
Symbolic Bounds Analysis of Pointers, Array
Indices, and Accessed Memory Regions

RADU RUGINA
Cornell University
and
MARTIN C. RINARD
Massachusetts Institute of Technology

This article presents a novel framework for the symbolic bounds analysis of pointers, array indices,
and accessed memory regions. Our framework formulates each analysis problem as a system of in-
equality constraints between symbolic bound polynomials. It then reduces the constraint system to
a linear program. The solution to the linear program provides symbolic lower and upper bounds for
the values of pointer and array index variables and for the regions of memory that each statement
and procedure accesses. This approach eliminates fundamental problems associated with applying
standard fixed-point approaches to symbolic analysis problems. Experimental results from our im-
plemented compiler show that the analysis can solve several important problems, including static
race detection, automatic parallelization, static detection of array bounds violations, elimination
of array bounds checks, and reduction of the number of bits used to store computed values.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
optimization; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Lan-
guages—Program analysis

General Terms: Analysis, Languages

Additional Key Words and Phrases: Symbolic analysis, parallelization, static race detection

1. INTRODUCTION

This article presents a new algorithm for statically extracting information about
the regions of memory that a program accesses. To obtain accurate information
for programs whose memory access patterns depend on the input, our analy-
sis is symbolic, deriving polynomial expressions that bound the ranges of the

An earlier version of this article appeared in the Proceedings of the 2000 Conference on Program-
ming Language Design and Implementation (Vancouver, B.C., Canada, June).
Authors’ addresses: R. Rugina, Cornell University, Computer Science Department, 4141 Upson
Hall, Ithaca, NY 14853; email: rugina@cs.cornell.edu; M. C. Rinard, MIT Laboratory for Computer
Science, 545 Technology Square, NE43-420A, Cambridge, MA 02139; email: rinard@lcs.mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0164-0925/05/0300-0185 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005, Pages 185–235.

186 • R. Rugina and M. C. Rinard

pointers and array indices used to access memory. Our prototype compiler uses
the analysis information to solve a range of problems, including automatic race
detection for parallel programs, automatic parallelization of sequential pro-
grams, static detection of array bounds violations, static elimination of array
bounds checks, and (when it is possible to derive precise numeric bounds) auto-
matic computation of the minimum number of bits required to hold the values
that the program computes.

We have applied our techniques to divide and conquer programs that ac-
cess disjoint regions of dynamically allocated arrays [Gustavson 1997; Frens
and Wise 1997; Chatterjee et al. 1999]. These programs present a challenging
set of program analysis problems: they use recursion as their primary control
structure, they use dynamic memory allocation to match the sizes of the data
structures to the problem size, and they access data structures using pointers
and pointer arithmetic, which complicates the static disambiguation of memory
accesses.

The straightforward application of standard program analysis techniques
based on dataflow analysis or abstract interpretation to this class of programs
fails because the domain of symbolic expressions has infinite ascending chains.
This article presents a new framework that eliminates this problem. Instead
of using traditional fixed-point algorithms, it formulates each analysis problem
as a system of inequality constraints between symbolic bound polynomials. It
then reduces the constraint system to a linear program. The solution to the
linear program provides symbolic lower and upper bounds for the values of
pointer and array index variables and for the regions of memory that each
statement and procedure accesses. The analysis solves one symbolic constraint
system per procedure, then one symbolic constraint system for each strongly
connected component in the call graph.

Using this framework to analyze several divide-and-conquer programs, our
compiler was able to extract the precise memory access information required
to perform the transformations and safety checks briefly described below.

(1) Static Race Detection. Explicitly parallel languages give programmers the
control they need to produce extremely efficient programs. But they also
significantly complicate the development process because of the possibil-
ity of data races, or unanticipated interactions that occur at memory lo-
cations accessed by parallel threads. A divide-and-conquer program has a
data race when one thread writes a location that another parallel thread
accesses. Our analysis statically compares the regions of memory accessed
by parallel threads to determine if there may be a data race. If not, the
programmer is guaranteed that the program will execute deterministically
with no unanticipated interactions.

(2) Automatic Parallelization. The difficulty of developing parallel programs
has led to a large research effort devoted to automatically parallelizing se-
quential programs. Our analysis is capable of automatically parallelizing
recursive procedures in sequential divide-and-conquer programs. It com-
pares the access regions of statements and procedures in the program to
determine if they refer to disjoint pieces of memory and can safely execute in

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 187

parallel. We emphasize the fact that traditional parallelization techniques
are of little or no use for this class of programs—they are designed to an-
alyze loop nests that access dense matrices using affine index expressions,
not recursive procedures that use pointers and offsets into dynamically al-
located arrays.

(3) Detecting Array Bounds Violations. For efficiency reasons, low-level lan-
guages like C do not check that array accesses fall within the array bounds.
But array bounds violations are a serious potential problem, in large part
because they introduce unanticipated and difficult to understand inter-
actions between statements that violate the array bounds and the data
structures that they incorrectly access. Because our algorithms character-
ize the regions of memory accessed by statements and procedures, they
allow the compiler to determine if array accesses in the program may vio-
late the array bounds.

(4) Eliminating Array Bounds Checks. Safe languages like Java eliminate the
possibility of undetected array bounds violations by dynamically checking
that each array access falls within the array bounds. A problem with this
approach is the cost of executing the extra bound checking instructions.
Because our algorithms characterize the regions of memory accessed by
statements and procedures, they can allow the compiler to eliminate re-
dundant array bounds checks. If the regions accessed by a statement or
procedure fall within the array bounds, the compiler can safely eliminate
any associated checks.

(5) Bitwidth Analysis. Although our analysis is designed to derive sym-
bolic bounds, it extracts precise numeric bounds when it is possible to
do so. In this case, it can bound the number of bits required to repre-
sent the values that the program computes. These bounds can be used
to eliminate superfluous bits from the structures used to store the val-
ues, reducing the memory and energy consumption of hardware circuits
automatically generated from programs written in standard programming
languages.

1.1 Contributions

This article makes the following contributions:

—Analysis Framework. It presents a novel framework for the symbolic bounds
analysis of pointers, array indices, and accessed memory regions. This frame-
work formulates the analysis problem using systems of symbolic inequality
constraints.

—Solution Mechanism. Standard program analyses use iterative fixed-point
algorithms to solve systems of inclusion constraints or dataflow equa-
tions [Nielson et al. 1999]. But these fixed-point methods fail to solve our
constraint systems because the domain of symbolic expressions has infinite
ascending chains. Instead of attempting to iterate to a solution, our new
approach reduces each system of symbolic constraints to a linear program.
The solution of this linear program translates directly into a solution for

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

188 • R. Rugina and M. C. Rinard

the symbolic constraint system. There is no iteration and no possibility of
nontermination.

—Pointer Analysis. It shows how to use pointer analysis to enable the applica-
tion of the analysis framework to programs that heavily use dynamic alloca-
tion, pointers into the middle of dynamically allocated memory regions, and
pointer arithmetic.

—Analysis Uses. It shows how to use the symbolic analysis results to solve
several important problems, including static race detection, automatic par-
allelization, detection of array bounds violations, elimination of array bounds
checks, and reduction of the number of bits used to store the values computed
by the program.

—Experimental Results. It presents experimental results that characterize the
effectiveness of the algorithms on a set of benchmark programs. Our results
show that the algorithms can verify the absence of data races in our bench-
mark parallel programs, detect the available parallelism in our benchmark
serial programs, and verify that both sets of benchmark programs do not vio-
late their array bounds. They can also significantly reduce the number of bits
required to store the state of our benchmark bitwidth analysis programs.

The remainder of this article is organized as follows: Section 2 presents a run-
ning example that we use throughout the article. Section 3 presents the analysis
algorithms, while Section 4 presents some extensions to these algorithms. We
next discuss the scope of the analysis in Section 6 and give a complexity evalua-
tion of the algorithm in Section 5. Section 7 presents experimental results from
our implementation. Section 8 discusses related work. We conclude in Section 9.

2. EXAMPLE

Figure 1 presents a simple example that illustrates the kinds of programs that
our analysis is designed to handle. The dcInc procedure implements a recursive,
divide-and-conquer algorithm that increments each element of an array. The
example is written in Cilk, a parallel dialect of C [Frigo et al. 1998].

2.1 Parallelism in the Example

In the divide part of the algorithm, the dcInc procedure divides each array
into two subarrays. It then calls itself recursively to increment the elements
in each subarray. Because the two recursive calls are independent, they can
execute concurrently. The program generates this parallel execution using the
Cilk spawn construct, which executes its argument function call in parallel with
the rest of the computation in the procedure. The program then executes a sync
instruction, which blocks the caller procedure until the parallel calls have fin-
ished. After the execution of several recursive levels, the subarray size becomes
as small as CUTOFF, at which point the algorithm uses the base case procedure
baseInc to sequentially increment each element of the subarray. This example
reflects the structure of most of the Cilk programs discussed in Section 7 in
that it identifies subproblems using pointers into dynamically allocated mem-
ory blocks.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 189

1: #define CUTOFF 16

2:

3: void baseInc(int *q, int m) {

4: int i;

5: i = 0;

6: while(i <= m-1) {

7: *(q+i) += 1;

8: i = i+1;

9: }

10: }

11: void dcInc(int *p, int n) {

12: if (n <= CUTOFF) {

13: baseInc(p, n);

14: } else {

15: spawn dcInc(p, n/2);

16: spawn dcInc(p+n/2, n-n/2);

17: sync;

18: }

19: }

20: void main(int argc, char *argv[]) {

21: int size, *A;

22: scanf("%d", &size);

23: if (size > 0) {

24: A = malloc(size * sizeof(int));

25: /* code that initializes A */

26: dcInc(A, size);

27: /* code that uses A */

28: }

29: }

Fig. 1. Divide-and-conquer array increment example.

2.2 Required Analysis Information

The basic problem that our symbolic analysis must solve is to determine the
regions of memory that each procedure accesses. The analysis represents re-
gions of memory using two abstractions: allocation blocks and symbolic regions.
There is an allocation block for each allocation site in the program, with the
memory locations allocated at that site merged together to be represented by
the site’s allocation block. In our example, the allocation block a represents the
array A allocated at line 24 in Figure 1.

Symbolic regions identify a contiguous set of memory locations within an
allocation block. Each symbolic region has a lower bound and an upper bound;
the bounds are symbolic polynomials with rational coefficients. In the analysis
results for each procedure, the variables in each bound represent the initial val-
ues of the parameters of the procedure. In our example, the compiler determines
that each call to baseInc reads and writes the symbolic region [q0, q0 + m0 − 1]
within the allocation block a and that each call to dcInc reads and writes the
symbolic region [p0, p0 + n0 − 1] within a.1

1Here we use the notation [l , h] to denote the region of memory between the addresses l and h,
inclusive. As is standard in C, we assume contiguous allocation of arrays, and that the addresses
of the elements increase as the array indices increase. We also use the notation p0 to denote the
initial value of the parameter p.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

190 • R. Rugina and M. C. Rinard

The compiler can use this information to detect data races and array bounds
violations as follows. To check for data races, it compares the symbolic regions
from parallel call sites to see if a region written by one call overlaps with a region
accessed by a parallel call. If so, there is a potential data race. If not, there is
no race. To compare the regions accessed by the two recursive calls to dcInc,
for example, the compiler substitutes the actual parameters at the call site in
for the corresponding formal parameters in the extracted symbolic regions. It
computes that the first call reads and writes [p, p+ (n/2) − 1] in a and that the
second call reads and writes [p+(n/2), p+n−1] in a. The compiler compares the
bounds of these regions to verify that neither call writes a region that overlaps
with a region accessed by the other call, which implies that the program has no
data races. Note that the rational coefficients in the bound polynomials allow
the compiler to reason about the calculations that divide each array increment
problem into two subproblems of equal size.

To detect array bounds violations, the compiler compares the sizes of the
arrays against the expressions that tell which regions of the array are accessed
by each procedure. In the example, the appropriate comparison is between the
size of the array when it is allocated in the main procedure and the regions
accessed by the top-level call to dcInc in the main procedure. The top-level call
to dcInc reads and writes [A, A+size−1] in a. This symbolic region is contained
within the dynamically allocated block of memory that holds the array, so the
program contains no array bounds violations.

2.3 Pointers Versus Array Indices

As mentioned above, this example identifies subproblems using pointers into
dynamically allocated memory blocks. This strategy leads to code containing
significant amounts of pointer arithmetic. Arguably better programming prac-
tice would use integer indices instead of pointers. Our pointer analysis algo-
rithm and formulation of the symbolic analysis allows us to be neutral on this
issue. Our algorithm can successfully analyze programs that identify subprob-
lems using any combination of pointer arithmetic and array indices. Note that
the exclusive use of array indices instead of pointer arithmetic does not signif-
icantly simplify the analysis problem; the compiler must still reason about
recursively generated accesses to regions of dynamically allocated memory
blocks.

