starts the execution of a new thread,
and a sync statement, which blocks the parent thread until all spawned threads have completed.
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(3) The statement *p = 1 executes last, after the statements p = &y and
p = &z. In this case p points to z when the statement *p = 1 executes.

Any further analysis or optimization of this program must take all of these
possibilities into account. The compiler must determine that the statement
*p = 1 at line 4 assigns the value 1 to either x, y, or z, depending on the par-
ticular execution of the parallel program.

When both threads complete, execution proceeds beyond the end of the
par construct at line 7. At this point, all the writes to the shared pointer
p have completed and the last statement that writes p is p = &z at line 6.
Therefore, p definitely points to z after the par construct and the statement
*p = 2 will always write z, regardless of the particular execution of the parallel
program.

This example illustrates how interference between pointer assignments and
uses in parallel threads can affect the memory locations that the threads
access. In particular, interference increases the set of memory locations to
which pointers may point, which in turn increases the set of memory locations
that pointer dereferences may access. Any sound pointer analysis algorithm
must conservatively characterize the effect of this interference on the points-to
relation.

2.2 Flow-Sensitive Analysis

To precisely characterize the memory locations to which p points, the compiler
must take into account the flow of control within each thread and perform a
flow-sensitive pointer analysis. In the example, a flow-sensitive analysis can
precisely determine that the statement p = &z executes after the statement
p = &y in all the possible executions of the parallel program. Such an analysis
can therefore detect that p definitely points to z when the par statement com-
pletes and can conclude that the statement *p = 2 updates z in all executions
of the program.

On the other hand, a flow-insensitive analysis would not take into account
the order of execution of the statements p = &y and p = &z. Such an analysis
would be too conservative and would determine that p points to either y or z
after the par statement. It would therefore generate a spurious points-to edge
from p to y, which does not occur in any execution of the program.

This example shows that the application of existing flow-insensitive pointer
analyses to model the interleaving of statements from the parallel threads is
not precise and may generate spurious points-to edges because it ignores the
flow of control within threads. A precise, flow-sensitive multithreaded pointer
analysis must characterize all the possible interleavings of statements from
the parallel threads, but at the same time must take into account the flow of
control within each thread.

3. THE ALGORITHM

This section presents the flow-sensitive pointer analysis algorithm for multi-
threaded programs. It first describes the basic framework for the analysis, then
presents the dataflow equations for basic pointer assignment statements and
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par constructs. Finally, it describes the extensions for private global variables,
interprocedural analysis, recursive functions, and function pointers.

3.1 Points-To Graphs and Location Sets

The algorithm represents the points-to relation using a points-to graph [Emami
et al. 1994]. This representation is similar to the storage shape graph [Chase
et al. 1990] and to the static shape graph [Sagiv et al. 1998] used in shape anal-
ysis algorithms. Each node in the graph represents a set of memory locations;
there is a directed edge from one node to another node if one of the memory
locations represented by the first node may point to one of the memory loca-
tions represented by the second node. Each node in the graph is implemented
with a location set [Wilson and Lam 1995], which is a triple of the form 〈name,
offset, stride〉 consisting of a variable name that describes a memory block, an
offset within that block and a stride that characterizes the recurring struc-
ture of data vectors. A location set 〈n, o, s〉 corresponds to all sets of locations
{o + is | i ∈ N} within block n. The location set for a scalar variable v is there-
fore 〈v, 0, 0〉; for a field f in a structure s is 〈s, f, 0〉 (here f is the offset of the
field within the structure); for a set of array elements a[i] is 〈a, 0, s〉 (here s
is the size of an element of a); and for a set of fields a[i].f is 〈a, f, s〉 (here
f is the offset of f within the structure and s is the size of an element of a).
Each dynamic memory allocation site has its own name, so the location set that
represents a field f in a structure dynamically allocated at site s is 〈s, f, 0〉 .
Finally, all the elements of overlapping structures (such as the unions in C)
are merged into a single location set. Therefore, if location sets have different
memory block names, they represent disjoint sets of memory locations. This
analysis, like other pointer analyses, assumes that programs do not violate
the array bounds and that there are no assignments from integers to pointer
variables.

Our analysis uses a special location set unk, the unknown location set, which
characterizes the undefined initial pointer values and NULL pointers. The anal-
ysis treats the unknown location specially: it assumes that it is never derefer-
enced, which corresponds to a normal execution of the program. Dereferencing
uninitialized or NULL pointers in C results in undefined execution behavior;
the program continues its normal execution beyond a pointer dereference only
if the dereferenced pointer is properly initialized and does not refer to a memory
location represented by unk. Since our analysis assumes a normal execution of
the program, in the case of store pointer assignments via potentially uninitial-
ized or NULL pointers, the analysis updates only the explicit targets and leaves
all the other pointers in the program unchanged. Similarly, in the case of load
assignments via pointers that potentially point to the unknown location, the
analysis assigns only the explicit, known targets of the dereferenced pointer to
the variable in the left hand side of the assignment. This is the standard way
of handling uninitialized variables in pointer analysis [Andersen 1994; Emami
et al. 1994; Steensgaard 1996]. The use of the unknown location set also al-
lows us to easily differentiate between definite pointers and possible pointers.
If there is only one edge x→ y from the location set x, x definitely points to y.
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x = &y Address-of Assignment
x = y Copy Assignment
x = *y Load Assignment
*x = y Store Assignment

Fig. 2. Kinds of basic pointer assignment statements.

If x may point to y or it may be uninitialized, there are two edges from x: x→ y
and x→ unk.

Each program defines a set L of location sets. We represent points-to graphs
as sets of edges C ⊆ L × L, and order points-to graphs using the set inclusion
relation. This partial order defines a lattice whose meet operation is the set
union ∪.

3.2 Basic Pointer Assignment Statements

To simplify the presentation of the algorithm, we assume that the program is
preprocessed to a standard form where each pointer assignment statement is
of one of the four kinds of basic pointer assignment statements in Figure 2.

More complicated pointer assignments can be reduced to a sequence of basic
statements. In these basic assignment forms, x and y represent location sets.
Hence an actual assignment like s.f = v[i] of the element i of the array v to
the field f of the structure s is considered to be a basic assignment of the form
x = y, since both s.f and v[i] can be expressed as location sets.

Our dataflow analysis algorithm computes a points-to graph for each pro-
gram point in the current thread. It uses an interference graph to characterize
the interference between the current thread and other parallel threads. The
interference graph represents the set of edges that the other threads may cre-
ate; the analysis of the current thread takes place in the context of these edges.
As part of the analysis of the current thread, the algorithm extracts the set of
edges that the thread creates. This set will be used to compute the interference
graph for the analysis of other threads that may execute in parallel with the
current thread.

Definition 3.2.1. Let L be the set of location sets in the program and
P = 2L×L the set of all points-to graphs. The multithreaded points-to informa-
tion MTI(p) at a program point p of the parallel program is a triple 〈C, I, E〉 ∈ P3

consisting of:

—the current points-to graph C,
—the set I of interference edges created by all the other concurrent threads,
—the set E of edges created by the current thread.

We use dataflow equations to define the analysis of the basic statements.
These equations use the strong flag which specifies whether the analysis
of the basic statement performs a strong or weak update. Strong updates kill
the existing edges of the location set being written, while weak updates leave
the existing edges in place. Strong updates are performed if the analysis can
identify a single pointer variable that is being written. If the analysis cannot
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Fig. 3. Dataflow equations for basic statements.

identify such a variable (this happens if there are multiple location sets that
denote the updated location or if one of the location sets represents more than
one memory location), the analysis performs a weak update. Weak updates
happen if there is uncertainty caused by merges in the flow of control, if the
statement writes an element of an array, or if the statement writes a pointer in
heap allocated memory.

If we denote by Stat the set of program statements, then the dataflow anal-
ysis framework is defined, in part, by a functional [[ ]] : Stat→ (P3→ P3) that
associates a transfer function f ∈ P3 → P3 to every statement st in the pro-
gram. As Figure 3 illustrates, we define this functional for basic statements
using the strong flag and the kill/gen sets. Basic statements do not modify the
interference information; the created edges are added to the set E of edges cre-
ated by the current thread and to the current points-to graph C, and edges are
killed in C only if the the strong flag indicates a strong update. The equations
maintain the invariant that the interference information is contained in the
current points-to graph.

Figure 4 defines the gen and kill sets and the strong flag for basic statements;
Figure 5 shows how existing edges in the points-to graph (solid lines) interact
with the basic statements to generate new edges (dashed lines). The definitions
use the following dereference function (here 2L is the set of all subsets of the
set of location sets L):

deref : 2L × P → 2L , deref(S, C) = {y ∈ L | ∃x ∈ S . (x, y) ∈ C}
We define a partial order relation v over the multithreaded points-to infor-

mation P3 using the inclusion relation between sets of points-to edges:

〈C1, I1, E1〉 v 〈C2, I2, E2〉 iff
C2 ⊆ C1 and I2 ⊆ I1 and E2 ⊆ E1

This partial order defines a lattice on P3. The top element in the lattice is the
triple of empty sets of edges > = 〈∅, ∅, ∅〉; the meet operation is the component-
wise union of sets of points-to edges:

〈C1, I1, E1〉 t 〈C2, I2, E2〉 = 〈C1 ∪ C2, I1 ∪ I2, E1 ∪ E2〉
It is easy to verify that the transfer functions for basic statements are mono-

tonic in this lattice. This completes the definition of a full dataflow analysis
framework for sequential programs. Our analysis therefore handles arbitrary
sequential control flow constructs, including unstructured constructs.
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Fig. 4. Dataflow information for basic statements.
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Fig. 5. New points-to edges for basic statements.

Finally, note that if the interference set of edges is empty, i.e., I = ∅, then
the above algorithm reduces to the traditional flow-sensitive pointer analysis
algorithm for sequential programs. Therefore, our algorithm for multithreaded
programs may be viewed as a generalization of the algorithm for sequential
programs.
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[[ par{{t1} . . . {tn}} ]] 〈C, I, E〉 = 〈C′, I, E ′〉, where

C′ =
⋂

1≤i≤n

C′i

E ′ = E ∪
⋃

1≤i≤n

Ei

Ci = C ∪
⋃

1≤ j≤n, j 6=i

E j (for 1 ≤ i ≤ n)

Ii = I ∪
⋃

1≤ j≤n, j 6=i

E j (for 1 ≤ i ≤ n)

[[ ti ]] 〈Ci , Ii , ∅〉 = 〈C′i , Ii , Ei〉 (for 1 ≤ i ≤ n)

Fig. 6. Dataflow equations for par constructs.

3.3 Parallel Constructs

The basic parallel construct is the par construct (also referred to as fork-join
or cobegin-coend), in which a parent thread starts the execution of several con-
current child threads at the beginning of the par construct, then waits at the
end of the construct until all the child threads complete. It can then execute
the subsequent statement.

We represent multithreaded programs using a parallel flow graph 〈V , E〉.
Like a standard flow graph for a sequential program, the vertices of the graph
represent the statements of the program, while the edges represent the po-
tential flow of control between vertices. There are also parbegin and parend
vertices. These come in corresponding pairs and represent, respectively, the be-
ginning and end of the execution of a par construct. The analysis uses begin
and end vertices to mark the begin and end of threads. There is an edge from
each parbegin vertex to the begin vertex of each of its parallel threads, and an
edge from the end vertex of each of its threads to the corresponding parend
vertex.

We require there to be no edges between parallel threads, no edges from a
vertex outside a par construct into one of its threads, and no edges from inside
a thread to a vertex outside its par construct.