Figure 2 shows a slightly modified version of the array increment example
that identifies subproblems using array indices instead of pointers in the middle
of the arrays. The divide and conquer procedure dcInc recursively increments
n elements in the array p, starting with element at index l and the base case
procedure baseInc iteratively increments m elements in the array, starting with
element at index k. Our algorithm can succcesfully analyze this program and
determine that the whole execution of the recursive procedure dcInc reads and
writes a region [p0+l0, p0+l0+n0−1] and that the iterative computation in the
base case procedure baseInc reads and writes a region [q0 +k0, q0 +k0 +m0 −1].
Extracting these regions is no easier than computing the corresponding access
regions for the program in Figure 1.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 191

1: #define CUTOFF 16

2:

3: void baseInc(int *q, int k, int m) {

4: int i;

5: i = 0;

6: while(i <= m-1) {

7: q[k+i] += 1;

8: i = i+1;

9: }

10: }

11: void dcInc(int *p, int l, int n) {

12: if (n <= CUTOFF) {

13: baseInc(p, l, n);

14: } else {

15: spawn dcInc(p, l, n/2);

16: spawn dcInc(p, l+n/2, n-n/2);

17: sync;

18: }

19: }

20: void main(int argc, char *argv[]) {

21: int size, *A;

22: scanf("%d", &size);

23: if (size > 0) {

24: A = malloc(size * sizeof(int));

25: /* code that initializes A */

26: dcInc(A, 0, size);

27: /* code that uses A */

28: }

29: }

Fig. 2. Array increment program with array indices instead of pointer arithmetic.

In the remainder of the article, we present the algorithms that the compiler
uses to extract symbolic bounds and solve the set of problems discussed in the
introduction. We use the array increment program in Figure 1 as a running
example to illustrate how our algorithms work.

3. ANALYSIS ALGORITHM

The analysis has two goals: to compute an upper and lower bound for each
pointer and array index variable at each program point and, for each procedure
and each allocation block, to compute a set of symbolic regions that represent
the memory locations that the entire computation of the procedure accesses.
It computes these bounds as polynomials with rational coefficients; the vari-
ables in these polynomials represent the initial values of the parameters of the
enclosing procedure.

3.1 Structure of the Compiler

Figure 3 presents the general structure of the compiler, which consists of the
following analysis phases:

—Pointer and Read-Write Sets Analysis. The compiler first runs an interpro-
cedural, context-sensitive, flow-sensitive pointer analysis that analyzes both

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

192 • R. Rugina and M. C. Rinard

Fig. 3. Structure of the compiler.

sequential and parallel programs [Rugina and Rinard 1999b]. It then per-
forms an interprocedural read-write sets analysis, which uses the extracted
information to compute the allocation blocks accessed by each instruction
and each procedure in the program. The remaining phases rely on this phase
to disambiguate references via pointers.

—Symbolic Analysis. This phase produces sets of symbolic regions that charac-
terize how each procedure accesses memory. It first extracts symbolic bounds
for each pointer and array index variable, then uses this information to com-
pute symbolic bounds for the accessed regions within each allocation block.

—Uses of the Analysis Results. This phase uses the symbolic memory access
information computed by the earlier stages to solve the problems discussed
above in the introduction.

The pointer and symbolic analysis phases are independent building blocks in
the compiler: the particular pointer analysis algorithm used in the first phase
doesn’t affect the functioning of the subsequent symbolic analysis. In particular,
the precise interprocedural, context-sensitive, flow-sensitive pointer analysis
algorithm can be replaced with a more efficient, but less precise, context- and
flow-insensitive algorithm, without affecting the functioning of the symbolic
analysis. The difference when using such an imprecise pointer analysis would

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 193

be that the computed symbolic regions characterize accesses in a larger number
of allocation blocks.

The symbolic analysis consists of the following subphases:

—Intraprocedural Bounds Analysis. This phase derives symbolic bounds for
each pointer and array index variable at each program point.

—Intraprocedural Region Analysis. For each allocation block, this phase com-
putes a set of symbolic regions that characterizes how the procedure directly
reads or writes the allocation block.

—Interprocedural Region Analysis. For each allocation block, this phase com-
putes a set of symbolic regions that characterizes how the entire computation
of the procedure reads or writes the allocation block.

Both the bounds analysis and the interprocedural region analysis use a gen-
eral symbolic analysis framework for building and solving systems of symbolic
inequality constraints between polynomials. Recursive constraints may be gen-
erated by loops in the control flow (in the case of the bounds analysis), or by
recursive calls (in the case of the region analysis). By solving arbitrary systems
of recursive constraints, the compiler is able to handle arbitrary flow of control
at both the intraprocedural and interprocedural level.

3.2 Basic Concepts

The analysis uses the following mathematical objects to represent the symbolic
bounds and accessed memory regions:

—Allocation Blocks. There is an allocation block a for each static or dynamic
allocation site in the program, with the variable declaration sites considered
to be the static allocation sites. All of the elements of each array are merged
together to be represented by the allocation block from the array’s allocation
site. For programs with structures, each field of each structure has its own
allocation block.

—Program Variables. V f is the set of pointer and array index variables from
the procedure f . In our example, VbaseInc = {q, m, i}. vp denotes the value of
the variable v at the program point p; v0 is the initial value of a parameter
v of a given procedure.

—Reference Sets. C f is the set of initial values of the parameters of the proce-
dure f . C f is called the reference set of f . In our example, CbaseInc = {q0, m0}.

—Polynomials. P∗
S is the set of multivariate polynomials with rational coef-

ficients and variables in S. Also, PS = P∗
S ∪ {+∞, −∞}. PC f is the analysis

domain for the procedure f ; all symbolic analysis results for f are computed
as elements of PC f .

Note that even though the polynomials represent integer values, they have
rational coefficients, not integer coefficients. Rational coefficients enable the
compiler to reason about address computations that contain division opera-
tors. These kinds of address computations are common in our target class of
divide and conquer computations, which use them to divide a problem into
several subproblems of equal size.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

194 • R. Rugina and M. C. Rinard

—Symbolic Bounds. For each variable v and program point p, the analysis
computes a symbolic lower bound lv, p and upper bound uv, p for the value of
v at p. The analysis computes these bounds as symbolic polynomials with
rational coefficients and variables from the reference set of the enclosing
procedure.

In our example, the analysis computes li, p = 0 and ui, p = m0 − 1, where p
is the program point before line 7 in Figure 1.

—Symbolic Regions. A symbolic region R in the domain of a procedure f is a
pair of symbolic bounds from the analysis domain of f : R ∈ PC f × PC f , R =
[l , u], with l , u ∈ PC f ; l is the lower bound and u is the upper bound. Each
symbolic region represents a continguous set of memory locations within an
accessed allocation block.

—Symbolic Region Sets. A symbolic region set RS in the domain of a procedure
f is a set of symbolic regions from f : RS ⊆ PC f × PC f . For each procedure f
and allocation block a, the analysis computes two symbolic region sets to rep-
resent the locations that the entire computation of f accesses: RW f ,a, which
represents the locations that f writes in a, and R R f ,a, which represents the
locations that f reads in a. In our example the analysis computes:

RWbaseInc,a = RRbaseInc,a = {[q0, q0 + m0 − 1]}
RWdcInc,a = RRdcInc,a = {[p0, p0 + n0 − 1]}

where a is the allocation block for the array allocated at line 24 in Figure 1.

3.3 Intraprocedural Bounds Analysis

In this phase, the compiler computes symbolic lower and upper bounds for each
pointer and array index at each program point. The bounds are expressed as
polynomials with rational coefficients. The variables in the polynomials repre-
sent the initial values of the formal parameters of the enclosing procedure. We
illustrate the operation of this phase by showing how it analyzes the procedure
baseInc from Figure 1.

3.3.1 Initial Symbolic Bounds. Let B = {Bj |1 ≤ j ≤ l } be the set of basic
blocks in the control-flow graph of the procedure f . For each variable v ∈ V f
and basic block Bj , the compiler generates a symbolic lower bound lv, j and a
symbolic upper bound uv, j for the value of v at the start of Bj . Figure 4 presents
the control-flow graph and initial symbolic bounds for the procedure baseInc
from our example.

3.3.2 Symbolic Analysis of Basic Blocks. The compiler next symbolically
executes the instructions in each basic block to produce new symbolic bounds
for each variable at the end of the block and at all intermediate program points
within the block. These bounds are expressed as linear combinations of the
symbolic bounds from the start of the block. Figure 5 presents the results of
this step in our example.2 We next explain how the compiler extracts these
bounds.

2Our compiler decouples the analysis of i and m from the analysis of q (see Section 4.3). We therefore
present the analysis only for i and m.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 195

Fig. 4. Symbolic bounds at the start of basic blocks.

Fig. 5. Symbolic bounds at the end of basic blocks.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

196 • R. Rugina and M. C. Rinard

During the analysis of individual instructions, the compiler must be able to
compute bounds of expressions. The analysis computes the lower bound L(e, p)
and upper bound U (e, p) of an expression e at a program point p as follows. If
e contains at least one variable with infinite bounds, then L(e, p) = −∞ and
U (e, p) = +∞. Otherwise, the following equations define the bounds. Note that
in these expressions, +, −, and · operate on polynomials. Each expression is a
linear combination of the symbolic bounds lv, p and uv, p.

The following equations give a recursive definition of L(e, p) and U (e, p)
based on the structure of expression e:

L(c, p) = c

L(v, p) = lv, p

L(e1 + e2, p) = L(e1, p) + L(e2, p)

L(c · e, p) =
{

c · L(e, p) if c > 0

c · U (e, p) if c ≤ 0
U (c, p) = c

U (v, p) = uv, p

U (e1 + e2, p) = U (e1, p) + U (e2, p)

U (c · e, p) =
{

c · U (e, p) if c > 0

c · L(e, p) if c ≤ 0 .

For an assignment instruction i of the form v = e, where v ∈ V f and e is a
linear expression in the program variables, the analysis updates the bounds of
v to be the bounds of e. Formally, if p is the program point before i and p′ is the
program point after i, then:

lv, p′ = L(e, p)
uv, p′ = U (e, p).

The analysis also takes into account the bounds in the condition expressions
of branching constructs. For a conditional instruction i of the form v ≤ e or
v ≥ e, where v ∈ V f and e is a linear expression in the program variables, the
analysis generates a new upper or lower bound for v on the true branch of the
conditional. If the conditional is of the form v ≥ e, the new lower bound of v
is the lower bound of e. If the conditional is of the form v ≤ e, the new upper
bound of v is the upper bound of e. Formally, if p is the program point before
the conditional and t is the program point on the true branch of the conditional,
then:

lv,t = L(e, p) if i is of the form v ≥ e
uv,t = U (e, p) if i is of the form v ≤ e.

All other bounds remain the same as the corresponding bounds from before the
conditional. Finally, strict conditional instructions of the form v < e or v > e
can be similarly analyzed, since v < e is equivalent to v ≤ e − 1 and v > e is
equivalent to v ≥ e + 1.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 197

Fig. 6. Symbolic constraint system for bounds analysis.

For all other instructions, such as assignments of expressions that are not lin-
ear in the program variables (but see Section 4.3 for an extension that enables
the analysis to support polynomial expressions in certain cases), call instruc-
tions, or more complicated conditionals, the analysis generates conservative
bounds. All of the variables that the analyzed instruction writes have infinite
bounds, and all of the other variables have unchanged bounds. The pointer and
read-write sets analyses compute the set of written variables.

3.3.3 Constraint Generation. The algorithm next builds a symbolic con-
straint system over the lower and upper bounds. The system consists of a set of
initialization conditions, a set of symbolic constraints, and an objective function
to minimize:

—The initialization conditions require that at the start of the entry basic block
B1, the bounds of each pointer or array index parameter v ∈ V f must be equal
to v0 (the value of that variable at the beginning of the procedure). For all
other variables, the lower bounds are set to −∞ and the upper bounds to +∞.

—The symbolic constraints require that the range of each variable at the
beginning of each basic block must include the range of that variable at the
end of the predecessor basic blocks. Formally, if Bj is a predecessor of Bk ,
l ′

v, j and u′
v, j are the bounds of v at the end of Bj , and lv,k and uv,k are the

bounds of v at the beginning of Bk , then lv,k ≤ l ′
v, j and u′

v, j ≤ uv,k .
—The objective function minimizes the upper bounds and maximizes the lower

bounds. Therefore, the objective function is: min :
∑

v∈V f

∑l
j=2(uv, j − lv, j).

The initialization conditions and symbolic constraints ensure the safety of the
computed bounds. The objective function ensures a tight solution that mini-
mizes the symbolic ranges of the variables. Figure 6 presents the constraint
system in our example.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

198 • R. Rugina and M. C. Rinard

The analysis next extracts the bounds in terms of the reference set (the initial
values of the parameters). The algorithm does not know what the bounds are,
but it proceeds under the assumption that they are polynomials with variables
in the reference set. It therefore expresses the bounds as symbolic polynomials.
Each term of the polynomial has a rational coefficient variable c j . The goal of
the analysis is to find a precise numerical value for each coefficient variable c j .
In our example, the bounds are expressed using coefficient variables and the
variables from the reference set {q0, m0}:

li,2 = c1q0 + c2m0 + c3
lm,2 = c4q0 + c5m0 + c6
li,3 = c7q0 + c8m0 + c9
lm,3 = c10q0 + c11m0 + c12

ui,2 = c13q0 + c14m0 + c15
um,2 = c16q0 + c17m0 + c18
ui,3 = c19q0 + c20m0 + c21
um,3 = c22q0 + c23m0 + c24.

The initialization conditions define the bounds at the beginning of the start-
ing basic block B1:

lm,1 = m0 um,1 = m0 li,1 = −∞ ui,1 = +∞.

3.3.4 Solving the Symbolic Constraint System. This step solves the sym-
bolic constraint system by deriving a rational numeric value for each coefficient
variable. We first summarize the starting point for the algorithm.

—The algorithm is given a set of symbolic lower and upper bounds. These
bounds are expressed as a set of symbolic bound polynomials Pi ∈ PC, where
C is the reference set of the currently analyzed procedure. Each symbolic
bound polynomial consists of a number t of terms; each term consists of a
coefficient variable and a product of reference set variables: Pi = ∑t

i=1 ci ·
xri,1

1 · · · xri,s
s , with ri, j ≥ 0.

—The algorithm is also given a set of inequality constraints between polyno-
mial expressions and an objective function to minimize. Formally, the sym-
bolic constraint system can be expressed as a pair (I, O), where I ⊆ { Q ≤
R | Q , R ∈ PC } is the set of symbolic constraints and O ∈ PC is the objective
function. The polynomial expressions Q , R, and O are linear combinations
of the symbolic bound polynomials. The analysis described in Sections 3.3.2
and 3.3.3 produces these expressions.

The algorithm solves the constraint system by reducing it to a linear program
over the coefficient variables from the symbolic bound polynomials. It generates
the linear program by reducing each symbolic inequality constraint to several
linear inequality constraints over the coefficient variables of the symbolic bound
polynomials. Formally, if Q = ∑t

i=1 cQ
i ·xri,1

1 · · · xri,s
s and R = ∑t

i=1 cR
i ·xri,1

1 · · · xri,s
s ,

then:

(Q ≤ R) ∈ I is reduced to: cQ
i ≤ cR

i , for all 1 ≤ i ≤ t. (1)

Because the polynomial expressions are linear combinations of the symbolic
bound polynomials, the coefficients cR

i and cQ
i are linear combinations of the

coefficient variables from the symbolic bound polynomials.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 199

The algorithm also reduces the symbolic objective function to a linear objec-
tive function in the coefficient variables. This reduction minimizes the sum of
the coefficients in the polynomial expression. Formally, if the objective function
is O = ∑t

i=1 cO
i · xri,1

1 · · · xri,s
s , then:

min : O is reduced to: min :
t∑

i=1

cO
i . (2)

At this point, the analysis has generated a linear program. The solution to this
linear program directly gives the solution to the symbolic constraint system. We
emphasize that the symbolic constraint system is reduced to a linear program,
not to an integer linear program. The coefficient variables in the linear program
are rational numbers, not integer numbers.

The above transformations assume that all of the variables in the reference
set are positive. In this case, the reduction is safe—the reduced linear inequal-
ities in Eq. (1) represent sufficient conditions for the symbolic inequalities to
hold. In general, the compiler can relax the positivity condition and apply simi-
lar safe transformations if it can determine a constant lower bound or a constant
upper bound for each variable in the reference set. For instance, if the compiler
determines that v ≥ c, where v is a variable and c is an arbitrary constant, the
analysis can introduce a new variable v′ = v − c, with v′ ≥ 0, and substitute
v′ + c for each occurence of v in the symbolic inequalities. It can then apply the
above reductions for v′ since this is a positive variable. Similarly, if the analysis
can determine that v ≤ c, it can apply the same substitution technique using
the positive variable v′ = c − v and replacing v with c − v′ in each symbolic
inequality. However, if the compiler cannot compute constant upper or lower
bounds for some variable in C f , then it cannot reduce the symbolic system to
a linear program. In practice, most of the variables used in array index ex-
pressions are either positive or negative. Therefore, in our implementation, the
compiler performs a simple interprocedural positivity analysis to compute the
sign of the array index variables in the reference set. It does not check pointer
variables, since they always represent positive addresses.

We would like to emphasize that in many cases the reduction is also precise:
if the symbolic polynomials are such that each term contains a different vari-
able, then the reduced linear inequalities in Eq. (1) also represent necessary
conditions. In particular, if the symbolic polynomials are linear combinations in
the parameters of the enclosing function, then the reduction in this step doesn’t
lose precision. The theorem below characterizes the precision of the reduction
transformation.

THEOREM PRECISION. If the symbolic polynomials are such that each term
contains a different variable: P = ∑t−1

i=1 ci ·xri
i +ct , with ri ≥ 1, then the reduction

of symbolic inequalities to linear inequalities between the coefficients is safe and
precise:

t−1∑
i=1

ai · xri
i + at ≤

t−1∑
i=1

bi · xri
i + bt , ∀ x1 ≥ 0, . . . , xt−1 ≥ 0 (3)

if and only if ai ≤ bi, ∀ 1 ≤ i ≤ t. (4)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

200 • R. Rugina and M. C. Rinard

PROOF. We separately prove the two implications: safety and precision.
Safety: (4) ⇒ (3). This implication is trivial, because the corresponding terms

in the left and in the right hand side of Eq. (3) satisfy the inequality. For each
i, 1 ≤ i ≤ t − 1, and each xi ≥ 0, we have: xri

i ≥ 0 and ai ≤ bi (by hypothesis).
Hence ai · xri

i ≤ bi · xri
i . For the free term, at ≤ bt is true by hypothesis.

Precision: (3) ⇒ (4). We know that Eq. (3) holds for all x1 ≥ 0, . . . , xt−1 ≥ 0
and we want to prove that Eq. (4) holds for all 1 ≤ i ≤ t.

Since Eq. (3) holds for any positive variables, let x1 = · · · = xt−1 = 0. Then,
Eq. (3) becomes at ≤ bt , which proves the inequality for the free term.

Now consider an arbitrary index j between 1 and t −1. If we set all variables
except x j to 0: x1 = · · · = x j−1 = x j+1 = xt−1 = 0, then Eq. (3) becomes:

aj · xr j
j + at ≤ bj · xr j

j + bt , ∀x j ≥ 0. (5)

Hence:

(aj − bj) · xr j
j ≤ bt − at , ∀x j ≥ 0. (6)

We will prove now that aj ≤ bj by contradiction. Assume that aj > bj , that is,
aj − bj > 0. With this assumption, Eq. (6) becomes:

xr j
j ≤ bt − at

a j − bj
, ∀x j ≥ 0. (7)

The fraction in the right hand side has a positive numerator bt − at ≥ 0, as
we just proved above, and a strictly positive denominator aj − bj > 0, by our
assumption. Hence the fraction is positive and has a positive, real r j -th root.
At this point, we get a contradiction, because the inequality in Eq. (7) cannot
hold for any x j ≥ 0. For instance, it doesn’t hold for x j = � r j

√
bt−at
a j −bj

 + 1. Hence,
our assumption was incorrect, so aj ≤ bj . Since j was chose arbitrarily, this
completes our proof.

Figure 7 shows the generated linear program in our example. It presents the
symbolic constraints on the left-hand side and the generated linear constraints
on the right-hand side. For example, the constraint li,2 ≤ li,3 + 1 means that
(c1q0 + c2m0 + c3) ≤ (c7q0 + c8m0 + c9) + 1, which in turn generates the following
constraints: c1 ≤ c7, c2 ≤ c8 and c3 ≤ c9 + 1. Solving the linear program yields
the following values of the coefficient variables:

c1 = 0 c2 = 0 c3 = 0 c13 = 0 c14 = 1 c15 = 0
c4 = 0 c5 = 1 c6 = 0 c16 = 0 c17 = 1 c18 = 0
c7 = 0 c8 = 0 c9 = 0 c19 = 0 c20 = 1 c21 = −1

c10 = 0 c11 = 1 c12 = 0 c22 = 0 c23 = 1 c24 = 0.

This gives the following polynomials for the lower and upper bounds:

li,2 = 0 ui,2 = m0 lm,2 = m0 um,2 = m0
li,3 = 0 ui,3 = m0 − 1 lm,3 = m0 um,3 = m0.

Finally, these bounds are used to compute the symbolic bounds of the vari-
ables at each program point, giving the final result shown in Figure 8. Note
that the analysis detects that the symbolic range of the index variable i before

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 201

Fig. 7. Linear program for bounds analysis.

the store instruction *(q+i) += 1 is [0, m0 −1]. In a similar manner, the bounds
analysis is able to determine that the range of the pointer q at this program
point is [q0, q0], which means that q = q0 before the store instruction.

3.4 Region Analysis

For each procedure f and allocation block a, the region analysis computes a
symbolic region set that represents the regions of a that f reads or writes. An
intraprocedural analysis first builds the regions that each procedure accesses
directly. An interprocedural analysis then uses these symbolic regions to build
symbolic constraint systems that specify the regions accessed by the complete
computation of each procedure. The algorithm solves each constraint system
by reducing it to a linear program. This approach solves the hard problem of
computing symbolic access regions for recursive procedures.

3.4.1 Region Coalescing. At certain points in the analysis, the algorithm
must coalesce overlapping regions. Figure 9 presents the region coalescing al-
gorithm. It first tries to coalesce the new region with some other overlapping
region in the region set, in which case the bounds of the overlapping region are
adjusted to accommodate the new region. If no overlapping region is found, the
algorithm adds the new region to the region set.

3.4.2 Intraprocedural Region Analysis. Figure 10 presents the pseudo-
code for the intraprocedural region analysis. The algorithm first initializes the
read region sets RRlocal

f ,a and write region sets RWlocal
f ,a . These sets characterize

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

202 • R. Rugina and M. C. Rinard

Fig. 8. Results of the bounds analysis.

Fig. 9. Region coalescing algorithm.

the regions of memory directly accessed by f . It then scans the instructions
to extract the region expressions, using the bounds analysis results to build
the region expression for each instruction. It also coalesces overlapping region
expressions from different instructions.

If a is the memory block dynamically allocated in the main program in
the example, the result of the intraprocedural analysis for baseInc and

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 203

Fig. 10. Intraprocedural region analysis algorithm.

Fig. 11. Call graph and SCC DAG in example.

dcInc is:

RWlocal
baseInc,a = {[q0, q0 + m0 − 1]}

RRlocal
baseInc,a = {[q0, q0 + m0 − 1]}

RRlocal
dcInc,a = ∅

RWlocal
dcInc,a = ∅

The region analysis uses the pointer analysis information to determine that
the store instruction in baseInc accesses the allocation block a.

3.4.3 Interprocedural Region Analysis. The interprocedural region analy-
sis uses the results of the intraprocedural region analysis to compute a symbolic
region set for the entire computation of each procedure, including all of the pro-
cedures that it invokes. It first builds the call graph of the computation and
identifies the strongly connected components. It then traverses the strongly
connected components in reverse topological order, propagating the access re-
gion information between strongly connected components from callee to caller.
Within each strongly connected component with recursive calls, it generates a
symbolic constraint system and solves it using the algorithm from Section 3.3.4.
Figure 11 shows the call graph and its strongly connected components for our
example.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

204 • R. Rugina and M. C. Rinard

3.4.4 Symbolic Unmapping. At each call site, the analysis models the as-
signments of actual parameters to formal parameters, then uses this model
to propagate access region information from the callee to the caller. The
analysis of the callee produces a result in terms of the initial values of the
callee’s parameters. But the result for the caller must be expressed in terms
of the caller parameters, not the callee parameters. The symbolic unmapping
algorithm performs this change of analysis domain for each accessed region R
from the callee.

—The algorithm first transforms the region R from the callee domain to a
new region R ′ by replacing the formal parameters from the callee with the
actual parameters from the call site. The new region [l , u] = R ′ expresses
the bounds in terms of the variables of the caller.

—The algorithm next uses the results of the intraprocedural bounds analysis
presented in Section 3.3 to compute a lower bound for l and an upper bound
for u in terms of the reference set of the caller. These two new bounds are
the symbolic lower and upper bounds for the unmapped region SUcs(R), the
translation of the region R from the callee domain to the caller domain at
the call site cs.

Let CallSites(f , g) be the set of all call sites with caller f and callee g . We
formalize the symbolic unmapping as follows:

—Mapping. For two sets of variables S and T , a mapping M from S to T is
either a function M ∈ S → P∗

T (a function from S to symbolic polynomials
in T), or a special mapping Munk , called the unknown mapping.

—Call Site Mapping. For a call site cs ∈ CallSites(f , g), we define a call site
mapping Mcs ∈ (Cg → P∗

V f
) ∪ {Munk} as follows:

—if the actual parameters can be expressed as polynomials p1, . . . , pm ∈ P∗
V f

then Mcs(vi) = pi, where v1, . . . , vm are the formal parameters of g .
—otherwise, Mcs = Munk .