3.4 Dataflow Equations for Parallel Constructs

Figure 6 presents the dataflow equations for par constructs. The analysis starts
with 〈C, I, E〉 flowing into the par construct and generates 〈C′, I, E ′〉 flowing
out of the par construct. We next provide an intuitive explanation of these
dataflow equations. Appendix B presents a formal proof of the soundness of
these equations.
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3.4.1 Interference Information Flowing Into Threads. We first consider the
appropriate set of interference edges Ii for the analysis of the thread ti. Because
the thread may execute in parallel with any thread that executes in parallel
with the par construct, all of the interference edges I that flow into the par
statement should also flow into the thread. But the thread may also execute in
parallel with all of the other threads of the par construct. So any local edges E j
created by the other threads should also be added into the interference informa-
tion flowing into the analyzed thread. This reasoning determines the equation
for the input interference edges flowing into thread ti: Ii = I ∪ (∪1≤ j≤n, j 6=i E j ).

3.4.2 Points-To Information Flowing Into Threads. We next consider the
current points-to graph Ci for the analysis of thread ti. Because the thread may
execute as soon as flow of control reaches the par construct, all of the edges
in the current points-to graph C flowing into the par construct should clearly
flow into the thread’s input points-to graph Ci. But there are other edges that
may be present when the thread starts its execution: specifically, any edges
E j created by the execution of the other threads in the par construct. These
edges should also flow into the thread’s input points-to graph Ci. This reasoning
determines the equation for the current points-to graph that flows into thread
ti: Ci = C ∪ (∪1≤ j≤n, j 6=i E j ).

3.4.3 Points-To Information Flowing Out of par Constructs. We next con-
sider the current points-to graph C′ that flows out of the par construct. The
analysis must combine the points-to graphs C′i flowing out of the par construct’s
threads to generate C′. The points-to graph C′i flowing out of thread ti contains
all of the edges created by the thread that are present at the end of its analysis,
all of the edges ever created by the other parallel threads in the par construct,
and all of the edges flowing into the par construct that were not killed by strong
updates during the analysis of the thread.

We argue that intersection is the correct way to combine the points-to graphs
C′i flowing out of the threads to generate the final points-to graph C′ flow-
ing out of the par construct. There are two kinds of edges that should be
in C′: edges that are created by one of the par construct’s threads and are
still present at the end of that thread’s analysis, and edges that flow into
the par construct and are not killed by a strong update during the analy-
sis of one of the threads. We first consider an edge created by a thread ti
and still present in the points-to graph C′i flowing out of ti. Because all of
the points-to graphs C′j flowing out of the other parallel threads contain all
of the edges ever created during the analysis of ti, the edge will be in the
intersection.

We next consider any edge that flows into the par construct and is not killed
by a strong update during the analysis of one of the threads. This edge will still
be present at the end of the analysis of all of the threads, and so will be in the
intersection.

Finally, consider an edge flowing into the par construct that is killed by a
strong update during the analysis of one of the threads, say ti. This edge will
not be present in C′i, and will therefore not be present in the intersection.
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Fig. 7. Analysis result for example.

3.4.4 Created Edges Flowing Out of par Constructs. The set of edges E ′

flowing out of the par construct will be used to compute the interference in-
formation for threads that execute in parallel with the par construct. Since all
of the par construct’s threads can execute in parallel with any thread that can
execute in parallel with the par construct, all of the edges E j created during the
analysis of the par construct’s threads should be included in E ′. This reasoning
determines the equation E ′ = E ∪ (∪1≤i≤nEi).

3.5 Analysis of Example

Figure 7 presents the parallel flow graph for the example in Figure 1. Selected
program points in the flow graph are annotated with the results of the analysis.
Each analysis result is of the form 〈C, I, E〉, where C is the current points-to
graph, I is the interference information, and E is the set of created edges.

Several points are worth mentioning. First, even though the edges p → y
and p→ z are not present in the points-to graph flowing into the par construct,
they are present in the flow graph at the beginning of the first thread. This
reflects the fact that the assignments p = &y or p = &z from the second thread
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may execute before any statement from the first thread. Second, even though
the edges p → y and p → z are present in the flow graph at the end of the
first thread, they are not present in the flow graph after the par construct. This
reflects the fact the assignment p = &z from the second thread always executes
after the assignments p = &x and p = &y. Therefore, after the par construct, p
point to z instead of x or y.

3.6 Invariant on the Interference Information

We emphasize that the dataflow equations for basic statements from Figure 3
and the dataflow equations for par constructs from Figure 6 maintain the fol-
lowing invariant: I ⊆ C. This invariant means that the interference informa-
tion is always included in the current points-to information, which is a key
feature of our approach. Since the interference information contains all of the
edges created by the concurrent threads, the invariant I ⊆ C ensures that, at
any program point, the current thread takes into account the effects of all the
concurrent threads.

Proving that I ⊆ C is true at any program point is relatively straightforward.
In the case of basic statements, the relation I ′ ⊆ C′ holds after the execution of
the statement st because the interference information is added to the current
points-to information for both strong and weak updates. In the case of concur-
rent constructs, the proof is done by induction. We assume that I ⊆ C before
the par construct, and we prove that Ii ⊆ Ci for each of the spawned threads
ti. This is directly obtained from the relations that give the points-to and in-
terference information flowing into the thread ti: Ii = I ∪ (∪1≤ j≤n, j 6=i E j ) and
Ci = C ∪ (∪1≤ j≤n, j 6=i E j ).

3.7 The Fixed-Point Analysis Algorithm

The analysis algorithm uses a standard fixed-point approach to solve the
dataflow equations in the sequential parts of code. There is a potential issue
with analyzing par constructs. The dataflow equations for par constructs reflect
the following circularity in the analysis problem: to perform the analysis for one
of the par construct’s threads, you need to know the analysis results from all
of the other parallel threads. To perform the analysis on the other threads, you
need the analysis results from the first thread.

The analysis algorithm breaks this circularity using a fixed-point algorithm.
It first initializes the points-to information at each program point to 〈∅, ∅, ∅〉.
The exception is the program point before the entry node the overall graph, that
is the point before the outermost begin node, where the points-to information
is initialized to 〈L × {unk}, ∅, ∅〉 so that each pointer is initially pointing to the
unknown location. The algorithm then uses a standard worklist approach: every
time a vertex’s input information changes, the vertex is reanalyzed with the new
information. Eventually the analysis converges on a fixed-point solution to the
dataflow equations.

3.8 Complexity of Fixed-Point Algorithm

We derive the following complexity upper bound for the fixed-point intrapro-
cedural analysis of parallel constructs. Let n be the number of statements in
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the program and l the number of abstract locations that the algorithm manipu-
lates. The size of the points-to graphs is therefore O(l2) and so is the size of each
points-to graph triple. Because the analysis computes a triple for each program
point, the maximum size of all of the points-to graphs put together is O(nl2).
If the fixed-point algorithm processes all the n nodes in the flow graph with-
out adding an edge to one of the points-to graphs, it terminates. The algorithm
therefore analyzes at most O(n2l2) nodes. Finally, if all the pointer assignments
in the program are basic statements, then at most two abstract locations ap-
pear in each statement. Hence l ≤ 2n and the complexity of the algorithm is
O(n4). In practice, we expect that the complexity will be significantly smaller
than this upper bound, and our experimental results support this expectation.

3.9 Precision of Analysis

We next discuss the precision of the multithreaded algorithm relative to an
ideal algorithm that analyzes all interleavings of the statements from paral-
lel threads, to which we refer as the interleaved algorithm. The basic idea of
this algorithm is to eliminate parallel constructs from the flow graph using a
product construction of the parallel threads, then use the standard algorithm
for sequential programs to analyze the resulting interleaved sequential flow
graph. The key result is that if there is no interference between the parallel
threads, then the multithreaded algorithm yields the same results as the inter-
leaved algorithm. We use here the standard definition of interference between
parallel threads: two threads interfere if one thread writes a shared pointer
that the other thread accesses.

Intuitively, this result comes from several observations. First, if threads do
not interfere, they are independent and the algorithm can analyze each thread
separately in isolation. In this case, the multithreaded analysis produces the
same result as an algorithm that first performs a sequential analysis that ig-
nores the edges created by other threads, and then merges these points-to edges
at each program point. Second, if threads do not interfere, the interference
points-to information for each thread precisely characterizes all the possible
partial executions of the other concurrent threads: for each edge in the inter-
ference points-to information, there is a thread and a partial execution of the
thread that creates that edge. Appendix C provides more details about the pre-
cision of the algorithm.

Hence, in the absence of interference, our analysis provides a safe, efficient
way to obtain the precision of the ideal algorithm. Our experimental results
show that, even for programs that concurrently access shared pointers, our
multithreaded algorithm gives virtually the same results as the interleaved
algorithm.

3.10 Parallel Loops

The parallel loop construct parfor executes, in parallel, a statically unbounded
number of threads that execute the same loop body parbody. The analysis of
a parallel loop construct is therefore equivalent to the analysis of a par con-
struct that spawns an unknown number of concurrent threads executing the
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[[ parfor{parbody} ]] 〈C, I, E〉 = 〈C′0, I, E ∪ E0〉, where

[[ parbody ]] 〈C ∪ E0, I ∪ E0, ∅〉 = 〈C′0, I ∪ E0, E0〉

Fig. 8. Dataflow equations for the parallel loop construct parfor.

same code. The system of dataflow equations for the parallel loop construct is
therefore similar to the one for the par construct, but the number of equa-
tions in the new system depends on the dynamic number n of concurrent
threads.

However, the identical structure of the threads allows simplifications in these
dataflow equations. In particular, the analyses of the identical threads produce
identical results. Hence the analyses will produce, for all threads, the same final
points-to information, C′i = C′0, 1 ≤ i ≤ n, and the same set of created edges,
Ei = E0, 1 ≤ i ≤ n. The interference points-to information is therefore the same
for all of the threads: Ii = I ∪⋃1≤ j≤n, j 6=i E j = I ∪ E0. Here we conservatively
assume that the loop creates at least two concurrent threads.

The dataflow equations for a parallel loop construct parfor are shown in
Figure 8. They are derived from the equations from Figure 6 by imposing the
requirement that all the spawned threads have the same final points-to in-
formation C′0 and the same set of created edges E0. This produces identical
dataflow equations for all the concurrent threads, therefore the analysis can
solve a dataflow equation for a single thread (the second equation from Figure 8)
to produce a result valid for all threads.

The approach of using a finite number of copies of the loop body for analyzing
the interactions between a statically unbounded number of threads has also
been used by other researchers [Krishnamurthy and Yelick 1996; Lee et al.
1998]. However, those specific analysis problems required two copies of the
loop body, while in the context of pointer analysis our algorithm needs only one
copy.

3.11 Conditionally Spawned Threads

The conditional parallel construct parcond is similar to the par construct. The
statement parcond{{t1, c1}, . . . , {tn, cn}} conditionally starts the parallel execu-
tion of at most n child threads; it executes thread ti only if its condition expres-
sion ci is true. The program then waits at the end of the construct until all the
child threads complete.

Figure 9 shows the dataflow equations for conditional parallel constructs.
To characterize the fact that threads may not be executed if their condition
evaluates to false, the analysis adjusts the way that the points-to graphs are
combined at the synchronization point. Before taking the intersection of the
points-to graphs from conditionally executed child threads, the analysis adds
all of the edges killed during the analysis of each conditionally executed child
thread back into the points-to graph flowing out of the child thread. This fact is
captured by the equation C′ = ⋂1≤i≤n (C′i ∪ Ci). This modification ensures that
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[[ parcond{{t1, c1} . . . {tn, cn}} ]] 〈C, I, E〉 = 〈C′, I, E ′〉, where

C′ =
⋂

1≤i≤n

(C′i ∪ Ci)

E ′ = E ∪
⋃

1≤i≤n

Ei

Ci = C ∪
⋃

1≤ j≤n, j 6=i

E j (for 1 ≤ i ≤ n)

Ii = I ∪
⋃

1≤ j≤n, j 6=i

E j (for 1 ≤ i ≤ n)

[[ ti ]] 〈Ci , Ii , ∅〉 = 〈C′i , Ii , Ei〉 (for 1 ≤ i ≤ n)

Fig. 9. Dataflow equations for the conditional parallel construct parcond.

the analysis correctly reflects the possibility that the child thread may not be
created and executed.