—Symbolic Unmapping of a Polynomial. Given a polynomial P ∈ PS and a
mapping M ∈ S → P∗

T , we define the symbolic unmapping SUM (P) ∈ P∗
T of

the polynomial P using M as follows:
P =

∑
ci · xri,1

1 · · · xri,s
s

SUM (P) =
∑

ci · M (x1)ri,1 · · · M (xs)ri,s .

—Symbolic Unmapping of a Region at a Call Site. Given a region R = [l , u] ∈
PC f × PC f and a call site cs ∈ CallSites(f , g) with call site mapping M �=
Munk , we define the symbolic unmapping SUcs(R) ∈ PC f × PC f of the region
R at call site cs as follows:

SUcs(R) = [L(SUM (l), cs), U (SUM (u), cs].
If M = Munk , then SUcs(R) = [−∞, +∞].

—Symbolic Unmapping of a Region Set at a Call Site. Given a region set RS
and a call site cs, we define the symbolic unmapping SUcs(RS) of the region
set RS at call site cs as follows:

SUcs(RS) = {SUcs(R) | R ∈ RS}.
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 205

Fig. 12. Symbolic unmapping example.

—Symbolic Unmapping of Region Sets for Allocation Blocks. Given an accessed
allocation block a and a call site cs ∈ CallSites(f , g), the accessed region
sets RRcs

f ,a = SUcs(RRg ,a) and RWcs
f ,a = SUcs(RWg ,a) describe the regions of

a accessed by g at call site cs, in terms of the reference set of f .

Given these definitions, the interprocedural analysis for nonrecursive pro-
cedures is straightforward. The algorithm simply traverses the call graph in
reverse topological order, using the unmapping algorithm to propagate region
sets from callees to callers.

Figure 12 shows the symbolic unmapping process at call site cs1, where dcInc
invokes baseInc in our example. The compiler starts with the region expression
RWbaseInc,a = [q0, q0 + m0 − 1] computed by the intraprocedural region analysis.
Here a is the accessed allocation block from baseInc. The compiler creates a
call site mapping M that maps the formal parameters q0 and m0 to the sym-
bolic expressions representing the corresponding actual parameters at the call
site: M (q0) = p and M (m0) = n. The analysis uses this mapping to translate
RWbaseInc,a into the new region R ′ = [p, p+ n− 1]. Finally, the compiler uses
the bounds of p and n at the call site to derive the unmapped region:

SUcs1(RWbaseInc,a) = [L(p, cs1), U (p + n − 1, cs1)]

= [p0, p0 + n0 − 1].

The unmapped region SUcs1(RWbaseInc,a) = [p0, p0 + n0 − 1] characterizes the
regions in a accessed by the call instruction baseInc(p,n) in terms of the initial
values of the parameters of dcInc, p0 and n0.

3.4.5 Analysis of Recursive Procedures. One way to attack the analysis of
recursive procedures is to use a fixed-point algorithm to propagate region sets
through cycles in the call graph. But this approach fails because the domain of
multivariate polynomials has infinite ascending chains, which means that the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

206 • R. Rugina and M. C. Rinard

algorithm may never reach a fixed point. First, the bounds in some divide and
conquer programs form a convergent geometric series. There is no finite number
of iterations that would find the limit of such a series. Second, recursive pro-
grams can generate a statically unbounded number of regions in the region set.

Our algorithm avoids these problems by generating a system of recursive
symbolic constraints whose solution delivers a region set specifying the regions
of memory accessed by the entire strongly connected component. The symbolic
constraint system is solved by using the algorithm presented in Section 3.3.4
to reduce the symbolic constraint system to a linear program. The main idea is
to generate a set of constraints that, at each call site, requires the caller region
sets to include the unmapped region sets of the callee. We next discuss how the
compiler computes the region sets for a set S of mutually recursive procedures.

Step 1. Define the Target Symbolic Bounds. The compiler first defines, for
each recursive procedure f ∈ S and allocation block a, a finite set of read
regions and a finite set of write regions. An analysis of the base cases of the
recursion determines the number of regions in each set.

RR f ,a = {[
l rd

f ,a,1, urd
f ,a,1

]
, . . . ,

[
l rd

f ,a, j , urd
f ,a, j

]}
RW f ,a = {[

lwr
f ,a,1, uwr

f ,a,1

]
, . . . ,

[
lwr

f ,a,k , uwr
f ,a,k

]}
.

The bounds of these regions are the target bounds in our analysis framework.
For each procedure f ∈ S, these bounds are polynomial expressions in PC f . To
guarantee the soundness of the unmapping, the constraint system requires the
coefficients of the variables in these bounds to be positive.

Consider, for example, the computation of the region sets for the strongly
connected component S = {dcInc} from our example.3 Since the base case for
this procedure writes a single region within the allocation block a, the compiler
generates a single write region for dcInc:

RWdcInc,a = {[
lwr
dcInc,a, uwr

dcInc,a

]}
.

The bounds of this region are polynomials with variables in CdcInc = {p0, n0}.
The algorithm uses the following bounds:

lwr
dcInc,a = C1p0 + C2n0 + C3

uwr
dcInc,a = C4p0 + C5n0 + C6,

where C1, C2, C4, and C5 are positive rational coefficients.

Step 2. Generate the Symbolic System of Constraints. The analysis next gen-
erates the constraint system for the region bounds defined in the previous step.
The system must ensure that two conditions are satisfied. First, the local region
sets must be included in the global region sets:

RRlocal
f ,a ⊆ RR f ,a ∀ f ∈ S

RWlocal
f ,a ⊆ RW f ,a ∀ f ∈ S.

3The compiler decouples the computation of write region sets from the computation of read region
sets (see Section 4.3). We therefore present the analysis only for the write set of dcInc.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 207

Fig. 13. Interprocedural symbolic constraints for a set S of mutually recursive procedures.

Fig. 14. Interprocedural symbolic constraints for write regions of S = {dcInc} in example.

Second, for each call site, the unmapped region sets of the callee must be in-
cluded in the region sets of the caller:

SUcs(RRg ,a) ⊆ RR f ,a ∀ f ∈ S, ∀cs ∈ CallSites(f , g)
SUcs(RWg ,a) ⊆ RW f ,a ∀ f ∈ S, ∀cs ∈ CallSites(f , g).

Figure 13 summarizes the constraints in the generated system. As in the
intraprocedural case, the objective function minimizes the sizes of the symbolic
regions.

Figure 14 presents the system of symbolic constraints for the interprocedu-
ral analysis of dcInc. Because dcInc does not directly access any allocation

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

208 • R. Rugina and M. C. Rinard

Fig. 15. Generated linear program for write regions of S = {dcInc} in example.

block, there are no local constraints. The analysis generates call site con-
straints for the call sites cs1, cs2, and cs3, at lines 13, 15, and 16 in Figure 1,
respectively. At call site cs1, which invokes baseInc, the analysis symboli-
cally unmaps the callee region [q0, q0 + m0 − 1] to generate the unmapped
region [p0, p0 + n0 − 1]. The bounds of this unmapped region generate the
first two constraints in Figure 14. The recursive call sites cs2 and cs3 gen-
erate similar constraints, except that now the analysis unmaps the region
[lwr
dcInc,a, uwr

dcInc,a] = [C1p0 + C2n0 + C3, C4p0 + C5n0 + C6]. The positivity of C1, C2,
C4, and C5 ensures the correctness of the symbolic unmapping for this region.
The last four constraints correspond to the call site constraints for cs2 and cs3
after performing the symbolic unmapping.

Step 3. Reduce the Symbolic Constraints to a Linear Program and Solve the
Linear Program. The analysis next uses the reduction method presented in
Section 3.3.4 to reduce the symbolic constraint system to a linear program.
This linear program contains constraints that explicitly ensure the positiv-
ity of the rational coefficients of the variables in the bounds. The solution of
the linear program directly yields the symbolic region sets of the recursive
procedures in S. As for the bounds analysis, if the linear program does not
have a solution, the compiler conservatively sets the regions of all the pro-
cedures in S to [−∞, +∞]. In our example, the algorithm reduces the sym-
bolic constraints to the linear program in Figure 15. The solution of this linear
program yields the following expressions for the bounds defined in the first
step:

lwr
dcInc,a = p0 , uwr

dcInc,a = p0 + n0 − 1.

The write region for dcInc is therefore [p0, p0 + n0 − 1]. The compiler similarly
derives the same read region for dcInc.

Finally, the compiler analyzes the main procedure. Here the call site mapping
for call site cs4, where procedure main calls dcInc, is unknown Mcs4 = Munk, so
the symbolic unmapping generates the whole-array region [−∞, +∞] for the
procedure main. The interprocedural analysis therefore derives the following

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 209

region sets for the array allocated in main:

RWbaseInc,a = RRbaseInc,a = {[q0, q0 + m0 − 1]}
RWdcInc,a = RRdcInc,a = {[p0, p0 + n0 − 1]}
RWmain,a = RRmain,a = {[−∞, +∞]}.

This information enables the compiler to determine that there are no array
bounds violations because of the calls to baseInc and dcInc. It can also use the
analysis results to determine that there are no data races in these procedures.
If it had been given a sequential version of the program, the analysis results
would allow the compiler to automatically parallelize it.

4. EXTENSIONS

We next present some extensions to the basic symbolic analysis algorithm de-
scribed so far. These extensions are designed to improve the precision or effi-
ciency of the basic algorithm, or to extend its functionality.

4.1 Correlation Analysis

The compiler uses correlation analysis to improve the precision of the bounds
analysis. Correlated variables are integer or pointer variables with matching
increments or decrements in loops. When the loop increments (or decrements)
several correlated variables, but the loop condition specifies explicit bounds
only for a subset of these variables, the compiler can use correlation analysis
to automatically derive bounds for the other correlated variables.

We will refer to the correlated variables whose bounds are explicitly specified
in the loop condition as test variables, and to the other variables, which are
updated in the loop body but whose bounds are not given in the test condition,
as target variables. The goal of correlation analysis is to compute bounds for
the target variables using the known bounds of the test variables; the compiler
can derive such bounds only if each increment or decrement of a target variable
is matched by at least one increment or decrement of a test variable in the loop
body.

The correlation analysis presented in this section can handle increments or
decrements by arbitrary constants. An increment is a statement that increases
the value of a variable by a positive constant; a decrement is one that decreases
the value of a variable by a positive constant. We will generally refer to incre-
ment or decrement statements as incremental updates.

4.1.1 Example 1: Two Correlated Variables. Figure 16 shows a simple ex-
ample of correlated variables. The loop in this program increments two vari-
ables i and j at each iteration, but the loop condition specifies an upper bound
only for i: i ≤ m0 − 1. Correlation analysis enables the compiler to automati-
cally derive an upper bound for target variable j at the top of the loop body:
j ≤ 2m0 − 4.

The compiler detects correlated variables and computes bounds for the target
variables as follows: It first generates a correlation expression ce which counts
the number of incremental updates for test and target variables. The compiler
builds ce as a linear combination of test and target variables such that the value

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

210 • R. Rugina and M. C. Rinard

Fig. 16. Simple example of correlated variables.

of ce increases by 1 whenever the loop incrementally updates a test variable
and decreases by 1 whenever the loop incrementally updates a target variable.
Intuitively, the correlated expression counts the difference between the number
of incremental updates of test variables and the number of incremental updates
of target variables. At this point, the compiler doesn’t know if the variables
in ce are correlated—this depends on the control flow in the body of the loop.
In our example, the correlation expression ce = i − j/2 counts the difference
between the number of increments of i and the number of increments of j.

Next, the compiler tries to prove that the variables in ce are correlated. For
this, it computes a lower bound for the correlation expression at program point
q, at the top of the loop body (the flow of control passes through q once for each
iteration). Note that the expression ce has a finite lower bound at program point
q only if the variables in this expression are correlated; in this case, the lower
bound of the correlation expression is the value of that expression at program
point p, right before the loop. If the variables in ce are not correlated, then the
value of ce strictly decreases on some paths in the loop body, hence ce will have
an infinite lower bound at program point q. In our example ce ≥ 1 at program
point q; this finite bound shows that i and j are correlated.

Finally, the compiler can use the lower bound for ce at program point at the
top of the loop body and the bounds of the test variables from the loop condition
to derive new bounds for the target variables. In our example, the analysis uses
the upper bound i ≤ m0 − 1 of the test variable i and the lower bound ce ≥ 1
of the correlation expression ce = i − j/2 to compute an upper bound for the
target variable j: j = 2i − 2ce ≤ 2(m0 − 1) − 2 · 1 = 2m0 − 4.

We have integrated the above correlation analysis mechanism in our sym-
bolic analysis framework by generating additional constraints in our symbolic
system; the solution to the system automatically yields the new bounds for the
correlation expressions and for the target variables. Consider a target variable
v and the correlation expression ce which counts the difference between the
incremental updates of all test variables and the incremental updates of v. To
compute the new bounds of ce and v, the analysis builds the additional con-
straints as follows:

—It generates a correlation variable cv with the property that cv = ce at each
program point. As for other variables, the analysis assigns initial bounds

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 211

for cv at the beginning of each basic block in the loop body. The analysis
also computes the bounds of cv at program point p, right before the loop:
lcv, p = L(ce, p) and ucv, p = U (ce, p). Then, during the analysis of each basic
block, the analysis treats the correlation variable specially: when an instruc-
tion in the loop body incrementally updates a test variable, the analysis
increments cv by 1; similarly, when an instruction incrementally updates
v, the analysis decrements cv by 1. The compiler next generates symbolic
constraints between the lower and upper bounds of cv at the beginning and
end of basic blocks, in the same manner as for all the other variables in the
program.

—The analysis also generates a new upper or lower bound for v on the true
branch of the conditional instruction of the loop. The analysis derives the
new bound for v a the top of the loop body using the lower bound of cv and
the bounds of all the test variables at that program point, as presented above
for the example program. If the coefficient of the target variable in the corre-
lation expression is negative (i.e., if the target variable is incremented in the
loop), then the computed bound is an upper bound; otherwise it is a lower
bound.

Figure 17 shows how correlation analysis how correlation analysis works for
our example. It first generates a correlation variable cv for the expression ce =
i − j/2 and computes the bounds of cv at each program point. Before the loop,
the lower and upper bounds of cv are 1 because 1 ≤ i ≤ 1 and 0 ≤ j ≤ 0 at this
point. The analysis then computes the bounds of cv in the loop body: after i =
i+1, it increases the bounds of cv by 1; after j = j+2 it decreases the bounds
of cv by 1. The bounds of cv are therefore unchanged after the execution of the
loop body.

The analysis next derives a new bound for target variable j on the true branch
of the conditional instruction. Since cv = ce = i − j/2, the compiler deduces
that j = 2i − 2cv. The test condition of the loop provides an upper bound for i
at the beginning of the loop: i ≤ um,2 −1. The compiler combines these relations
to derive a new upper bound for j on the true branch: j ≤ 2(um,2 − 1) − 2lcv,2.

After the analysis of each basic block, the algorithm proceeds as before. It
generates a symbolic system of inclusion constraints between the ranges of each
variable, including the correlation variable cv, and then reduces this system to
a linear program. The solution to the linear program automatically gives the
symbolic bounds at each program point, for each variable, as shown in Figure 18.
The computed bounds include the lower bound of correlation variable cv at the
top of the loop body: cv ≥ 1 and the upper bound of the target variable j at the
same program point: j ≤ 2m0 − 4.

We would like to emphasize that, in our symbolic framework, the analysis
computes the bounds for the correlation variable cv and for the target variable j
at the same time. The solution to the constraint system simultaneously yields
the bounds for j and cv, despite the fact that the bound computation for j
requires the lower bound of cv and conceptually takes place after computing
the bound of cv.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

212 • R. Rugina and M. C. Rinard

Fig. 17. Bounds at each program point for correlation analysis using correlation variable cv, which
corresponds to expression ce = i − j/2.

4.1.2 Example 2: Mergesort. Figure 19 shows an example of correlated
variables in the main loop of the Merge procedure in a Mergesort program. Here,
the variables d, l1, and l2 are correlated, but the loop condition specifies upper
bounds only for test variables l1 and l2 (l1 < h10 and l1 < h20). Correlation
analysis enables the compiler to automatically derive an upper bound for target
variable d at the top of the loop body: d ≤ d0 + (h10 − l10) + (h20 − l20) − 2.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 213

Fig. 18. Result symbolic bounds for correlation example.

In this example, each increment of d matches an increment of either l1 or
l2, depending on the execution path at each iteration. To detect the correlation
between these variables, the analysis derives a correlation expression ce =
l1+l2−d. The compiler then computes a finite bound for this expression at the
top of the loop body: ce ≥ l10 +l20 −d0. Because the bound is finite, d, l1, and l2
are correlated. Finally, this lower bound translates immediately into an upper
bound for d, using the upper bounds for the test variables l1 < h10 and l2 < h20

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

214 • R. Rugina and M. C. Rinard

Fig. 19. Correlated variables in Mergesort.

Fig. 20. Correlated variables in Quicksort.

from the test condition: d = l1+ l2−ce ≤ (h10 −1) + (h20 −1)−(l10 +l20 −d0) =
d0 + h10 − l10 + h20 − l20 − 2.

4.1.3 Example 3: Quicksort. Figure 20 shows an examples of correlated
variables in the recursive procedure of a Quicksort program. In the while loop
of this procedure, the integer variables i and j are correlated, but the condition
of the loop specifies an upper bound only for i: i ≤ high0. In this example,
each increment of the target variable j matches one or more increments of
i, depending on how many times the true branch of the inner if statement is
executed in the loop. Again, the compiler uses correlation analysis to deduce an
upper bound for j at the beginning of the loop: j ≤ high0 − 1.

To compute this bound, the compiler uses the same mechanism as in the
previous examples. It generates a correlation expression ce = i − j. It then
computes a lower bound ce ≥ 1 at the top of the loop body. Finally, this lower
bound and the test condition i≤ high0 translate into an upper bound for j at
the top of the loop: j = i − ce ≤ high0 − 1.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 215

4.1.4 General Method. In this section, we present a general method for
detecting correlated variables and for computing symbolic bounds for these
variables. Consider a loop in the program and let p be the program point before
the loop and q the program point at the top of the loop body. Consider that the
condition C in the loop test is a conjunction of inequalities that specify upper
bounds for a set of test variables v1, . . . , vn and lower bounds for a set of test
variables u1, . . . , um:

C : (v1 ≤ E1) ∧ · · · ∧ (vn ≤ En) ∧
(u1 ≥ F1) ∧ · · · ∧ (um ≥ Fm),

where Ei and Fi are expressions containing variables not modified in the loop
body. The bounds of these expressions at program points p and q are therefore
identical. Consider that the only updates of the test variables vi in the loop body
are increments by integer constants ai > 0 and the only updates of variables ui
in the loop body are decrements by integer constants bi > 0:

vi = vi + ai for 1 ≤ i ≤ n
ui = ui − bi for 1 ≤ i ≤ m.

Finally, a set of target variables x1, . . . , xk whose only updates in the loop
body are increments by integer constants ci ≥ 0 and a set of target variables
y1, . . . , yl whose only updates are decrements by integer constants di > 0:

xi = xi + ci for 1 ≤ i ≤ k
yi = yi − di for 1 ≤ i ≤ l .

Target variables do not occur in the loop condition C; the sets of test and tar-
get variables are therefore disjoint. Test and target variable may be updated
multiple times in the loop body. For simplicity, we assume that each test and
target variable is updated at most once within each basic block and is always
updated with the same constant in different blocks. Both of these conditions can
be relaxed to allow more general correlation patterns. The goal of the compiler
is to detect if the target variables are correlated with the test variables and
then derive bounds for the target variables at program point q.

If all of the above conditions are met, the compiler proceeds as follows: It
first generates a correlation expression for each target variable xi and yi:

cei =
n∑

j=1

1
aj

· vj −
m∑

j=1

1
bj

· u j − 1
ci

· xi for 1 ≤ i ≤ k

cek+i =
n∑

j=1

1
aj

· vj −
m∑

j=1

1
bj

· u j + 1
di

· yi for 1 ≤ i ≤ l .

It then computes new bounds for the correlation expressions cei and for the
target variables xi, yi by generating new constraints in the symbolic system:

—For each correlation expression cei, the compiler generates a corresponding
correlation variable cvi with the property that cvi = cei throughout the loop.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

216 • R. Rugina and M. C. Rinard

As in the case of program variables, the analysis generates unknown bounds
for each of the correlation variables cvi at the beginning of each basic block.
The analysis also derives bounds for the correlation variables at program
point p as follows: lcvi , p = L(cei, p), and ucvi , p = U (cei, p).

The analysis next treats each variable cvi specially during the analysis of
individual statements in the loop body, ensuring that its bounds are valid
bounds for cei at each program point: if the current statement is an incre-
mental update of a source variable vi = vi + ai or ui = ui − bi, the analysis
increments the bounds of all correlation variables cvi by 1; if the current
statement is an incremental update of a target variable x j = x j + c j or
yi = yi − di, the analysis decrements the bounds of the corresponding cor-
relation variable cvi by 1 and leaves the bounds of all the other correlation
variables unchanged.

The analysis then generates symbolic constraints for each correlation vari-
able cvi, in the same manner as for all other program variables, using the
techniques from Section 3. It imposes that the range of cvi at the beginning
of each basic block should conservatively include the ranges of cvi at the end
of each predecessor basic block. It also constructs an objective function that
minimizes the computed ranges for all the correlation variables cvi.

—The analysis also derives new bounds each target variable on the true branch
of the conditional instruction of the loop, as follows. The compiler uses the
definitions of the correlation variables to derive an expression for each target
variable:

xi =
n∑

j=1

ci

a j
· vj −

m∑
j=1

ci

bj
· u j − ci · cei for 1 ≤ i ≤ k

yi =
n∑

j=1

di

a j
· vj −

m∑
j=1

di

bj
· u j + di · cek+i for 1 ≤ i ≤ l .

The analysis combines the above expressions, the bounds of the test variables
vi and ui from the test condition C, and the lower bound of the correlation
variables cei to derive new bounds for the test variables at program point q.
At this point, it computes the following upper bounds for xi and lower bounds
for yi:

U (xi, q) =
n∑

j=1

ci

a j
· U (E j , q) −

m∑
j=1

ci

bj
· L(F j , q) − ci · L(cvi, q)

for 1 ≤ i ≤ k

L(yi, q) = −
n∑

j=1

di

a j
· U (E j , q) +

m∑
j=1

di

bj
· L(F j , q) + di · L(cvk+i, q)

for 1 ≤ i ≤ l .

The compiler then proceeds as presented in Section 3. It reduces the gener-
ated symbolic constraint system to a linear program. The solution to this linear
program automatically yields the symbolic bounds for each variable at each
program point. In particular, it yields symbolic bounds for the correlation vari-
ables and for the target variables. Note that the solution to the system yields

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 217

all these bounds at the same time, despite the fact that computing the bounds
for the target variables conceptually takes place after computing the bounds
for the correlation variables.

4.2 Integer Division

As presented so far, the algorithm assumes that division is exact, that is, it
is identical to real division. But address calculations in divide and conquer
programs often use integer division, for instance when dividing problems into
subproblems. In the general case, the integer division of two numbers m and n
is the floor of the real division: �m/n.

The compiler handles integer division by approximating the integer division
calculations with real division bounds. In general, integer division can occur
either at the intraprocedural level, when integer variables are assigned expres-
sions containing integer division, or at the interprocedural level, in the actual
parameters at call sites. To handle both of these cases, the compiler extends the
functionality of the bound operators L and U as follows. For a given expression
E and for an integer constant n ≥ 2, if the positivity analysis detects that E
is positive at program point p, then the compiler uses the following equations
to compute the lower and upper bounds of the expression � E

n at this program
point:

L
(⌊

E
n

⌋
, p

)
= L(E, p) − n + 1

n

U
(⌊

E
n

⌋
, p

)
= U (E, p)

n
.

Similarly, if E is negative, then:

L
(⌊

E
n

⌋
, p

)
= L(E, p)

n

U
(⌊

E
n

⌋
, p

)
= U (E, p) + n − 1

n
.

Finally, if there is no information about the sign of E, then:

L
(⌊

E
n

⌋
, p

)
= L(E, p) − n + 1

n

U
(⌊

E
n

⌋
, p

)
= U (E, p) + n − 1

n
.

With these modifications, the symbolic analysis algorithm will correctly
handle programs with integer division, both at the intraprocedural level, for
the bounds analysis, and at the interprocedural level, during the symbolic
unmapping.

4.3 Constraint System Decomposition

As presented so far, the algorithm generates a single linear program for each
symbolic constraint system. If it is not possible to statically bound one of the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

218 • R. Rugina and M. C. Rinard

Fig. 21. Bounds dependence graph for example.

pointer or array index variables (in the intraprocedural bounds analysis) or
one of the symbolic regions (in the interprocedural region analysis), the lin-
ear program solver will not deliver a solution, and the algorithm will set all
bounds in the system to conservative, infinite values, even though it may be
possible to statically compute some of the bounds. We avoid this form of impre-
cision by decomposing the symbolic constraint system into smaller subsystems.
This decomposition isolates, as much as possible, variables and regions without
statically computable bounds.

The decomposition proceeds as follows. We first build a bounds dependence
graph. The nodes in this directed graph are the unknown symbolic bounds lv, p
and uv, p in the constraint system (in the intraprocedural bounds analysis) or
the lower and upper bounds of the symbolic regions (in the interprocedural
region analysis). The edges reflect the dependences between the bounds. For
each symbolic constraint of the form b ≤ e or b ≥ e, where b is a symbolic
bound and e is an expression containing symbolic bounds, the graph contains
an edge from each bound in e to b. Intuitively, there is an edge from one bound
to another if the second bound depends on the first bound. Figure 21 shows the
bounds dependency graph for our running example. The compiler derives this
graph from the symbolic inequalities from Figure 6. For instance, it generates
the edge li,3 → li,2 from the symbolic inequality li,2 ≤ li,3 + 1.