3.12 Private Global Variables

Multithreaded languages often support the concept of private global variables.
Conceptually, each executing thread gets its own version of the variable, and
can read and write its version without interference from other threads. Unlike
shared variables, private global variables are not accessible from other threads.
They are not part of the address space of other threads, so passing the address
of a private variable to another thread results in a meaningless (unknown)
address in the invoked thread.

Our analysis models the behavior of private global variables by saving and
restoring points-to information at thread boundaries. When the analysis prop-
agates the points-to information from a parbegin vertex to the begin vertex of
one of its threads, it replaces the points-to information flowing into the begin
vertex as follows. All private global variables are initialized to point to the un-
known location, and all pointers to private global variables are reinitialized to
point to the unknown location. At the corresponding parend vertex, the analy-
sis processes the edges flowing out of the child threads to change occurrences of
private global variables to the unknown location (these occurrences correspond
to the versions from the child threads). The analysis then appropriately restores
the points-to information for the versions of the private global variables of the
parent thread.

3.13 Interprocedural Analysis

At each call site, the analysis must determine the effect of the invoked pro-
cedure on the points-to information. Our algorithm uses a generalization
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of the mapping/unmapping technique proposed by Emami, Ghiya and
Hendren [Emami et al. 1994]. It maps the current points-to information into
the name space of the invoked procedure, analyzes the procedure, then unmaps
the result back into the name space of the caller. Like the analysis of Wilson
and Lam [1995], our analysis caches the result every time it analyzes a proce-
dure. Before it analyzes a procedure, it looks up the procedure and the analysis
context in the cache to determine if it has previously analyzed the procedure
in the same context. If so, it uses the results of the previous analysis instead of
reanalyzing the procedure.

We generalize the notions of input contexts and partial transfer functions to
multithreaded programs by incorporating the interference information and the
set of edges created by procedures in their definitions. The input to a procedure
includes the interference information and the result of the procedure includes
the set of edges created by that procedure. The interference information is not
part of the procedure result because the execution of the procedure doesn’t
change its interference information.

Definition 3.13.1. Given a procedure p, a multithreaded input context
(MTC) is a pair 〈Cp, Ip〉 consisting of an input points-to graph Cp and a set
of interference edges Ip. A multithreaded partial transfer function (MT-PTF) of
p is a tuple 〈Cp, Ip, C′p, E ′p, r ′p〉 that associates the input context 〈Cp, Ip〉with an
analysis result for p. This analysis result consists of an output points-to graph
C′p, a set E ′p of edges created by p, and a location set r ′p that represents the
return value of the procedure.

As part of the mapping process, the analysis replaces all location sets that
are not in the naming environment of the invoked procedure with anonymous
placeholders called ghost location sets, which are similar to the non-visible vari-
ables, invisible variables, or extended parameters used in earlier interprocedu-
ral analyses [Landi and Ryder 1992; Emami et al. 1994; Wilson and Lam 1995].
Ghost location sets serve two purposes. First, they allow the algorithm to dis-
tinguish between the parameters and local variables of the current invocation
of a recursive procedure from those of the previous invocations, thus increasing
the precision of the analysis. Second, ghost location sets facilitate the caching
of previous analysis results, thus reducing the number of generated contexts
and improving the efficiency of the analysis. Although the analysis may build
an exponential number of contexts in the worst case, the use of partial trans-
fer functions and ghost location sets can significantly reduce this number in
practice, to just one or two contexts per procedure [Wilson and Lam 1995].

Ghost locations are also similar to the phantom nodes or outside nodes from
some existing escape analyses [Choi et al. 1999; Whaley and Rinard 1999;
Salcianu and Rinard 2001]. However, because those analyses are compositional
and analyze procedures with no information about the actual invocation con-
texts, the phantom and outside nodes are general placeholders that match nodes
in any input context. Depending on the particular input context, the mapping
process may merge together several nodes from caller procedure into a single
placeholder, thus increasing the granularity of the objects and reducing the
precision of the analysis. In contrast, in our algorithm, ghost location sets are
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created for known input contexts at call sites and each ghost location in our
algorithm precisely models a single location set in the input context.

During the mapping process, the algorithm translates both the current
points-to graph C and the interference information I from the name space
of the caller into the name space of the invoked procedure. The mapping al-
gorithm, which sets up the input context 〈C, I〉 for the analysis of the invoked
procedure consists of the following four steps on graph C; for the interference
graph I , the algorithm performs only the first three steps:

—The local variables and formal parameters of the current procedure are rep-
resented using location sets. The algorithm maps these location sets to new
ghost location sets.

—The actual parameters of the procedure call are also represented using loca-
tion sets. The algorithm assigns the actual parameters to the formal param-
eters of the invoked procedure.

—The algorithm removes subgraphs that are not reachable from the global
variables and formal parameters of the invoked procedure.

—The algorithm adds the local variables from the invoked procedure to the
current points-to information. It initializes all of the local variables to point
to the unknown location set.

The algorithm next analyzes the invoked procedure in this analysis context to
get a result 〈C′p, E ′p, r ′p〉. It then unmaps this result back into the name space
of the calling procedure. The unmapping process consists of the following steps
on the current points-to graph C′p; for the set of created edges E ′p and the set of
locations where the return value r ′p points to, the algorithm performs only the
first two steps:

—The algorithm maps all of the formal parameters and local variables from
the invoked procedure to the unknown location set.

—The algorithm unmaps the ghost location sets back to the corresponding
location sets that represent the local variables and formal parameters of the
caller procedure.

—The algorithm adds the unreachable subgraphs removed during the mapping
process back into the current points-to graph.

The analysis continues after the procedure call with this context. Appendix A
provides a formal definition of mapping and unmapping.

3.14 Recursive Procedures

As described so far, this algorithm does not terminate for recursive procedures.
To eliminate this problem, we use a fixed-point approach similar to those for se-
quential context-sensitive analysis [Emami et al. 1994; Wilson and Lam 1995].
However, these algorithms use exactly two contexts for the analysis of each
recursive procedure: a recursive context at the root of the recursion and an
approximate context that merges all the other contexts that occur during the
recursion. In contrast, our analysis does not impose a limit on the number of

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 1, January 2003.



88 • Rugina and Rinard

contexts in recursive computations; it generates new contexts as needed and
reuses existing ones whenever the inputs match. This approach is more pre-
cise in general. Consider for example a recursive procedure that passes its
arguments to the recursive calls, but swaps their order on even iterations.3 In
this case, our approach generates two contexts with mutually recursive calls.
If the arguments of the recursive procedure initially point to distinct objects,
our analysis can determine that the arguments still point to distinct objects in
all recursive invocations. The use of an approximate context here would merge
these contexts and the analysis would imprecisely report that the parameters
may be aliased. Besides being more precise, we believe that handling recursive
procedures using multiple possible contexts is also more natural. It is easier to
implement, and usually generates few (at most two) contexts for each recursive
procedure.

Our iterative algorithm works as follows. It maintains a current best anal-
ysis result for each context; each such result is initialized to 〈∅, ∅, ∅〉. As the
algorithm analyzes the program, the nested analyses of invoked procedures
generate a stack of analysis contexts that models the call stack in the execution
of the program. Whenever an analysis context is encountered for the second
time on the stack, the algorithm does not reanalyze the procedure (this would
lead to an infinite loop). It instead uses the current best analysis result and
records the analyses that depend on this result. Whenever the algorithm fin-
ishes the analysis of a procedure and generates an analysis result, it merges
the result into the current best result for the analysis context. If the current
best result changes, the algorithm repeats all of the dependent analyses. The
process continues until it terminates at a fixed point.

3.15 Linked Data Structures on the Stack

As described so far, the algorithm does not terminate for programs that use
recursive procedures to build linked data structures of unbounded size on the
call stack.4 It would instead generate an unbounded number of analysis con-
texts as it unrolls the recursion. We eliminate this problem by recording the
actual location sets from the program that correspond to each ghost location set.
Whenever the algorithm encounters an analysis context with multiple ghost lo-
cation sets that correspond to the same actual location set, it maps the ghost
location sets to a single new ghost location set. This technique maintains the
invariant that no analysis context ever has more ghost location sets than there
are location sets in the program, which ensures that the algorithm generates a
finite number of analysis contexts.

3.16 Function Pointers and Library Functions

The algorithm uses a case analysis to analyze programs with function point-
ers that may point to more than one function. At pointer-based call sites, the

3This pattern occurs in the Heat benchmark described in Section 4.
4The pousse benchmark described in Section 4, for example, uses recursion to build a linked list of
unbounded size on the call stack. The nodes in the linked list are stack-allocated C structures; a
pointer in each node points to a structure allocated in the stack frame of the caller.
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algorithm analyzes all the possible callees, then merges the unmapped results
at the end of each callee to obtain the points-to graph after the call statement.
This algorithm is a straightforward generalization of an earlier algorithm used
to analyze serial programs with this property [Emami et al. 1994].

The analysis also models the behavior of several standard library functions
that manipulate or return pointers, including operations on strings, file han-
dling, and memory allocation. The analysis assumes that all other library func-
tions have no side effects on the pointer variables in the program and ignores
such library calls.

3.17 Analysis of Cilk

Our target language, Cilk, provides two basic parallel constructs: the spawn and
sync constructs. The spawn construct enables the programmer to create a thread
that executes in parallel with the continuation of its parent thread. The parent
thread can then use the sync construct to block until all outstanding threads
spawned by the current thread complete. Returning from a procedure implicitly
executes a sync and waits for all the threads spawned by that procedure to
complete. Hence, spawned threads do not outlive the procedures that create
them.

Our compiler recognizes structured uses of these constructs. A sequence of
spawn constructs followed by a sync construct is recognized as a par construct; a
sync construct preceded by a loop whose body is a spawn construct is recognized
as a parallel loop; and a sequence of spawn constructs enclosed by if statements,
followed by a sync construct is recognized as a parcond construct.

The difficulty is that these constructs may be used to create unstructured
forms of parallelism that don’t match any of the above structured constructs (i.e.
par, parfor, and parcond constructs). Our analysis conservatively approximates
the unstructured execution of parallel threads; it replaces the unstructured
uses of spawn and sync statements with approximate structured constructs, as
follows. The algorithm first determines the smallest subgraph G in the control
flow graph that contains all the spawn statements that a particular sync may
block for. Because spawned threads do not outlive the procedure that creates
them, G is a subgraph of the intraprocedural control flow graph of the enclos-
ing procedure. The analysis then creates a special thread tG that executes the
sequential computation in G, and skips the spawn statements. The analysis
finally replaces the subgraph G with an approximate parallel construct that
concurrently executes the thread tG and the threads corresponding to all the
spawn statements. If a spawned thread is part of a loop in G, the analysis treats
it as a parallel loop that executes an unbounded number of copies of that thread.
If a spawned thread is not executed on all paths to the sync statement, it is a
conditionally spawned thread and the analysis uses the techniques presented
in Section 3.11.

Intuitively, the correctness of this transformation comes from the fact that,
in the approximate parallel construct, the spawned threads conservatively ex-
ecute in parallel with all of the code in tG , while in the original subgraph G,
they execute concurrently only with subparts of the computation in tG . Hence,
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this transformation provides a sound way to handle the unstructured uses of
spawn and sync statements in Cilk programs.

3.18 Analysis Scope

The analysis is designed for multithreaded programs with structured paral-
lelism. It can also handle unstructured forms of parallelism in the Cilk lan-
guage using conservative, approximate structured constructs, as presented in
Section 3.17. However, the algorithm does not handle general unstructured par-
allel constructs (such as POSIX threads or Java threads) or synchronization
constructs (such as the post and wait constructs in parallel dialects of Fortran
programs, rendezvous constructs in Ada, or the wait and notify constructs in
Java).

There are several difficulties in these cases. Our current algorithm uses the
structured form of concurrency to quickly find statements that can execute in
parallel. Unstructured forms of concurrency and additional synchronization
constructs can significantly complicate the determination of which statements
can execute in parallel. Our current algorithm also exploits the fact that threads
do not outlive their creating procedures to use a simple interprocedural abstrac-
tion with a single graph of created points-to edges to summarize the effect of
each procedure on the analysis information. In effect, the analysis can treat
the execution of the entire procedure call in the same way as other sequential
statements, even though the procedure may create parallel threads internally.
Supporting unstructured forms of concurrency in which threads may outlive
their creating procedures would complicate the analysis and require the algo-
rithm to use a more complicated abstraction. A related problem would be the
need to match fork and join points across procedures and to propagate the infor-
mation in the more complex abstraction across multiple procedure boundaries
using mapping and unmapping.

4. EXPERIMENTAL RESULTS

We have implemented the multithreaded analysis in the SUIF compiler infras-
tructure. We built this implementation from scratch starting with the standard
SUIF distribution, using no code from previous pointer analysis implementa-
tions for SUIF. We also modified the SUIF system to support Cilk, and used
our implementation to analyze a sizable set of Cilk programs. Table I presents
a list of the programs and several of their characteristics.

4.1 Benchmark Set

Our benchmark set includes all the programs in the Cilk distribution,5 as well
as several larger applications developed by researchers at MIT. The programs
have been heavily optimized by hand to extract the maximum performance—in
the case of pousse, for timed competition with other programs.6 As a result, the

5Available at http://supertech.lcs.mit.edu/cilk.
6Pousse won the program contest associated with the ICFP ’98 conference, and was undefeated in
this contest.
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Table I. Cilk Program Characteristics

Lines Thread Total(Pointer) Total(Pointer) Total(Pointer)
of Creation Load Store Location

Program Code Sites Instructions Instructions Sets
barnes 1149 5 352 (318) 161(125) 1289(395)
block 342 19 140 (140) 9 (9) 546 (64)
cholesky 932 27 136 (134) 29 (29) 863(100)
cilksort 499 11 28 (28) 14 (14) 569 (65)
ck 505 2 85 (64) 49 (38) 571 (36)
fft 3255 48 461 (461) 335(335) 1883(103)
fib 53 3 1 (1) 0 (0) 451 (17)
game 195 2 9 (8) 9 (8) 508 (38)
heat 360 6 36 (36) 12 (12) 632 (34)
knapsack 122 3 14 (14) 6 (6) 444 (21)
knary 114 3 4 (4) 0 (0) 473 (20)
lu 594 24 16 (16) 13 (13) 688 (87)
magic 965 4 83 (83) 74 (74) 739(108)
mol 4478 33 1880(1448) 595(387) 2324(223)
notemp 341 17 136 (136) 6 (6) 546 (64)
pousse 1379 8 181 (161) 127(118) 905 (88)
queens 106 2 8 (8) 3 (3) 472 (23)
space 458 23 272 (272) 13 (13) 561 (70)

programs heavily use low-level C features such as pointer arithmetic and casts.
Our analysis handles all of these low-level features correctly.

Most of the programs use divide and conquer algorithms. This approach
leads to programs with recursively generated concurrency; the parameters of
the recursive functions typically use pointers into heap or stack allocated data
structures to identify the subproblem to be solved. The parallel sections in many
of these programs manipulate sophisticated pointer-based data structures such
as octrees, efficient sparse-matrix representations, parallel hash tables, and
pointer-based representations of biological molecules.

We next discuss the application data in Table I. The Thread Creation Sites
column presents the number of thread creation sites in the program; typically
there would be several thread creation sites in a par construct or one thread cre-
ation site in a parallel loop. The Load and Store Instructions columns present,
respectively, the number of load and store instructions in the SUIF representa-
tion of the program. The total number of load or store instructions appears first;
the number in parenthesis is the number of instructions that access the value
by dereferencing a pointer. Note that SUIF generates load or store instructions
only for array accesses and accesses via pointers.

The Location Sets column presents the number of location sets in the pro-
gram. The total number of location sets appears first; the number in parenthe-
sis is the number of location sets that represent pointer values. These location
set numbers include location sets that represent the formal parameters, local
variables, and global variables. They do not include any ghost location sets gen-
erated as part of the analysis. The number of pointer location sets gives some
idea of how heavily the programs use pointers. Bear in mind that the location
set numbers include variables defined in standard include files; this is why a
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small application like fib has 451 total location sets and 17 pointer location
sets. These numbers should be viewed as a baseline from which to calculate the
number of additional location sets defined by the Cilk program.

4.2 Precision Measurements

We measure the precision of each analysis by computing, for each load or store
instruction that dereferences a pointer, the number of location sets that rep-
resent the memory locations that the instruction may access. The fewer the
number of target location sets per instruction, the more precise the analysis.
Although a good metric for the precision of the points-to analysis depends on
the specific application of the analysis information, the standard way to evalu-
ate the precision of points-to analyses is to count the number of target locations
for dereferenced pointers [Hind 2001].

We distinguish between potentially uninitialized pointers, or pointers with
the unknown location set unk in the set of locations sets that represent the
values to which the pointer may point, and definitely initialized pointers, or
pointers without the unknown location set unk.

The precision measurements are complicated by the fact that each procedure
may be analyzed for multiple points-to contexts. In different contexts, the load or
store instructions may require different numbers of location sets to represent
the accessed memory location. In this section we give two kinds of results,
depending on the way we count the points-to sets for instructions in different
contexts:

—separate contexts: loads and stores in different contexts are counted
separately.

—merged contexts: results from all contexts of each procedure are merged
together.

It is important to realize that the appropriate way of counting the target
points-to sets depends on the intended use of the pointer analysis informa-
tion. For example, if the information is used to verify statically that paral-
lel calls are independent, appropriate precision metrics use analysis results
from only those analysis contexts that appear at the parallel call sites. All
other analysis contexts are irrelevant, because they do not affect the suc-
cess or failure of the analysis that verifies the independence of parallel calls.
Hence, for this kind of application, the analysis results for separate contexts
are more relevant. On the other hand, if the analysis is used to optimize the
generated code, and the compiler does not generate multiple specialized ver-
sions of the procedures, the optimization must take into account results from
all of the analysis contexts. The MIT RAW compiler, for example, uses our
pointer analysis algorithm in an instruction scheduling system [Barua et al.
1999]. It uses the pointer analysis information to find instructions that access
memory from different memory modules. The success of the optimization de-
pends on the addresses of the potentially accessed memory locations from all
of the contexts. In this case, the analysis results for merged contexts are more
relevant.
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Fig. 10. Histogram of target points-to location sets in separate contexts for: a) load instructions
and b) store instructions.

Our precision measurements count, for each load or store instruction, the
number of location sets required to represent the accessed memory location.
We present the precision measures using the histograms in Figure 10, which
gives combined results for all the benchmarks for separate contexts. For each
number of location sets, the corresponding histogram bar presents the number
of load or store instructions that require exactly that number of location sets to
represent the accessed memory location. Each bar is divided into a gray section
and a white section. The gray section counts instructions whose dereferenced
pointer is potentially uninitialized; the white section counts instructions whose
dereferenced pointer is definitely initialized. Figure 10a presents the histogram
for all contexts and all load instructions that use pointers to access memory in
the Cilk programs. Figure 10b presents the corresponding histogram for store
instructions.

These histograms show that the analysis gives good precision: for the entire
set of programs, no instruction in any context requires more than four location
sets to represent the accessed location. Furthermore, for the vast majority of the
load and store instructions, the analysis is able to identify exactly one location
set as the unique target, and that the dereferenced pointer is definitely initial-
ized. According to the analysis, approximately one quarter of the instructions
may dereference a potentially uninitialized pointer.

Table II breaks the counts down for each application for separate contexts.
Each column is labeled with a number n; the data in the column is the sum
over all procedures p and all analyzed contexts c of the number of load or
store instructions in p that, in context c, required exactly n location sets to
represent the accessed location. The number in parenthesis tells how many of
the instructions dereference potentially uninitialized pointers. In barnes, for
example, 715 load instructions in all the analyzed contexts require exactly one
location set to represent the stored value; of these 715, only 79 used a potentially
uninitialized pointer.

Table III presents similar results for merged contexts. Unlike the results
from separate contexts, which count the location sets for each instruction
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Table II. Per-Program Counts of the Number of Location Sets Required to Represent an
Accessed Location—Separate Contexts, with Ghost Location Sets

Load Instructions Store Instructions
Number of Read Location Sets Number of Written Location Sets

Program 1 2 3 4 1 2 3 4
barnes 715 (79) 376(199) 2 (2) 147(147) 306 (7) 65 (39) – 20 (20)
block 276 (2) – – – 18 (0) – – –
cholesky 94 (68) 624(624) – – 143 (20) 90 (90) – –
cilksort 40 (1) – – – 19 (0) – – –
ck 121 (3) – – – 78 (0) – – –
fft 1761 (1) 1 (0) – – 1287 (0) – – –
fib 1 (1) – – – – – – –
game 16 (0) – – – 17 (0) – – –
heat 103 (16) 33 (28) 5 (5) – 21 (15) 30 (30) – –
knapsack 14 (0) – – – 6 (0) – – –
knary 4 (4) – – – – – – –
lu 15 (0) 1 (1) – – 13 (0) – – –
magic 114 (2) – – – 82 (0) – – –
mol 5549(1141) 871(871) 58(36) – 1470(128) 265(265) 53(0) –
notemp 136 (2) – – – 7 (0) – – –
pousse 765 (40) 14 (14) 3 (3) – 578 (40) – – –
queens 13 (3) 3 (3) – – 12 (0) – – –
space 788 (2) 12 (0) – – 14 (0) 20 (0) – –

Table III. Per-Program Counts of the Number of Location Sets Required to Represent an Accessed
Location—Merged Contexts, Ghost Location Sets Replaced By Corresponding Actual Location Sets

Load Instructions Store Instructions
Number of Read Location Sets Number of Written Location Sets

Program 1 2 3 4 12 1 2 3 4 6
barnes 146 (10) 114 (26) 2 (2) 53(47) 3 (0) 92 (2) 25 (6) – 8(8) –
block 136 (2) 4 (0) – – – – 9 (0) – – –
cholesky 2 (0) 132(132) – – – 7 (0) 22(22) – – –
cilksort 16 (1) 12 (0) – – – 9 (0) 5 (0) – – –
ck 53 (3) 11 (0) – – – 19 (0) 19 (0) – – –
fft 144 (1) – – 317 (0) – 18 (0) – – 317(0) –
fib 1 (1) – – – – – – – – –
game 5 (0) 3 (0) – – – 4 (0) 4 (0) – – –
heat 7 (2) 17 (0) 12(12) – – 2 (0) 5 (5) 5 (5) – –
knapsack 14 (0) – – – – 6 (0) – – – –
knary 4 (4) – – – – – – – – –
lu 15 (0) 1 (1) – – – 13 (0) – – – –
magic 67 (2) 16 (0) – – – 61 (0) 13 (0) – – –
mol 1113(163) 316(315) 19(12) – – 310(37) 61(58) 6 (0) 6(0) 4 (0)
notemp 136 (2) – – – – 5 (0) 1 (0) – – –
pousse 101 (8) 56 (2) 1 (0) 3 (3) – 64 (8) 44 (0) 10 (0) – –
queens 3 (3) 3 (1) 2 (2) – – 1 (0) 2 (0) – – –
space 264 (2) 8 (0) – – – – 13 (0) – – –

multiple times, once for each analysis context, the results in Table III merge
all the analysis contexts and then count the location sets in the combined in-
formation, once for each instruction. There is also a difference in the way ghost
location sets are counted. If a ghost location set represents the accessed memory
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location, Table II counts just the ghost location set, while Table III counts the
actual location sets that were mapped to that ghost location set during the
analysis.