The algorithm uses the bounds dependence graph to decompose the origi-
nal constraint system into subsystems, with one subsystem for each strongly
connected component in the graph. It then solves the subsystems in the topolog-
ical order of the corresponding strongly connected components, with the solu-
tions flowing along the edges between the strongly connected components of the
bounds dependence graph. In our example, the graph from Figure 21 has four
strongly connected components: (lm,2, lm,3), (um,2, um,3), (li,2, li,3), and (ui,2, ui,3).
The compiler generates a linear system for each of these components, as shown
in Figure 22. It then solves the linear system according to the reverse topo-
logical order of the corresponding strongly connected components, substituting
the solutions into the successor systems. For instance, the compiler first solves
system 2, then substitutes the solution for um,2 from system 2 into system 4,
and finally solves system 4.

In general, we say that two decomposed systems are unrelated if the cor-
responding components are not connected to each other. Hence, there is no
particular order of solving unrelated systems. By construction of the bounds
dependence graph, if two decomposed systems are unrelated, the solution of
one system doesn’t affect the result of the other. In our example, system 1 and
system 3 are unrelated, but system 2 and system 4 are not.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 219

Fig. 22. Decomposed linear systems for example.

The system decomposition ensures that:

—The bounds of unrelated variables and regions fall into different and unre-
lated subsystems. The analysis therefore computes the bounds independently,
and a failure to compute a bound for one variable or region does not affect
the computation of the bounds for the other variables and regions.

—The bounds of a variable at different program points fall into different sub-
systems if the program points are not in the same loop. Thus, outside loops,
the system decomposition separates the computation of bounds at different
program points.

—Unrelated lower and upper bounds of the same variable at the same program
point fall into different and unrelated subsystems. The analysis can therefore
compute a precise lower bound of a variable even if there is no information
about the upper bound of that variable, and vice-versa.

The decomposition also improves the efficiency of the algorithm. The smaller,
decomposed subsystems solve much faster than the original system. Most of
the subsystems are trivial systems with only one target bound, and we use
specialized, fast solvers for these cases.

Finally, the system decomposition enables the algorithm to extend the in-
traprocedural analysis to handle nonlinear polynomial bounds. We first extend
the basic block analysis from Section 3.3 to handle assignments and condi-
tionals with nonlinear polynomial expressions in the program variables. These
nonlinear expressions generate nonlinear combinations of the bounds lv, p and
uv, p in the symbolic constraint system. Unfortunately, the linear program re-
duction cannot be applied in this case because of the presence of terms that
contain products of the coefficient variables.

The system decomposition allows the compiler to use a simple substitution
algorithm to solve this problem and support nonlinear bounds expressions pro-
vided that the relevant bounds are not part of a cycle in the bounds depen-
dence graph. As shown in the example, once the compiler has solved one sub-
system, it can replace bounds in successor subsystems with the solution from
the solved subsystem. This substitution eliminates nonlinear combinations of
bounds in the successor subsystems, enabling the analysis to use the linear

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

220 • R. Rugina and M. C. Rinard

program reduction or specialized solvers to obtain a solution for the successor
subsystems.

4.4 Analysis Contexts

As presented so far, the symbolic interprocedural analysis generates a single
result for each procedure. In reality, the pointer analysis generates a result
for each context in which each procedure may be invoked [Rugina and Rinard
1999b]. The symbolic analysis also generates a result for each context rather
than a result for each procedure.

The pointer analysis algorithm uses ghost allocation blocks to avoid reanalyz-
ing procedures for equivalent contexts [Rugina and Rinard 1999b]. We there-
fore extend the unmapping algorithm discussed in Section 3.4.4 to include a
translation from the ghost allocation blocks in the analysis result to the actual
allocation blocks at the call site.

5. COMPLEXITY OF AND SCALABILITY OF ANALYSIS

In this section, we discuss the complexity of each phase in our algorithm: pointer
analysis, intraprocedural bounds analysis, and interprocedural region analysis.

In the first phase, the compiler uses a flow-sensitive, context-sensitive
pointer analysis algorithm. At the intraprocedural level, this algorithm runs in
polynomial time in the program size. As most context-sensitive analyses, the in-
terprocedural analysis has an exponential worst-case complexity. However, the
use of partial transfer functions [Wilson and Lam 1995] significantly reduces
the number of analyzed contexts in practice. As we mentioned at the beginning
of Section 3, the compiler can alternatively use any other pointer analysis. For
instance, it can use an efficient (but imprecise) flow-insensitive pointer analysis
algorithm which runs in almost linear time [Steensgaard 1996].

The complexity of the bounds and region analyses are more relevant since
the symbolic analysis phase is the main focus of this article. We first derive
upper bounds for the size of the generated linear programs, that is, for the
number of inequalities and number of variables in these systems. Consider a
program with n statements, v integer and pointer variables, b basic blocks, f
procedures, a dynamic allocation sites, and s call sites. Note that the program
size n is an upper bound for b, f , a and s. We assume that the program consists
only of three-address instructions (instructions which refer to at most three
variables), so v ≤ 3n. Without restricting the generality, we assume that there
are no multibranch instructions in the program. Finally, consider that each
symbolic polynomial has t terms, and that the analysis computes at most r
regions for each allocation block during the interprocedural analysis; t and r
are fixed, constant parameters for the analysis.

We derive an upper bound for the size of the linear programs generated
during the intraprocedural bounds analysis, as follows. Since there are no multi-
branch instructions, each basic block has at most two successor blocks, hence
the number of edges in the control flow graph is at most 2b. For each of these
edges and each variable in the program, the analysis derives a symbolic range
constraint. Each range constraint then translates in two symbolic inequalities,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 221

one for the upper bound and one for the lower bound. Hence, the number of
symbolic inequalities in the constraint system for each procedure is at most 4bv.
Finally, the analysis reduces each symbolic inequality to t linear inequalities
between the coefficients. Therefore, the generated linear system has at most 4t ·
bv inequalitites. The number of variables in the linear system is the number of
coefficients in the symbolic expressions. Since the analysis generates symbolic
bounds for each variable at the beginning of each basic block and each such
bound has t coefficients, there will be at most 2t · bv variables in the linear
system for each procedure. Hence, the intraprocedural bounds analysis solves
f linear systems, each having at most 4t · bv inequalitites and at most 2t · bv
variables. Since n is an upper bound for b, v ≤ 3n, and t is a constant parameter
for the analysis, the size of each linear system generated during the bounds
analysis has quadratic complexity in the program size: O(n2).

We next derive an upper bound for the size of the linear programs gener-
ated by the interprocedural region analysis. The analysis generates a symbolic
range constraint for each call site, each allocation block, each region for that
allocation block, and each kind of access (read or write). Since the allocation
blocks represent a memory abstraction which models stack an heap locations,
the number of allocation blocks is at most v + a. Hence, the number of range
constraints is at most 2r · (v + a)s. Each range constraint consists of an upper
bound constraint and a lower bound constraint and each of them is reduced to
t linear inequalities between coefficient variables. The number of inequalities
in the constructed linear system is therefore at most 4tr · (v + a)s. Again, the
number of variables in the linear system is the number of coefficients in the
symbolic expressions. Since each symbolic bound has t coefficients and the anal-
ysis generates symbolic bounds for each kind of access (read or write), each kind
of bound (upper or lower), each allocation block, each of the r regions of an al-
location block, and each procedure in the current recursive cycle, the number
of variables in each linear system is at most 4tr · (v + a) f . The interprocedural
region analysis solves one linear system per recursive and there may be at most
f recursive cycles in the program, hence this analysis solves at most f linear
systems, each having at most 2r · (v+a)s inequalitites and at most 4tr · (v+a) f
variables. Since t and r are constant parameters for the analysis, v ≤ 3n, and n
is an upper bound for a, s, and f , the size of each linear system generated during
the region analysis also has quadratic complexity in the program size: O(n2).

Hence, our symbolic analysis solves O(n) linear systems, each of size O(n2).
Since linear programming has known polynomial time complexity, we finally
conclude that our symbolic analysis also has polynomial complexity. In practice,
however, non-polynomial linear programming solver algorithms such as the
simplex method perform better than the polynomial-time algorithms for many
linear systems.

We believe that the symbolic algorithm also scales in practice, because the
compiler generates and solves exactly one linear system per procedure during
the bounds analysis and one linear system per recursive cycle during the region
analysis. Unlike most context-sensitive interprocedural analyses, the compiler
does not analyze procedures multiple times. Instead, it is compositional and de-
rives, for each procedure, a set of access regions parameterized by the procedure

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

222 • R. Rugina and M. C. Rinard

arguments. These symbolic regions match any calling context and the compiler
can use them to derive access regions at each call site by symbolically unmap-
ping the parameterized regions of the invoked procedure.

6. SCOPE OF ANALYSIS

The analysis presented in this paper is designed to extract symbolic access
ranges for a general class of programs, including pointer-based programs with
arbitrary intraprocedural control-flow and procedures whose recursive invo-
cations access disjoint pieces of the same arrays. However, there are several
aspects of the program that the algorithm is not designed to handle. The dis-
cussion below summarize these cases and presents how the analysis can be
extended to handle many of them.

First, the computed access regions characterize element ranges within con-
tiguous blocks of memory—the algorithm is not designed to compute sets of
elements within dynamic structures, such as sets of tree nodes or list nodes.
For this, the compiler requires shape analysis techniques, which can determine
the shape of dynamic structures. For instance, shape analysis can detect that
a data structure is a tree rather than a general graph. The compiler can then
use this information to conclude that the sets of nodes reachable from the left
and the right children of each node are always disjoint. We consider that shape
analysis techniques are orthogonal to the symbolic analysis presented in this
article.

As presented, the algorithm derives unidimensional, contiguous regions for
each index variable. We believe that the algorithm can be easily extended to
handle multidimensional arrays, by extending the region analysis presented in
Section 3.4 as follows: the intraprocedural analysis must use the the bounds
of the variables in each dimension to derive intraprocedural multidimensional
regions; the interprocedural analysis must propagate such regions across pro-
cedure calls, performing the symbolic unmapping on each dimension; and the
analysis of recursive procedures must generate separate constraints for each
dimension. The analysis can also be extended to detect strided access regions
by recording, for each pointer and index variable, the greatest common divi-
sion of all its increment values. Finally, we believe that the analysis can also
be extended to handle non-rectangular multidimensional access regions within
nested loops, by augmenting the region representation with relations between
the index variables. However, we consider that the algorithm requires substan-
tial changes to detect nonrectangular multidimensional regions accessed by
recursive functions.

Next, the analysis relies on positivity analysis, that is, determining that
the variables in the symbolic expressions have positive values. As presented in
Section 3, this condition can be relaxed by imposing that each of these variables
has either a constant lower bound or a constant upper bound. If this condition
is not met, the analysis can only derive numeric bounds, in which case the
symbolic expressions are constants and contain no variables.

Another necessary requirement to allow reducing the problem to a linear
program is that the values assigned to integers and pointers must be linear

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 223

expressions. However, as we discussed in Section 4.3, the analysis can also
handle assignments of nonlinear expressions only as long as they do not belong
to a loop or to a recursive cycle in the program.

Another issue is that the analysis of conditional statements uses the bound
given by the conditional on the true branch and leaves the bounds on the false
branch unchanged. However, the bound before the conditional is also a valid
bound on the true branch; and the negated condition can provide a new bound
on the false branch. Hence, for each branch there are two possibilities: either
use the bounds before the branch or use the bounds given by the conditional.
This choice introduces disjunctions in our constraint system—for instance, if
u1 is the upper bound of v before the branch and u2 is the upper bound given by
the conditional, then the bound of v on the true branch is characterized by the
disjunction (v ≤ e1) ∨ (v ≤ e2), depending on which of e1 or e2 provides a tighter
upper bound. Note that using either of these bounds provides a safe result, but
using the disjunction provides a more precise result. In general, disjunctions in
the system lead to a case analysis which must examine each of the possibilities.
To avoid this problem, we use the heuristic that the bounds of the true branches
are characterized by the conditional expressions and the bounds on the false
branches are characterized by the bounds before the conditional instruction.
This heuristic works well for our benchmarks, allowing the compiler to extract
the precise bounds information required to enable the transformations and
safety checks discussed in Section 1. We would like to emphasize that, unlike
the case of conditional statements, joins in control flow result in conjunctions
of inequalities for the lower and the upper bounds.

Finally, library routines that manipulate arrays require a special treatment
by the analysis. As in the case of any other whole-program analysis in the
presence of library functions, our symbolic analysis must encode the behavior
of such functions in the algorithm. The analysis of each library function must
characterize the regions accessed by the function and the values of any up-
dated pointer or index variable. For instance, the standard Unix utilities make
heavy use of string manipulation routines. The application of our symbolic
techniques to these programs requires the analysis to characterize how each of
these functions accesses the strings passed as parameters and to characterize
the returned string values.

7. EXPERIMENTAL RESULTS

We used the SUIF compiler infrastructure [Amarasinghe et al. 1995] to imple-
ment a compiler based on the analysis algorithms presented in this article. We
extended the SUIF system to support programs written in Cilk, a parallel ver-
sion of C [Blumofe et al. 1996]. We also used a freely distributed linear program
solver, lp solve,4 which uses the simplex method to solve the linear programs
generated by our analysis.