We next discuss the sources that lead our analysis to report potentially ini-
tialized pointers. Arrays of pointers represent one such source. Because pointer
analysis is not designed to recognize when every element of an array of pointers
has been initialized, the analysis conservatively generates the result that each
pointer in an array of pointers is potentially uninitialized. In general, it may be
very difficult to remove this source of imprecision. For our set of measured Cilk
programs, however, it would usually be straightforward to extend the analysis
to recognize the loops that completely initialize the arrays of pointers.

NULL pointers are another source of potentially uninitialized pointers. In
our analysis, NULL pointers are represented by the unknown location set. In
some cases, NULL is passed as an actual parameter to a procedure contain-
ing conditionally executed code that dereferences the corresponding formal pa-
rameter. Although this code does not execute if the parameter is NULL, the
algorithm does not perform the control-flow analysis required to realize this
fact. The result is that, in contexts with the formal parameter bound to NULL,
instructions in the conditionally executed code are counted as dereferencing
potentially uninitialized pointers.

4.3 Comparison with Interleaved Analysis

Ideally, we would evaluate the precision of the algorithm presented in this pa-
per, the Multithreaded algorithm, by comparing its results with those of the
Interleaved algorithm, which uses the standard algorithm for sequential pro-
grams to analyze all possible interleavings. But the intractability of the Inter-
leaved algorithm makes it impractical to use this algorithm even for comparison
purposes.

We instead developed an extension of the standard flow-sensitive, context-
sensitive algorithm for sequential programs, the Sequential algorithm, which
ignores parbegin and parend vertices and analyzes the threads of the parbegin
and parend in the order in which they appear in the program text. In effect,
parallel threads are analyzed as if they execute sequentially; the algorithm ana-
lyzes only a particular interleaving and is therefore unsound for all the possible
executions of the parallel program. However, it generates a less conservative
result than the Interleaved algorithm and therefore provides an upper bound
on the achievable precision.

We have then compared the results of the Sequential and Multithreaded
algorithms. Since the Sequential and Multithreaded analysis algorithms gen-
erate analysis contexts that are incomparable because of the interference in-
formation, we have considered the results for merged contexts. For our set
of benchmarks, the Sequential algorithm produced virtually identical loca-
tion set counts as the Multithreaded analysis results shown in Table III.
For pousse, the counts differ slightly because of the handling of private vari-
ables in the Multithreaded analysis. We conclude that, at least by this met-
ric, the Sequential and Multithreaded analyses provide virtually identical
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Table IV. Analysis Measurements

Total Number Mean Mean
of Parallel Number of Number of
Construct Iterations per Threads per

Program Analyses Analysis Analysis
barnes 12 2.00 2.00
block 13 1.00 3.85
cholesky 109 1.83 4.11
cilksort 8 1.00 2.50
ck 3 1.00 2.00
fft 182 1.73 3.50
fib 1 1.00 2.00
game 3 1.00 2.00
heat 8 1.62 2.00
knapsack 1 1.00 2.00
knary 1 1.00 2.00
lu 10 1.00 2.80
magic 24 1.00 2.00
mol 99 1.18 2.27
notemp 15 1.00 2.53
pousse 9 1.22 3.33
queens 8 2.25 2.00
space 15 1.00 6.80

precision. Recall that the Sequential analysis provides an upper bound on
the precision attainable by the Interleaved algorithm. We therefore conclude
that the Multithreaded algorithm and Interleaved algorithms provide virtu-
ally identical precision, at least for this metric and this set of benchmark
programs.

4.4 Analysis Measurements

To give some idea of the complexity of the analysis in practice, we mea-
sured the total number of parallel construct analyses and the number of it-
erations required for each analysis to reach a fixed point. The use of other
parallel constructs complicates the accounting. Here we count each synchro-
nization point in the program as a parallel construct unless the synchro-
nization point waits for only one thread. There is a synchronization point
at the end of each par construct, each parallel loop parfor, each conditional
parallel construct parcond, and each approximate structured construct (see
Section 3.17). Table IV presents these numbers. This table includes the total
number of analyses of parallel constructs, the mean number of iterations re-
quired to reach a fixed point for that parallel construct, and the mean number
of threads analyzed each time. These numbers show that the algorithm con-
verges quickly, with the mean number of iterations always less than or equal to
2.25. We note that it is possible for the analysis to converge in one iteration if
the parallel threads create local pointers, use these pointers to access data, but
never modify a pointer that is visible to another parallel thread. The mapping
and unmapping process that takes place at procedure boundaries ensures that
the algorithm correctly models this lack of external visibility.
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Table V. Analysis Times (in Seconds) for Sequential
and Multithreaded Analysis Algorithms

Sequential Multithreaded
Program Analysis Times Analysis Times
barnes 48.45 49.75
blockedmul 0.78 0.93
cholesky 6.92 17.48
cilksort 0.32 0.36
ck 0.27 0.29
fib 0.01 0.01
fft 5.60 10.80
game 0.24 0.50
heat 0.40 0.82
knapsack 0.04 0.04
knary 0.02 0.03
lu 0.39 0.43
magic 1.77 6.26
mol 125.17 151.18
notempmul 0.53 0.73
pousse 5.34 7.77
queens 0.07 0.15
space 1.62 1.90

4.5 Analysis Times

Table V presents the analysis times for the Sequential and Multithreaded algo-
rithms. These numbers should give a rough estimate of how much extra anal-
ysis time is required for multithreaded programs. Although the Multithreaded
algorithm always takes longer, in most cases the analysis times are roughly
equivalent. There are a few outliers such as cholesky and fft. In general, the
differences in analysis times are closely correlated with the differences in the
number of contexts generated during the analysis.

5. POTENTIAL USES

We foresee two primary uses for pointer analysis: to enable the optimization and
transformation of multithreaded programs, and to build software engineering
and program understanding tools.

5.1 Current Uses

To date, our pointer analysis algorithm has been used in several projects: an in-
struction scheduling project, a C-to-silicon parallelizing compiler, two bitwidth
analysis projects, a project for software-managed caches, and a symbolic anal-
ysis project for divide and conquer programs.

The MIT RAWCC compiler uses our analysis to disambiguate the targets
of load and store instructions [Barua et al. 1999]. The goal is to exploit
instruction-level parallelism and to determine statically which memory mod-
ules may be accessed by specific instructions. The MIT DeepC compiler,
which translates C code directly to silicon, uses our pointer analysis to split
large memory banks into smaller memories with smaller address lengths
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[Babb et al. 1999]. Each piece of combinational logic is then connected only to
the accessed small memories, thus exploiting a finer-grain kind of parallelism
than the RAWCC compiler. The DeepC compiler also uses our pointer analy-
sis to perform bitwidth analysis, which determines the number of bits required
to store values computed by the program [Stephenson et al. 2000]. Memory
disambiguation provided via pointer analysis information enables more pre-
cise results than the conservative treatment of loads and stores. Our pointer
analysis package was similarly used in the CMU PipeWrench project for im-
proving precision of the bitwidth analysis [Budiu et al. 2000]. Another project,
FlexCache, developed at MIT and at UMass Amherst, uses our analysis as
part of an effort to deliver a software-only solution for managing on-chip data
caches [Moritz et al. 2000]. The goal is to use a combination of compiler anal-
yses, including pointer analysis, to reduce the number of software cache-tag
lookups.

Finally, we have used the pointer analysis results as a foundation for the
symbolic analysis of divide and conquer algorithms [Rugina and Rinard 1999,
2000]. The goal here is to use the extracted symbolic information to parallelize
sequential programs, to check for data races in multithreaded programs, to
eliminate redundant bounds checks in type-safe languages, or to check for array
bounds violations in type-unsafe languages. For efficiency reasons, divide and
conquer programs often access memory using pointers and pointer arithmetic.
Our analysis algorithm provides the pointer analysis information required to
symbolically analyze such pointer-intensive code.

In the symbolic analysis of divide and conquer programs, we use the multi-
threaded version of the algorithm for all the analyses except automatic paral-
lelization. The other projects, as well as the parallelization of divide and conquer
programs use the sequential version of the algorithm.

5.2 Software Engineering Uses

We believe that the software engineering uses will be especially important.
Multithreaded programs are widely believed to be much more difficult to build
and maintain than sequential programs. Much of the difficulty is caused by
unanticipated interference between concurrent threads. In the worst case, this
interference can cause the program to fail nondeterministically, making it very
difficult for programmers to reproduce and eliminate bugs.

Understanding potential interactions between threads is the key to main-
taining and modifying multithreaded programs. So far, the focus has been on
dynamic tools that provide information about interferences in a single execu-
tion of the program [Savage et al. 1997; Cheng et al. 1998]. Problems with these
tools include significant run-time overhead and results that are valid only for a
single test run. Nevertheless, they provide valuable information that program-
mers find useful.

Accurate pointer analysis of multithreaded programs enables the construc-
tion of tools that provide information about all possible executions, not a sin-
gle run. In fact, we have developed such a tool [Rugina and Rinard 2000]; it
uses pointer analysis information, augmented by symbolic bounds information,
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to generate, for each read or write, the set of potentially accessed memory
locations. It then correlates loads and stores from parallel threads to iden-
tify statements that could interfere and statically detect potential data races.
Programmers can use this kind of information to understand the interac-
tions between threads, identify all of the pieces of code that could modify
a given variable, and rule out some hypothesized sources of errors. Such
tools make it much easier to understand, modify and debug multithreaded
programs.

5.3 Program Transformation Uses

Accesses via unresolved pointers prevent the compiler from applying standard
optimizations such as constant propagation, code motion, register allocation
and induction variable elimination. The basic problem is that all of these op-
timizations require precise information about which variables program state-
ments access. But an access via an unresolved pointer could, in principle, access
any variable or memory location. Unresolved pointer accesses therefore prevent
the integrated optimization of the surrounding code. Pointer analysis is there-
fore required for the effective optimization of multithreaded programs.

It is also possible to use pointer analysis to optimize multithreaded programs
that use graphics primitives, file operations, database calls, network or lock-
ing primitives, or remote memory accesses. Each such operation typically has
overhead from sources such as context switching or communication latency. It
is often possible to eliminate much of this overhead by batching sequences of
operations into a single larger operation with the same functionality [Diniz and
Rinard 1997; Bogle and Liskov 1994; Zhu and Hendren 1998]. Ideally, the com-
piler would perform these batching transformations automatically by moving
operations to become adjacent, then combining adjacent operations. Informa-
tion from pointer analysis is crucial to enabling the compiler to apply these
transformations to code that uses pointers.

Finally, pointer analysis can be used in problems from distributed comput-
ing. Programs in such systems often distribute data over several machines.
Information about how parts of the computation access data could be used to
determine if data is available locally, and if not, whether it is better to move
data to computation or computation to data [Carlisle and Rogers 1995]. Pointer
analysis could also be used to help characterize how different regions of the pro-
gram access data, enabling the application of consistency protocols optimized
for that access pattern [Falsafi et al. 1994].

6. RELATED WORK

We discuss three areas of related work: pointer analysis for sequential pro-
grams, escape analysis for Java programs, and the analysis of multithreaded
programs.

6.1 Pointer Analysis for Sequential Programs

Pointer analysis for sequential programs is a relatively mature field [Chase
et al. 1990; Landi and Ryder 1992; Choi et al. 1993; Emami et al. 1994; Andersen
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1994; Ruf 1995; Wilson and Lam 1995; Steensgaard 1996; Shapiro and Horwitz
1997; Diwan et al. 1998; Rountev and Chandra 2000; Das 2000; Heintze and
Tardieu 2001]. A detailed survey of existing techniques in pointer analysis can
be found in Hind [2001]. We classify analyses with respect to two properties:
flow sensitivity and context sensitivity.

Flow-sensitive analyses take the statement ordering into account. They
typically use dataflow analysis to perform an abstract interpretation of the
program and produce a points-to graph or set of alias pairs for each program
point [Landi and Ryder 1992; Choi et al. 1993; Emami et al. 1994; Ruf 1995;
Wilson and Lam 1995].

Flow-insensitive analyses, as the name suggests, do not take statement or-
dering into account, and typically use some form of constraint-based analy-
sis to produce a single points-to graph that is valid across an entire analysis
unit [Andersen 1994; Steensgaard 1996; Shapiro and Horwitz 1997; O’Callahan
and Jackson 1997; Das 2000; Heintze and Tardieu 2001]. The analysis unit is
typically the entire program, although it is possible to use finer analysis units
such as the computation rooted at a given call site. Researchers have proposed
several flow-insensitive pointer analysis algorithms with different degrees of
precision. In general, flow-sensitive analyses provide a more precise result than
flow-insensitive analyses [Ryder et al. 2001], although it is unclear how im-
portant this difference is in practice. Finally, flow-insensitive analyses extend
trivially from sequential programs to multithreaded programs. Because they
are insensitive to the statement order, they trivially model all the interleavings
of the parallel executions.

Roughly speaking, context-sensitive analyses produce an analysis result for
each different calling context of each procedure. Context-insensitive analyses,
on the other hand, produce a single analysis result for each procedure, typically
by merging information from different call sites into a single analysis context.
This approach may lose precision because of interactions between information
from different contexts, or because information flows between call sites in a way
that does not correspond to realizable call/return sequences. Context-sensitive
versions of flow-sensitive analyses are generally considered to be more accurate
but less efficient than corresponding context-insensitive versions, although it
is not clear if either belief is true in practice [Ruf 1995; Wilson and Lam 1995].

A specific kind of imprecision in the analysis of recursive procedures makes
many pointer analysis algorithms unsuitable for our purposes. We used our
analysis as a foundation for race detection and symbolic array bounds checking
of multithreaded programs with recursively generated concurrency. This ap-
plication requires an analysis that is precise enough to recognize independent
calls to recursive procedures, even when the procedures write data allocated on
the stack frame of their caller. The only analyses that satisfy this requirement
even for sequential programs are both flow sensitive and use some variant of
the concept of invisible variables [Emami et al. 1994; Wilson and Lam 1995].
But even these analyses lose precision by limiting the number of contexts used
to analyze the recursive computation. They approximate the contexts of all
activations except the root of the recursion with a single analysis context. In
contrast, our approach generates new contexts when needed and models the
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recursive computation with using mutual recursion between these contexts.
This approach turned out to be critical for some of our applications.

6.2 Escape Analysis Algorithms for Java Programs

In the last few years, researchers have developed several escape analysis algo-
rithms for multithreaded Java programs [Whaley and Rinard 1999; Blanchet
1999; Bogda and Hoelzle 1999; Choi et al. 1999; Ruf 2000]. All of these algo-
rithms use some approximation of the reachability information between ob-
jects to compute the escape information. This reachability information is in
turn an approximation of the points-to information between objects. All of the
algorithms use the escape information for stack allocation and synchroniza-
tion elimination. Because Java is a multithreaded language, these algorithms
were designed to analyze multithreaded programs; they can all handle unstruc-
tured parallel constructs such as the Java threads. All of these algorithms,
however, only analyze single threads, and are designed to find objects that are
accessible to only the current thread. If an object escapes the current thread,
either a reference to the object was written into a static class variable or be-
cause the object becomes accessible to another thread, it is marked as glob-
ally escaping, and there is no attempt to recapture the object by analyzing
the interactions between the threads that access the object. These algorithms
are therefore fundamentally sequential program analyses that have been ad-
justed to ensure that they operate conservatively in the presence of parallel
threads.

Salcianu and Rinard [2001] have also developed, in research performed af-
ter the work presented in this paper, a new pointer and escape analysis that is
able to analyze interactions between concurrent threads. Unlike previous es-
cape analyses, this algorithm can detect, for instance, objects that are accessed
by multiple threads but do not escape a certain multithreaded computation.
However, the algorithm still performs weak updates (i.e. does not kill points-to
edges) for the objects that are accessed by more than one thread. In contrast, the
algorithm presented in this paper performs strong updates on shared pointers
and can characterize more precisely the interactions between parallel threads.

6.3 Analysis of Multithreaded Programs

The analysis of multithreaded programs is an area of increasing recent inter-
est [Rinard 2001]. It is clear that multithreading can significantly complicate
program analysis [Midkiff and Padua 1990], but a full range of standard tech-
niques has yet to emerge. In this section we discuss two main directions: extend-
ing traditional analyses for sequential programs to work with multithreaded
programs, and analyses designed to enable optimizations or detect errors that
are specific to multithreaded programs.

6.3.1 Extending Analyses for Sequential Programs. The straightforward
approach for the flow-sensitive analysis of multithreaded programs is to an-
alyze all possible interleavings of statements from the parallel threads, us-
ing a representation of the program consisting of configurations (states) and
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transitions between these configurations [Cousot and Cousot 1984; Chow and
Harrison 1992a]. But this approach is not practical because of the combinatorial
explosion in the number of states required to represent all the interleavings.
To attack the state space explosion problem, researchers have proposed several
ways of reducing the generated state space [Valmari 1990; Chow and Harrison
1992b; Godefroid and Wolper 1994]. These techniques rely on the fact that there
is little interaction between the parallel threads; in the worst case they are not
able to reduce the state space and for many programs the reduced space may be
still unmanageable. Moreover, these techniques do not apply to pointer-based
programs. In fact, the application of these techniques to programs with pointers
would require points-to information.

Other work in the area of flow-sensitive multithreaded analysis extended
the traditional sequential analyses and concepts for sequential programs to
multithreadead programs. This included reaching definitions [Sarkar 1997],
constant propagation [Knoop 1998; Lee et al. 1998], and code motion [Knoop
and Steffen 1999] for multithreaded programs; concurrent static single assign-
ment forms [Srinivasan et al. 1993; Lee et al. 1999]; and dataflow frameworks
for bitvector problems [Knoop et al. 1996] or for multithreaded programs with
copy-in, copy-out memory semantics [Grunwald and Srinivasan 1993]. Again,
none of these frameworks and algorithms applies to pointer analysis and the ap-
plication of these frameworks to programs with pointers would require pointer
analysis information.

Other researchers have directly used existing flow-insensitive techniques
to analyze multithreaded programs, in part because the reduced precision of
these algorithms did not have a critical impact for their applications. Zhu and
Hendren [1997] designed a set of communication optimizations for parallel pro-
grams and Ruf [2000] developed a technique for removing unnecessary synchro-
nization in multithreaded Java programs; they both use flow-insensitive pointer
analysis techniques [Steensgaard 1996] to detect pointer variable interference
between parallel threads. Hicks [1993] also has developed a flow-insensitive
analysis for a multithreaded language.

6.3.2 Analyses and Verifications Specific to Multithreaded Programs.
Other related areas of research explore analyses, optimizations, and verifica-
tions that are specific to multithreaded programs. These include the analysis
of synchronization constructs; deadlock detection; data race detection; commu-
nication and synchronization optimizations; and analyses for memory models.
We next discuss each of these areas in turn.

The analysis of synchronization constructs is aimed at characterizing how
the synchronization actions temporally separate the execution of various
program fragments. The compiler can further use this information to pre-
cisely detect statements that may execute concurrently. Several such analyses
have been developed to trace the control transfers associated with synchro-
nization constructs such as the post and wait constructs in parallel diale-
cts of Fortran [Callahan and Subhlok 1988; Emrath et al. 1989; Callahan
et al. 1990], the Ada rendezvous constructs [Taylor 1983; Duesterwald and
Soffa 1991; Masticola and Ryder 1993; Dwyer and Clarke 1994], and the wait
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and notify constructs in Java [Naumovich and Avrunin 1998; Naumovich et al.
1999]. But these are not designed to analyze the effects of accesses to shared
pointers: they either assume the absence of shared pointers or they don’t ana-
lyze data accesses at all. In contrast, our analysis is designed to analyze shared
pointer accesses, not the synchronization structure of the program; our algo-
rithm analyzes programs with structured parallelism and simple synchroniza-
tion, where the detection of concurrent statements is straightforward from the
program source. We therefore consider that synchronization analyses are or-
thogonal to our pointer analysis and we believe that our algorithm can be ex-
tended with such analysis techniques to handle more complex synchronization
constructs.

A deadlock traditionally occurs from circular waiting to acquire resources,
and is a classic problem in multithreaded computing. Deadlock detection in
multithreaded programs is closely related to synchronization analysis. The
compiler must analyze the synchronization structure of the program to de-
tect if it may lead to deadlocks between concurrent threads. Researchers
have developed a variety of analyses for detecting potential deadlocks in
Ada programs that use rendezvous synchronization [Taylor 1983; Dillon 1990;
Masticola and Ryder 1990; Long and Clarke 1991; Corbett 1996; Blieberger
et al. 2000]. A rendezvous takes place between a call statement in one
thread and an accept statement in another. The analyses match correspond-
ing call and accept statements to determine if every call will eventually
participate in a rendezvous. Again, these techniques focus on the analy-
sis of the synchronization structure rather than the effects of shared data
accesses.

A data race occurs when two parallel threads access the same memory loca-
tion without synchronization and one of the accesses is a write. Because data
races are almost always the result of programmer error, many researchers have
developed tools designed to find and help eliminate data races. Several ap-
proaches have been developed to attack this problem, including static program
specifications and verifications [Sterling 1994; Detlefs et al. 1998], augmented
type systems to enforce the synchronized access to shared data [Flanagan and
Abadi 1999; Flanagan and Freund 2000; Boyapati and Rinard 2001], and dy-
namic detection of data races based on program instrumentation [Steele 1990;
Dinning and Schonberg 1991; Netzer and Miller 1991; Mellor-Crummey 1991;
Min and Choi 1991; Savage et al. 1997; Cheng et al. 1998]. The most relevant
techniques are based, either partially or completely, on static analysis. Some
of these techniques concentrate on the analysis of synchronization, and rely on
the fact that detecting conflicting accesses is straightforward once the analysis
determines which statements may execute concurrently [Taylor 1983; Balasun-
daram and Kennedy 1989; Duesterwald and Soffa 1991]. Other analyses focus
on parallel programs with affine array accesses in loops, and use techniques sim-
ilar to those from data dependence analysis for sequential programs [Emrath
and Padua 1988; Emrath et al. 1989; Callahan et al. 1990]. However, none of
these analyses is designed to detect data races in pointer-based multithreaded
programs. To the best of our knowledge, the algorithm presented in this paper
and its use as the foundation of a symbolic analysis for divide and conquer
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programs [Rugina and Rinard 2000] is the first attempt to address the static
data race detection problem in multithreaded programs that concurrently up-
date shared pointers.

Communication and synchronization optimizations represent another area
of related work. The goal in communication optimizations is to develop code
transformations that minimize the delays caused by data transfers between
threads. These include blocking data into larger pieces before communication
operations, caching remote data, or replacing the expensive remote access in-
structions with efficient local accesses whenever the compiler can detect that
the accessed data is thread-local [Krishnamurthy and Yelick 1995, 1996; Zhu
and Hendren 1997, 1998]. Compiler optimizations were also developed to re-
duce the overhead introduced by synchronization operations such as barrier
synchronization [Tseng 1995], or mutual exclusion [Diniz and Rinard 1997,
1998; Rinard 1999; Aldrich et al. 1999; Whaley and Rinard 1999: Blanchet
1999; Bogda and Hoelzle 1999; Choi et al. 1999; Ruf 2000]. In pointer-based
programs, all of these optimizations require points-to information; they are, at
least theoretically, more effective when they use results from precise pointer
analyses. However, in the absence of any pointer information, these transforma-
tions have to be very conservative about the pointer-based memory accesses.
To avoid this situation, some of the above algorithms have used either flow-
insensitive pointer analyses or the combined escape and pointer analysis tech-
niques discussed in Section 6.2.