Table I presents our set of divide and conquer benchmarks; for each of these
benchmarks, we have a sequential C version and a multithreaded Cilk version.
In this section, we present results for the following experiments: automatic

4Available at ftp://ftp.es.ele.tue.nl/pub/lp solve/.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

224 • R. Rugina and M. C. Rinard

Table I. Divide and Conquer Benchmark Programs

Program Description
Quicksort Divide and conquer Quicksort
Mergesort Divide and conquer Mergesort
Heat Solves heat diffusion on a mesh
Knapsack Solves the 0/1 knapsack problem
BlockMul Blocked matrix multiply with temporary arrays
NoTemp Blocked matrix multiply without temporary arrays
LU Divide and conquer LU decomposition

parallelization for the sequential versions; data race detection for the multi-
threaded versions; and array bounds violation detection for the sequential and
multithreaded versions. Our compiler would also eliminate array bounds checks
if the underlying language (C) had them.

We would like to emphasize the challenging nature of the programs in our
benchmark set. Most of them contain multiple mutually recursive procedures,
and have been heavily optimized by hand to extract the maximum performance.
As a result, they heavily use low-level C features such as pointer arithmetic and
casts. The list below highlight several challenges in these benchmarks, all of
which our analysis succesfully handles:

—The main loops in Quicksort and Mergesort contain correlated variables, as
described in Section 4. The compiler needs to apply correlation analysis to
accurately characterize memory accesses for these benchmarks.

—The main recursive procedure in Heat swaps its arguments at even iterations,
but preserves their order at odd iterations. To enable transformations and
safety checks for this benchmark, the compiler needs to apply the context-
sensitive pointer analysis techniques; the compiler uses one context of the
procedure for even iterations and another context for odd iterations.

—The main recursive procedure in the matrix multiply algorithm NoTemp uses
eight recursive calls; these calls access disjoint pieces of the same matrix.

—BlockMul, a similar matrix multiply program, also uses a main recursive
procedure with eight recursive calls. But it also dynamically allocates mem-
ory on stack (using the C library call alloca), to store temporary subma-
trices. At each invocation, the procedure accesses memory dynamically al-
located in its own stack frame, but also accesses memory allocated in two
other stack frames of the same procedure, at one and two levels up in the
recursion. The compiler needs context sensitive analysis techniques to dis-
tinguish between the memory allocated in all these stack frames of the same
procedure.

—The recursive structure in LU is significantly more complex. It uses six re-
cursive procedures which invoke each other: four of them have mutually
recursive calls, one has eight direct recursive calls, and the other, which is
the main recursive procedure, has one direct recursive call and three calls
to the other recursive procedures. All of these procedures access multiple
regions within the same memory block. For the multithreaded version of
LU, all of these recursive calls execute in parallel. This complex recursive

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 225

Table II. Absolute Speedups for Parallelized Programs

Number of Processors

Program 1 2 4 6 8
Quicksort 1.00 1.99 3.89 5.68 7.36
Mergesort 1.00 2.00 3.90 5.70 7.41
Heat 1.03 2.02 3.89 5.53 6.83
BlockMul 0.97 1.86 3.84 5.70 7.54
NoTemp 1.02 2.01 4.03 6.02 8.02
LU 0.98 1.95 3.89 5.66 7.39

structure poses a significant challenge to a program analysis system if it is
to accurately characterize the memory accesses for each of these procedures.

7.1 Automatic Parallelization

The analysis was able to automatically parallelize all of the sequential pro-
grams except Knapsack, whose parallelization would have a data race. In gen-
eral, the analysis detected the same sources of parallelism as in the Cilk pro-
grams. We ran the benchmarks on an eight processor Sun Ultra Enterprise
Server. Table II presents the speedups of the benchmarks with respect to the
sequential versions, which execute with no parallelization overhead. In some
cases the parallelized version running on one processor runs faster than the se-
quential version, in which case the absolute speedup is above one for one
processor. We ran Quicksort and Mergesort on a randomly generated file of
8,000,000 numbers, and BlockMul, NoTempMul and LU on a 1024 by 1024
matrix.

7.2 Data Race Detection

The analysis verifies that the multithreaded versions of all programs except
Knapsack are free of data races. The data race in Knapsack, a branch and
bound algorithm, is used to prune the search space, as follows. The program
uses an integer variable records the current best solution. When a thread finds
a better solution, it updates this variable. During the search, parallel threads
compare their partial solution to the current best; if a thread detect that the
current best is better than its partial solution, it aborts its search. Hence, the
current best is a shared variable concurrently read and written by parallel
threads. Therefore, the data race in Knapsack is intentional and part of the
algorithm design, but causes nondeterministic behavior.

7.3 Array Bounds Violations and Checks

The analysis was also able to verify that none of our benchmarks (including
both the sequential and the multithreaded versions) violates the array bounds.

To get some idea of the magnitude of the array bounds check overhead,
we manually added array bounds checks to the BlockedMul and the two sort
programs. BlockedMul executes approximately 2.50 times slower with array
bounds checks. Mergesort executes 1.14 times slower with array bounds checks,
and Quicksort executes 1.09 times slower.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

226 • R. Rugina and M. C. Rinard

Table III. Bitwidth Analysis Results

Percentage of Percentage of
Eliminated Eliminated

Program Register Bits Memory Bits
convolve 35.94% 25.76%
histogram 30.56% 73.86%
intfir 36.72% 1.59%
intmatmul 47.32% 35.42%
jacobi 42.71% 75.00%
life 65.92% 96.88%
median 43.75% 3.12%
mpegcorr 58.20% 53.12%
pmatch 59.38% 47.24%

7.4 Bitwidth Analysis

Bitwidth analysis has recently been identified as a concrete value range
problem [Stephenson et al. 2000]. Even though our algorithm is designed to
extract symbolic bounds, it extracts exact numeric bounds when it is possible
to do so. By adjusting our algorithm to compute bounds for all variables and
not just pointers and array indices, we are able to apply our algorithm to the
bitwidth analysis problem. Table III presents experimental results for several
programs presented in Stephenson et al. [2000]. We report reductions in two
kinds of program state: register state, which holds scalar variables, and memory
state, which holds array variables. These results show that our analysis is able
to significantly reduce the number of bits required to hold the state of the
program.

Our analysis extracts ranges from arithmetic operations and control flow
only; it does not extract information from bitwise operations, it does not infer
width information from the size of return types of procedures, and it does not
infer bounds information by assuming that array accesses fall within bounds.
Other bitwidth analyses [Budiu et al. 2000; Stephenson et al. 2000] use such
techniques and are able to eliminate a larger number of bits. Nonetheless, our
results show a substantial reduction in the number of bits, which makes our
algorithm a good candidate for extracting bitwidth information.

7.5 Analysis Running Times

Table IV presents the running times of the pointer analysis and symbolic analy-
sis phases for the divide and conquer benchmarks. These results were collected
on a Pentium III at 450 MHz, running RedHat Linux. In general, the running
times of the context-sensitive pointer analysis depend on the number of gener-
ated contexts. For our benchmarks, the running times of pointer analysis for the
two matrix multiplication programs (BlockMul and NoTemp) are larger than
those for the other programs, because the analysis generates multiple contexts
in these cases. In contrast, the running times for the bounds and region anal-
ysis show smaller fluctuations across our set of benchmarks. We attribute this
behavior to the fact that our symbolic treatment performs exactly one analysis
per procedure and per recursive cycle.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 227

Table IV. Running Times (in Seconds)

Pointer Bounds Region
Program Analysis Analysis Analysis
Quicksort 0.03 0.25 0.03
Mergesort 0.08 0.49 0.16
Heat 0.23 2.39 0.13
Knapsack 0.07 0.17 0.07
BlockMul 8.75 0.53 0.33
NoTemp 4.57 0.61 0.16
LU 0.39 1.09 0.35

As discussed in Section 5, the complexity of the bounds analysis is propor-
tional to the number of basick blocks, that is, to the amount of intraprocedural
control flow, while the complexity of the region analysis depends instead on the
number of call sites in the program. Hence, the bounds analysis time is larger
for programs with more complex intraprocedural control flow, such as Heat;
the region analysis time is larger for programs with more procedure calls, such
as LU; and, for each benchmark, the bounds analysis takes longer than the
region analysis because programs usually have more complex intraprocedural
control-flow than interprocedural control-flow (i.e., more branch instructions
than call instructions).

8. RELATED WORK

We discuss the related work in the area of array bound checking elimination and
value range analysis, which is the most relevant to the analysis presented in
this paper. We will then present related work in the areas of data race detection
and automatic parallelization.

8.1 Array Bound Checking Elimination and Value Range Analysis

There is a long history of research on array bound check elimination. A large
part of the work in this area concentrated on detecting and eliminating partially
redundant array bound checks [Markstein et al. 1982; Gupta 1990, 1993; Asuru
1992; Austin et al. 1994; Kolte and Wolfe 1995]. An array bound check is par-
tially redundant if it is implied by another bound check during the execution of
the program. The two dynamic checks can either be different statements in the
program or can be different instances of the same statement in a loop (usually
the check in the first iteration makes the checks in all the subsequent iter-
ations redundant). Consequently, two major techniques have been developed
for detecting partially redundant bound checks: removal of bound checking
statements made redundant by other checking statements and hoisting bound
checks out of the loops. These optimizations are essentially generalizations of
common subexpression elimination and loop invariant code motion for array
bound checks. All the techniques developed for discovering partially redundant
checks are intraprocedural analyses; in particular, they are not able to detect
partially redundant checks in recursive procedures.

Hence, the detection of partially redundant checks requires the compiler to
analyze the relation between the bound checks in the program. In contrast, our

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

228 • R. Rugina and M. C. Rinard

analysis is aimed at detecting and eliminating fully redundant array bound
checks, where the compiler analyzes the computation in the program (not the
checking statements) and determines if the array subscripts always fall within
the array bounds, regardless of the other bound checks in the program. These
two techniques are therefore orthogonal and can complement each other.

Researchers have attacked the problem of detecting fully redundant bound
checks from many perspectives, including theorem proving, iterative value
range analysis, constraint-based analyses, and type systems.

The techniques based on theorem proving generate, for each array access,
the logic predicate necessary to ensure the safety of that access. The compiler
then traverses the statements in the program backwards and derives the weak-
est preconditions that must be satisfied for the predicates to hold. If the com-
piler can prove that on each path to an array access there is a precondition
which holds, then the bound check for that access is redundant and can be
eliminated [Suzuki and Ishihata 1977]. Theorem proving is a powerful tech-
nique because it operates on the general domain of expressions in predicate
logic. However, it is usually expensive and not guaranteed to terminate. For
instance, the weakest preconditions may grow exponentially for a sequence of
if statements and the computation of weakest preconditions for loops may not
reach a fixed point. Therefore, the analysis has to artificially bound the number
of iterations for loop constructs.

Value range analysis aims at determining the ranges of variables at each
program point. The compiler can compare the computed ranges with the array
bounds at each array access to determine if the access is fully redundant. The
range information is also valuable for many other optimizations and verifica-
tions; for instance, range analysis was studied in the context of automatic par-
allelization of programs with affine array accesses in nested loops [Triolet et al.
1986; Balasundaram and Kennedy 1989b; Havlak and Kennedy 1991; Hall et al.
1995; Blume and Eigenmann 1995], automatic parallelization of recursive pro-
cedures [Gupta et al. 1999; Rugina and Rinard 1999a], static branch prediction
[Patterson 1995], bitwidth reduction in C-to-hardware compilers [Stephenson
et al. 2000; Budiu et al. 2000], or program debugging [Bourdoncle 1993]. Several
other researchers have developed range analyses without specific target appli-
cations [Harrison 1977; Verbrugge et al. 1996]. All of these analyses compute
value ranges using iterative approaches, such as dataflow analysis or abstract
interpretation, over the lattice domain of integer or symbolic ranges. Because
these lattices have infinite ascending chains, the iterative analysis of loops or re-
cursive procedures is not guaranteed to terminate; to ensure termination, these
analyses artificially limit the number of iterations or use imprecise widening
operators. In contrast, the work presented in this article replaces these limited
techniques with a clean, general framework which can successfully analyze ar-
bitrary intra- and inter-procedural control flow and is guaranteed to terminate.