Finally, weak memory consistency models offer better hardware perfor-
mance, but significantly complicate both developing and optimizing parallel
programs. Conceptually, weak consistency models do not guarantee that the
writes issued by a thread will be observed in the same order by all the other
threads. Shasha and Snir [1998] proposed a compiler analysis and transfor-
mation that computes a minimal set of synchronization instructions which pre-
vents the threads from observing reordered writes. Extensions of this algorithm
were further developed by other researchers [Krishnamurthy and Yelick 1996;
Lee and Padua 2000]. Compilers can therefore apply such transformations to
give guarantees about the ordering of write operations both to the programmers
and to subsequent compiler optimizations.

7. CONCLUSION

This paper presents a new flow-sensitive, context-sensitive, interprocedural
pointer analysis algorithm for multithreaded programs. This algorithm is,
to our knowledge, the first flow-sensitive pointer analysis algorithm for
multithreaded programs that takes potential interference between threads
into account.

We have shown that the algorithm is correct, runs in polynomial time, and,
in the absence of interference, produces the same result as the ideal (but in-
tractable) algorithm that analyzes all interleavings of the program statements.
We have implemented the algorithm in the SUIF compiler infrastructure and
used it to analyze a sizable set of Cilk programs. Our experimental results
show that the algorithm has good precision and converges quickly for this
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set of programs. We believe this algorithm can provide the required accu-
rate information about pointer variables required for further analyses, trans-
formations, optimizations and software engineering tools for multithreaded
programs.

APPENDIX

A. FORMAL DEFINITION OF MAPPING AND UNMAPPING

We formalize the mapping and unmapping process as follows. We assume a
call site s in a current procedure c that invokes the procedure p. The current
procedure c has a set Vc ⊆ L of local variables and a set Fc ⊆ L of formal
parameters; the invoked procedure p has a set Vp ⊆ L of local variables and a
set Fp ⊆ L of formal parameters. There is also a set G ⊆ L of ghost variables and
a set V ⊆ L of global variables. The call site has a set {a1, . . . , an} = As of actual
parameter location sets; these location sets are generated automatically by the
compiler and assigned to the expressions that define the parameter values at
the call site. The set { f1, . . . , fn} = Fp represents the corresponding formal
parameters of the invoked procedure p. Within p, the special location set rp
represents the return value. The location set rs represents the return value at
the call site. Given a points-to graph C, nodes(C) = {l | 〈l , l ′〉 ∈ C or 〈l ′, l 〉 ∈ C}.

The mapping process starts with a points-to information 〈C, I, E〉 for
the program point before the call site. It constructs a one-to-one mapping
m : nodes(C)→ Fp ∪ G ∪ V that satisfies the following properties:

—∀l ∈ Vc ∪ Fc.m(l ) ∈ G − nodes(C).
—∀l1, l2 ∈ Vc ∪ Fc.l1 6= l2 implies m(l1) 6= m(l2).
—∀l ∈ V ∪ (G ∩ nodes(C)).m(l ) = l .
—∀1 ≤ i ≤ n.m(ai) = fi.

The following definition extends m to a mapping m̂ that operates on points-to
graphs.

m̂(C) = {〈m(l1), m(l2)〉 | 〈l1, l2〉 ∈ C}
The analysis uses m̂ to construct a new analysis context 〈Cp, Ip〉 for the invoked
procedure as defined below. For a set S of nodes and a general points-to graph
C, isolated(S, C) denotes all subgraphs of C that are not reachable from S.

Cp=(m̂(C)− isolated(V ∪ Fp, m̂(C))) ∪ (Vp ∪ {rp})× {unk}
Ip =m̂(I )− isolated(V ∪ Fp, m̂(I ))

The algorithm must now derive an analysis result 〈C′p, E ′p, r ′p〉 that reflects the
effect of the invoked procedure on the points-to information. It first looks up the
new analysis context in the cache of previously computed analysis results for
the invoked procedure p, and uses the previously computed result if it finds it.
Otherwise, it analyzes p using 〈Cp, Ip, ∅〉 as the starting points-to information.
It stores the resulting analysis result 〈C′p, E ′p, r ′p〉 in the cache.

The algorithm then unmaps the analysis result back into the naming context
at the call site. It constructs an unmapping u : nodes(C′p) → Vc ∪ Fc ∪ G ∪ V
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that satisfies the following conditions:

—∀l ∈ Vp ∪ Fp.u(l ) = unk.
—∀l ∈ nodes(C′p)− ((Vp ∪ Fp) ∪ {rp}).u(l ) = m−1(l ).
—u(rp) = rs.

The following definition extends u to an unmapping û that operates on points-to
graphs. In the unmapping process below, we use unmappings that map location
sets to unk. The definition of û removes any resulting edges from unk.

û(C) = {〈u(l1), u(l2)〉 | 〈l1, l2〉 ∈ C} − {unk} × L

The algorithm uses û to create an analysis context 〈C′, I ′, E ′〉 for the program
point after the call site:

C′ = û(C′p) ∪ û( isolated(G ∪ Fp, m̂(C)))
I ′ = I
E ′ = û(E ′p) ∪ E

B. FORMAL TREATMENT AND SOUNDNESS OF THE ANALYSIS

B.1 Parallel Flow Graphs

Definition B.1.1. A parallel flow graph is a directed graph 〈V , E〉 of vertices
V and edges E ⊆ V × V . The successor function succ : V → V is defined by
suc(v) = {u | (v, u) ∈ E} and the predecessor function pred : V → V is defined
by pred(v) = {u | (u, v) ∈ E}. A path p with first vertex v1 and last vertex vn is a
sequence of vertices v1, . . . , vn such that ∀1≤i<n(vi, vi+1) ∈ E. Given two vertices
u and v, [u, v] is the set of all paths with first vertex u and last vertex v. A vertex
v is reachable from a vertex u if [u, v] 6= ∅.

A parallel flow graph 〈V , E〉 can have five kinds of vertices: statement ver-
tices, begin vertices, end vertices, parbegin vertices and parend vertices. State-
ment vertices represent pointer assignments. Begin vertices and end vertices
come in corresponding pairs and represent the begin and end of threads. Par-
begin and parend vertices come in corresponding pairs and represent the begin
and end of a parallel statement block.

Formally, a thread is the set of all vertices between a begin vertex and the
corresponding end vertex. We require that each thread be isolated by its begin
and end vertices, i.e., all edges from outside the thread into the thread point to
the thread’s begin vertex, and all edges from inside the thread to outside the
thread point from the thread’s end vertex.

Definition B.1.2. A vertex v is between a vertex u and a vertex w if there
exists a path from u to w that includes v, i.e. ∃p ∈ [u, w].v ∈ p. A set of vertices
s is isolated by two vertices u and w if ∀v1 ∈ s, v2 6∈ s.(v1, v2) ∈ E implies v1 = w
and (v2, v1) ∈ E implies v1 = u.

Definition B.1.3. Given a begin vertex vb with corresponding end vertex ve,
thread(vb) is the set of all vertices between vb and ve. We require that thread(vb)
be isolated by its begin vertex vb and corresponding end vertex ve.
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Each corresponding pair of parbegin and parend vertices has a set of parallel
threads. There is an edge from the parbegin vertex to the begin vertex of each
of its threads, and an edge from the corresponding end vertex of the thread to
the corresponding parend vertex.

Definition B.1.4. Given a parbegin vertex vp with corresponding parend
vertex vd , ∀vb ∈ succ(vp).vb must be a begin vertex and pred(vb) = {vp} and
vb’s corresponding end vertex ve must be an element of pred(vd ). Also, ∀ve ∈
pred(vd ).ve must be an end vertex and succ(ve) = {vd } and ve ’s corresponding
begin vertex vb must be an element of succ(vp).

Definition B.1.5. The set of threads of a parbegin vertex vp is
{thread(vb) | vb ∈ succ(vp)}.

The parallel computation of a parbegin vertex vp with corresponding parend
vertex vd is the set of vertices between vp and vd . We require that each parallel
computation be isolated by its parbegin and parend vertices.

Finally, we require that there be a distinguished begin vertex vb with corre-
sponding distinguished end vertex ve such that all vertices v ∈ V are between
vb and ve, vb has no predecessor vertices, and ve has no successor vertices. All
other begin vertices must have a unique parbegin predecessor, and all other
end vertices must have a unique parend successor.

Observation B.1.6. V is a thread.

Observation B.1.7. Given two threads t1 and t2, either t1 ∩ t2 = ∅, t1 ⊆ t2,
or t2 ⊆ t1. Furthermore, there is a least (under subset inclusion) thread t such
that t1 ⊆ t and t2 ⊆ t.

B.2 Legal Executions

We model legal executions of a parallel flow graph 〈V , E〉using sets of sequences
of vertices from V . We first define several operators on sequences, then extend
these operators to sets of sequences. Given two sequences s1 and s2, s1; s2 is the
concatenation of s1 and s2, and s1||s2 is the set of all interleavings of s1 and s2.

We extend ; and || to sets of sequences as follows. The vertex v represents
the singleton set of sequences with one sequence v, S1; S2 = ∪s1∈S1 ∪s2∈S2 {s1; s2},
and S1||S2 = ∪s1∈S1 ∪s2∈S2 s1||s2. We define the legal execution sequences of a
thread t as follows:

Definition B.2.1. (Legal Executions) Given a thread t with begin vertex vb
and corresponding end vertex ve, the set of legal executions of t is the smallest
set of sequences that satisfies the following recursive definition:

(1) vb is a legal execution of t.
(2) If s; v is a legal execution of t, u ∈ succ(v), and v is not a parbegin vertex,

or a thread end vertex, then s; v; u is a legal execution of t.
(3) If s; vp is a legal execution of t, vp is a parbegin vertex with corresponding

parend vertex vd , and s1, . . . , sl are legal executions of the l threads of vp,
then all of the sequences in s; vp; (s1|| · · · ||sl ); vd are legal executions of t.
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An augmentation of a sequence of vertices with respect to a thread is de-
rived by inserting additional vertices between the vertices of the sequence. The
first and last vertices of the augmentation must be the same as in the original
sequence. As defined below, none of the additional vertices can be in the thread.

—The only augmentation of v with respect to t is v.
—If sa is an augmentation of s with respect to t and v1; . . . ; vn is any sequence

of vertices not in t (for all 1 ≤ i ≤ n, vi 6∈ t), then v; v1; . . . ; vn; sa is an
augmentation of v; s with respect to t.

B.3 Representing Analysis Results

Our analysis represents memory locations using a set L of location sets in the
program. It represents points-to information using points-to graphs C ⊆ L×L.

The analysis generates, for each program point p, a points-to information
triple MTI(p) = 〈C, I, E〉. Here C ⊆ L× L is the current points-to information,
I ⊆ L × L is the set of interference edges created by parallel threads, and
E ⊆ L × L is the set of edges created by the current thread. We require that
I ⊆ C. For each vertex v in the flow graph, there are two program points: the
point •v before v, and the point v• after v.

We require that the analysis result satisfy the dataflow equations in
Figures 3 and 6.

B.4 Soundness

We define soundness by comparing the results of the algorithm presented in
the paper with the results obtained by applying the standard pointer analysis
algorithm for sequential programs to sequences of vertices from the parallel
flow graph. When the functional [[ ]] (which provides the abstract semantics for
statement vertices) is applied to sequences of statement vertices, it generates
the same result as the analysis for sequential programs. We therefore use [[ ]]
in the definition of soundness for the analysis for multithreaded programs. To do
so, however, we must trivially extend [[ ]] to non-statement vertices as follows:
[[ v ]] 〈C, I, E〉 = 〈C, I, E〉 if v is not a statement vertex.

An analysis result is sound if it is least as conservative as the result obtained
by using the standard pointer analysis algorithm for sequential programs on
all interleavings of the legal executions.

Definition B.4.1. (Soundness) An analysis result MTI for a flow graph
〈V , E〉 is sound if for all legal executions v1; . . . ; vn of V , it is true that for
all 1 ≤ i ≤ n, Cs

i ⊆ Ca
i and Cs

i−1 ⊆ Cb
i , where Cs

0 = L × {unk}, 〈Cs
i , Is

i , Es
i 〉 =

[[ v1; . . . ; vi ]] (∅, ∅, ∅), 〈Cb
i , Ib

i , Eb
i 〉 =MTI(•vi), and 〈Ca

i , Ia
i , Eb

i 〉 =MTI(vi•).

Note that in this definition, Cs
i is the result of the sequential analysis after

analyzing the first i vertices, Cb
i is the analysis result at the program point

before vi, and Ca
i is the analysis result at the program point after vi.
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B.5 Proof of Soundness

We next prove that any solution to the set of dataflow equations presented in
this paper is sound. The proof depends crucially on two key lemmas: the Propa-
gation Lemma, which characterizes the propagation of edges between parallel
threads, and the Extension Lemma, which characterizes the propagation of
edges into, through, and out of parallel computations.

LEMMA B.5.1. (Propagation) Let

—vp be a parbegin vertex with threads t1, . . . , tn,
—v ∈ ti be a vertex in one of the threads,
—〈Cb

v , Ib
v , Eb

v〉 =MTI(•v), 〈Ca
v , Ia

v , Ea
v 〉 =MTI(v•),

—〈C, I, E〉 be a points-to information triple, and
—e ∈ L × L be a points-to edge such that c 6∈ C but c ∈ C′, where 〈C′, I ′, E ′〉 =

[[ v ]] (C, I, E).

Then C ⊆ Cb
v implies for all u ∈ ∪1≤ j≤n, j 6=it j , e ∈ Cb

u and e ∈ Ca
u, where

〈Cb
u, Ib

u , Eb
u〉 =MTI(•u) and 〈Ca

u , Ia
u , Ea

u〉 =MTI(u•).
PROOF. If e 6∈ C but e ∈ C′, then e is in the gen set of v for 〈C, I, E〉. Be-

cause the gen set of v does not get smaller if the input points-to information
gets larger, C ⊆ Cb

v implies e is in the gen set of v for 〈Cb
v , Ib

v , Eb
v〉, which in

turn implies that e ∈ Ea
v . The equations will therefore propagate e in the

set of edges created by the current thread past sequential merges, through
statement vertices, through parallel computations, and past parend vertices to
the end vertex of every thread containing v. At each parbegin vertex with a
thread t containing v, the equations will therefore propagate e into the in-
coming set of interference edges for every thread that executes in parallel
with t. The equations will therefore propagate e to the current points-to graph
for every vertex in every thread that may execute in parallel with a thread
containing v.

Property B.5.1. (Extension) A legal execution s of a thread t has the exten-
sion property if for all augmentations v1; . . . ; vn of s with respect to t, for all
Cs

0 ⊆ Cb
1 and for all 0 ≤ k < j ≤ n and edges e such that

—vj ∈ t, and
—k 6= 0 implies vk ∈ t and e 6∈ Cs

k−1, and
—∀k≤i< j .e ∈ Cs

i , and
—∀k≤i< j Cs

i ⊆ Ca
i , and

—∀k≤i< j Cs
i−1 ⊆ Cb

i ,

it is true that e ∈ Cb
j , where for all 1 ≤ i ≤ n,

—〈Cb
i , Ib

i , Eb
i 〉 =MTI(•vi),

—〈Ca
i , Ia

i , Ea
i 〉 =MTI(vi•), and

—〈Cs
i , Is

i , Es
i 〉 = [[ v1; . . . ; vi ]] (Cs

0, ∅, ∅).
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LEMMA B.5.2. (Extension) All legal executions s of a thread t have the exten-
sion property.

PROOF. The proof is by structural induction on s; the cases of the proof cor-
respond to the cases in Definition B.2.1.

—Case 1: vb clearly has the extension property.
—Case 2: Assume s; v has the extension property, v is not a parbegin or parend

vertex, and u ∈ succ(v). We must show that s; v; u has the extension property.
Let v1; . . . ; vn be an augmentation of s; v; u with respect to t such that v1; . . . ; vn
together with Cs

0, k, j , and e satisfy the antecedent of the extension property.
Let i be the index of v in v1; . . . ; vn so that v = vi.
If vj 6= u, then we can apply the induction hypothesis to the augmentation
v1; . . . ; vi of s; v with respect to t to get e ∈ Cb

j . If vj = u, note that k ≤ i < j ,
which implies that e ∈ Ca

i . Because u ∈ succ(v), Ca
i ⊆ Cb

j , and e ∈ Cb
j .

—Case 3: Assume s; vp has the extension property, vp is a parbegin ver-
tex with corresponding parend vertex vd and l threads t1, . . . , tl . Also as-
sume that s1, . . . , sl are legal executions of the threads t1, . . . , tl , and that
s1, . . . , sl all have the extension property. We must show that all sequences
in s; vp; (s1|| · · · ||sl ); vd have the extension property. Let v1; . . . ; vn be an aug-
mentation with respect to t of a sequence in s; vp; (s1|| · · · ||sl ); vd such that
v1; . . . ; vn together with Cs

0, k, j , and e satisfy the antecedent of the extension
property for s. We must show that e ∈ Cb

j . The proof is a case analysis on the
position of vk and vj .
—k = 0 or vk in s; vp and vj in s; vp. Then e ∈ Cb

j by the induction hypothesis.
—k = 0 or vk in s; vp and vj in one of the legal executions of the threads of

vp; assume without loss of generality in s1. Let vb be the begin vertex of
thread t1. If vj = vb, then let i be the index of vp in v1; . . . ; vn so that vi = vp.
Note that k ≤ i < j and therefore e ∈ Ca

i . By the dataflow equations for
parbegin vertices, Ca

i ⊆ Cb
j , which implies e ∈ Cb

j .
If vj 6= vb, we will apply the induction hypothesis to s1. We must therefore
find an augmentation, a points-to graph, two integers and an edge that
satisfy the antecedent of the extension property.
Let i be the index in v1; . . . ; vn of the begin vertex vb of t1 and let h be the
index of the corresponding end vertex ve. Note that k < i < j ≤ h < n. By
the extension property, Cs

i−1 ⊆ Cb
i . The augmentation vi; . . . ; vh of s1 with

respect to t1, the integers 0 and j − i + 1 (the index of vj in vi; . . . ; vh) and
the edge e together satisfy the antecedent of the extension property for s1.
By the induction hypothesis, e ∈ Cb

j .
—k = 0 or vk in s; vp and vj = vd . Then all of the end vertices ve

i of s1, . . . , sl
are between vk and vj in v1; . . . ; vn. By definition of the extension property,
for all 1 ≤ i ≤ l , e ∈ C, where 〈C, I, E〉 = MTI(ve

i •). By definition of the
dataflow equations for parend vertices (which intersect the current points-
to graphs from the end vertices of the parallel threads), e ∈ Cb

j .
—vk and vj both in the same legal execution of one of the threads of vp; assume

without loss of generality in s1. We will apply the induction hypothesis to s1.
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Let i be the index in v1; . . . ; vn of the begin vertex vb of s1 and let h be the
index of the corresponding end vertex ve. Note that i ≤ k < j ≤ h < n. We
can then apply the induction hypothesis to the augmentation vi; . . . ; vh of
s1 with respect t1 to obtain e ∈ Cb

j .
—vk and vj in different legal executions of the threads of vp; assume without

loss of generality in s1 and s2. Then e is in the gen set of vk , and by the
Propagation Lemma e ∈ Cb

j .
—vk in one of the legal executions of the threads of vp, assume without loss of

generality in s1, and vj = vd . Then e is in the gen set of vk . For all 1 ≤ i ≤ l ,
let ve

i be the end vertices of s1, . . . , sl and let 〈Ci, Ii, Ei〉 =MTI(ve
i •). By the

Propagation Lemma, for all 2 ≤ i ≤ l , e ∈ Ci. ve
1 is between vk and vj in

v1; . . . ; vn, which implies (by the definition of the extension property) that
e ∈ C1. By the definition of the dataflow equations for parend vertices,
e ∈ Cb

j .

We now prove the soundness theorem.

THEOREM B.5.2. (Soundness) The dataflow equations presented in this paper
are sound.

PROOF. Given a flow graph 〈V , E〉, consider any legal execution v1; . . . ; vn of
V . Let Cs

i , Cb
i and Ca

i be as in Definition B.4.1. We will show by induction that
for all 1 ≤ j ≤ n, it is true that for all 1 ≤ i ≤ j , Cs

i ⊆ Ca
i and Cs

i−1 ⊆ Cb
i .

—Base Case: In the initial points-to information all the edges point to un-
known, so Cs

0 = Cb
1 = L × {unk}. Also, since v1 is a begin vertex, Ca

1 = Cb
1

and Cs
0 = Cs

1. Thus, Cs
0 = Cs

1 = Ca
1 = Cb

1 and therefore the inclusion relations
Cs

0 ⊆ Cb
0 and Cs

1 ⊆ Ca
1 are trivially satisfied.

—Induction Step: Assume Cs
i ⊆ Ca

i and Cs
i−1 ⊆ Cb

i for 1 ≤ i < j . We must
show Cs

j ⊆ Ca
j and Cs

j−1 ⊆ Cb
j . Consider any edge e ∈ Cs

j−1. Find the largest
k < j such that e ∈ Cs

k but e 6∈ Cs
k−1. If no such k exists, let k = 0. By the

Extension Lemma applied to v1; . . . ; vn, Cs
0, k, j , and e, e ∈ Cb

j , and Cs
j−1 ⊆ Cb

j .
By monotonicity of [[ ]] , Cs

j ⊆ Ca
j .

C. PRECISION OF THE ANALYSIS

We convert a parallel flow graph to a sequential flow graph as follows. Given
a par construct with n sequential threads t1, . . . , tn, first construct the prod-
uct graph of the threads. The vertices of this graph are compound vertices
of the form (v1, . . . , vn), where vi is an element of ti; each edge (v, u) in
the original flow graph generates an edge from (v1, . . . , vi−1, v, vi+1, . . . , vn)
to (v1, . . . , vi−1, u, vi+1, . . . , vn) in the product graph. For each such edge, we
construct a new vertex vu, then replace the edge in the product graph with
two edges: one from (v1, . . . , vi−1, v, vi+1, . . . , vn) to vu, and another from vu to
(v1, . . . , vi−1, u, vi+1, . . . , vn). We use the correspondence between vu and u to
relate the program points in the resulting interleaved graph to the program
points in the original graph.

The transfer function of the new vertex vu is the same as the transfer function
of u in the original graph; the transfer function of the compound vertices is the
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identity. The interleaved graph directly represents all possible interleavings of
statements from the n parallel threads. We can recursively apply this construc-
tion to convert a parallel flow graph to a (potentially much larger) sequential
flow graph.

We define interference in the analysis of the interleaved graph as follows. For
each vertex u in the original flow graph, find the minimal thread t containing u.
There is a set of new vertices vu in the interleaved graph that correspond to u;
during the analysis, label each of the edges in the gen set of vu with the thread t
and propagate these edge labels through the analysis. We say that the analysis
of a vertex uses an edge e in the current points-to graph C if the presence of an
edge in the gen set as defined in Figure 4 depends on the presence of e in C. We
say that there is interference if a vertex vu uses an edge e whose set of labels
contains only parallel threads of t. In this case, the only reason e is in the gen
set of vu is because some parallel thread created an edge that, in turn, caused
vu to generate e.

If there is no interference in the analysis of the interleaved graph, then we
can show that the analysis of each thread in the original graph never uses any of
the edges E j created by other parallel threads. In this case, the direct analysis of
par construct terminates in at most two iterations, none of the points-to graphs
change during the second iteration, and the analysis result is generated by the
interleaving that took place during the first iteration. Since this interleaving is
only one of the many interleavings in the interleaved graph, the direct analysis
generates a result that is at least as precise as the interleaved analysis.
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