The constraint-based approaches for elimination of fully redundant bound
checks are the most relevant for this article and were developed simultaneously
with the work presented in this article [Wagner et al. 2000; Bodik et al. 2000].
They reduce the range computation problem to a constraint system consisting
of linear inequalities and then solve the system to determine if the bound checks

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 229

are redundant. In the first approach [Wagner et al. 2000], the analysis derives
derives a range constraint for each statement in the program. Each constraint
is an inclusion between linear combinations of range variables. Because this
work focuses the security vulnerabilities through string buffer overruns, the
analysis derives special constraints for each string manipulation routine. The
authors also present an algorithm for solving the range inclusion constraints;
the algorithm is essentially equivalent to a linear program solver when all the
bounds are finite. However, the range analysis presented in this work computes
numeric ranges for variables, is intraprocedural, and is unsound. In contrast,
our analysis is more general and more precise: it computes symbolic ranges,
is flow-sensitive, is interprocedural, can handle recursive procedures, and is
sound. The other constraint-based approach to array bound checking elimina-
tion [Bodik et al. 2000] captures the constraints between program variables
in the form of an inequality graph, where the nodes represent program vari-
ables and the edges represent linear inequality constraints; an edge between
variables x and y , labeled with integer constant c, encodes a linear inequality
y ≤ x + c. Hence, the graph represents a system of linear inequalities of this
form. But instead of first solving the system to get bounds for the variables and
then using these bounds to show that array accesses are within bounds, the
analysis directly determines the safety of accesses from the constraint system,
by reducing the problem to the shortest path problem: an array access a[i] is
within bounds if the weight of the shortest path between the array index node
i and the array length node a.length is less than zero. The analysis uses the
SSA representation of the program (so it is flow-sensitive) and has extensions
for detecting partially redundant checks. The main advantage of this algorithm
is its simplicity and efficiency due to the sparse representation using the SSA
form and the inequality graph. However, the analysis requires a special treat-
ment of cyclic paths in the graph to ensure the termination of the shortest path
computation—this technique is conceptually equivalent to the application of
the widening operator in abstract interpretation. Also, the analysis is intrapro-
cedural and we believe it requires complex modifications to be able to analyze
the recursive divide-and-conquer programs presented in this paper. Finally,
the analysis can only analyze assignments of constants and increments by con-
stants; it cannot handle the assignment of other common linear expressions
such as multiplication or division by constants and especially addition or sub-
traction of variables (because the inequality graph can only capture relations
between two variables). The algorithm presented in this article doesn’t suffer
of any of these problems.

In all of the above analyses, the main difficulty is the extraction of the loop in-
variants and recursion invariants necessary to guarantee that array accesses
are fully redundant. In general, invariant discovery is usually the main ob-
stacle in any static analysis designed for checking arbitrary safety proper-
ties of programs. Recognizing this fact, researchers have recently developed
a range of language extensions that facilitate the discovery or explicitly give
these invariants. Examples of language extensions designed to facilitate the
safety checking of memory accesses include preconditions and postconditions
in the Eiffel language [Meyer 1992], dependent types [Xi and Pfenning 1998],

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

230 • R. Rugina and M. C. Rinard

procedure annotations in a certifying compiler [Necula and Lee 1998], program
annotations in the LCLint tool [Larochelle and Evans 2001], annotations in
the Extended Static Checking system [Flanagan et al. 2002], and region types
in the Vault language [DeLine and Fahndrich 2001] and in the Cyclone lan-
guage [Grossman et al. 2002]. As language extensions, all of these techniques
move the burden of invariant detection from the compiler to the programmer.
In fact, programming systems could use our analysis to automatically derive
some of the annotations in the above systems.

8.2 Race Detection

A data race occurs when two parallel threads access the same memory loca-
tion without synchronization and one of the accesses is a write. Because data
races are almost always the result of programmer error, many researchers have
developed tools designed to find and help eliminate data races. Several ap-
proaches have been developed to attack this problem, including static program
specifications and verifications [Sterling 1994; Detlefs et al. 1998], augmented
type systems to enforce the synchronized access to shared data [Flanagan and
Abadi 1999; Flanagan and Freund 2000; Boyapati and Rinard 2001; Flanagan
and Qadeer 2003], and dynamic detection of data races based on program in-
strumentation [Steele 1990; Dinning and Schonberg 1991; Netzer and Miller
1991; Mellor-Crummey 1991; Min and Choi 1991; Savage et al. 1997; Cheng
et al. 1998; Praun and Gross 2001; Choi et al. 2002; O’Callahan and Choi 2003;
Pozniansky and Schuster 2003; Praun and Gross 2003]. The most relevant tech-
niques are those that use program analysis to statically identify data races.
Some of these techniques concentrate on the analysis of synchronization, and
rely on the fact that detecting conflicting accesses is straightforward once the
analysis determines which statements may execute concurrently [Taylor 1983;
Balasundaram and Kennedy 1989a; Duesterwald and Soffa 1991]. Other anal-
yses focus on parallel programs with affine array accesses in loops, and use
techniques similar to those from data dependence analysis for sequential pro-
grams [Emrath and Padua 1988; Emrath et al. 1989; Callahan et al. 1990].
However, none of these analyses is able to statically detect data races in re-
cursive programs where the recursive invocations access disjoint regions of the
same array; or in multithreaded programs which manipulate shared pointers.
To the best of our knowledge, the work presented in this article is the first
attempt to address the static data race detection problem in recursive, multi-
threaded programs that manipulate shared pointers and shared arrays.

8.3 Parallelizing Compilers

Most of the previous research in parallelizing compilers has focused on par-
allelizing loop nests that access dense matrices using affine access functions.
Such compilers [Hall et al. 1992, 1995; Blume et al. 1994] use range analysis
for the array indices, as discussed in Section 8.1, or use data dependence anal-
ysis to determine if two array accesses in a loop nest may refer to the same
location [Banerjee 1979, 1988; Wolfe 1982; Kong et al. 1990; Maydan et al.
1991; Goff et al. 1991; Pugh 1991]. The techniques presented in this article, on

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 231

the other hand, are designed for a more general class of programs, with arbi-
trary intraprocedural control flow, with recursive procedures, multiple threads,
dynamic memory allocation, and pointer arithmetic.

Many parallel tree traversal programs can be viewed as divide and conquer
programs. Shape analysis is designed to discover when a data structure has
a certain “shape” such as a tree or list [Chase et al. 1990; Ghiya and Hendren
1996; Sagiv et al. 1998, 2002]. Several researchers have used shape analysis
as the basis for compilers that automatically parallelize divide and conquer
programs that manipulate linked data structures. Commutativity analysis
views computations as sequences of operations on objects [Rinard and Diniz
1997]. It generates parallel code if all pairs of operations commute. We view
both commutativity analysis and shape analysis as orthogonal to our analyses.

9. CONCLUSION

This article presents a new analysis framework for the symbolic bounds analy-
sis of pointers, array indices, and accessed memory regions. Standard program
analysis techniques fail for this problem because the analysis domain has in-
finite ascending chains. Instead of fixed-point algorithms, our analysis uses
a framework based on symbolic constraints reduced to linear programs. Our
pointer analysis algorithm enables us to apply our framework to complicated re-
cursive programs that use dynamic memory allocation and pointer arithmetic.
Experimental results from our implemented compiler show that our analysis
can successfully solve several important program analysis problems, including
static race detection, automatic parallelization, static detection of array bounds
violations, elimination of array bounds checks, and reduction of the number of
bits used to store computed values.

REFERENCES

AMARASINGHE, S., ANDERSON, J., LAM, M., AND TSENG, C. 1995. The SUIF compiler for scalable
parallel machines. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific
Computing (San Francisco, Calif.).

ASURU, J. 1992. Optimization of array subscript range checks. ACM Lett. Prog. Lang. Syst. 1, 2
(June), 109–118.

AUSTIN, T., BREACH, S., AND SOHI, G. 1994. Efficient detection of all pointer and array access errors.
In Proceedings of the SIGPLAN ’94 Conference on Program Language Design and Implementation
(Orlando, Fla.). ACM, New York.

BALASUNDARAM, V. AND KENNEDY, K. 1989a. Compile-time detection of race conditions in a parallel
program. In Proceedings of the 1989 ACM International Conference on Supercomputing (Crete,
Greece). ACM, New York.

BALASUNDARAM, V. AND KENNEDY, K. 1989b. A technique for summarizing data access and its use
in parallelism enhancing transformations. In Proceedings of the SIGPLAN ’89 Conference on
Program Language Design and Implementation (Portland, Ore.). ACM, New York.

BANERJEE, U. 1979. Speedup of ordinary programs. Ph.D. dissertation. Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign, Urbana-Champaign, Ill.

BANERJEE, U. 1988. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, Mass.

BLUME, W. AND EIGENMANN, R. 1995. Symbolic range propagation. In Proceedings of the 9th Inter-
national Parallel Processing Symposium (Santa Barbara, Calif.).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

232 • R. Rugina and M. C. Rinard

BLUME, W., EIGENMANN, R., FAIGIN, K., GROUT, J., HOEFLINGER, J., PADUA, D., PETERSEN, P., POTTENGER,
B., RAUCHWERGER, L., TU, P., AND WEATHERFORD, S. 1994. Polaris: The next generation in
parallelizing compilers. In Proceedings of the 7th Workshop on Languages and Compilers for
Parallel Computing (Ithaca, N.Y.).

BLUMOFE, R., JOERG, C., KUSZMAUL, B., LEISERSON, C., RANDALL, K., AND ZHOU, Y. 1996. CILK:
An efficient multithreaded runtime system. J. Parall. Distrib. Comput. 37, 1 (Aug.), 55–
69.

BODIK, R., GUPTA, R., AND SARKAR, V. 2000. ABCD: Eliminating array bounds checks on demand.
In Proceedings of the SIGPLAN ’00 Conference on Program Language Design and Implementation
(Vancouver, B.C., Canada). ACM, New York.

BOURDONCLE, F. 1993. Abstract debugging of higher-order imperative languages. In Proceedings
of the SIGPLAN ’93 Conference on Program Language Design and Implementation (Albuquerque,
N.M.). ACM, New York.

BOYAPATI, C. AND RINARD, M. 2001. A parameterized type system for race-free Java programs. In
Proceedings of the 16th Annual Conference on Object-Oriented Programming Systems, Languages
and Applications (Tampa Bay, Fla.).

BUDIU, M., GOLDSTEIN, S., SAKR, M., AND WALKER, K. 2000. BitValue inference: Detecting and ex-
ploiting narrow bitwidth computations. In Proceedings of the EuroPar 2000 European Conference
on Parallel Computing (Munich, Germany).

CALLAHAN, D., KENNEDY, K., AND SUBHLOK, J. 1990. Analysis of event synchronization in a parallel
programming tool. In Proceedings of the 2nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Seattle, Wash.). ACM, New York.

CHASE, D., WEGMAN, M., AND ZADEK, F. 1990. Analysis of pointers and structures. In Proceedings of
the SIGPLAN ’90 Conference on Program Language Design and Implementation (White Plains,
N.Y.). ACM, New York.

CHATTERJEE, S., LEBECK, A., PATNALA, P., AND THOTTETHODI, M. 1999. Recursive array layouts and
fast matrix multiplication. In Proceedings of the 11th Annual ACM Symposium on Parallel Al-
gorithms and Architectures (Saint Malo, France). ACM, New York.

CHENG, G., FENG, M., LEISERSON, C., RANDALL, K., AND STARK, A. 1998. Detecting data races in
CILK programs that use locks. In Proceedings of the 10th Annual ACM Symposium on Parallel
Algorithms and Architectures (Puerto Vallarta, Mexico). ACM, New York.

CHOI, J.-D., LEE, K., LOGINOV, A., O’CALLAHAN, R., SARKAR, V., AND SRIDHARAN, M. 2002. Effi-
cient and precise datarace detection for multithreaded object-oriented programs. In Proceed-
ings of the SIGPLAN ’02 Conference on Program Language Design and Implementation (Berlin,
Germany).

DELINE, R. AND FAHNDRICH, M. 2001. Enforcing high-level protocols in low-level software. In Pro-
ceedings of the SIGPLAN ’01 Conference on Program Language Design and Implementation
(Snowbird, Ut.).

DETLEFS, D., LEINO, K. R., NELSON, G., AND SAXE, J. 1998. Extended static checking. Tech. Rep. 159,
Compaq Systems Research Center.

DINNING, A. AND SCHONBERG, E. 1991. Detecting access anomalies in programs with critical sec-
tions. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging (Santa
Cruz, Calif.). ACM, New York.

DUESTERWALD, E. AND SOFFA, M. 1991. Concurrency analysis in the presence of procedures using
a data-flow framework. In Proceedings of the 1991 International Symposium on Software Testing
and Analysis (Victoria, B.C., Canada). ACM, New York.

EMRATH, P., GHOSH, S., AND PADUA, D. 1989. Event synchronization analysis for debugging parallel
programs. In Proceedings of Supercomputing ’89 (Reno, Nev.).

EMRATH, P. AND PADUA, D. 1988. Automatic detection of nondeterminacy in parallel programs. In
Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging
(Madison, Wisc.).

FLANAGAN, C. AND ABADI, M. 1999. Types for safe locking. In Proceedings of the 1999 European
Symposium on Programming. Amsterdam, The Netherlands.

FLANAGAN, C. AND FREUND, S. 2000. Type-based race detection for Java. In Proceedings of the
SIGPLAN ’00 Conference on Program Language Design and Implementation (Vancouver, B.C.,
Canada). ACM, New York.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 233

FLANAGAN, C., LEINO, R., LILLIBRIDGE, M., NELSON, G., SAXE, J., AND STATA, R. 2002. Extended static
checking for Java. In Proceedings of the SIGPLAN ’02 Conference on Program Language Design
and Implementation (Berlin, Germany). ACM, New York.

FLANAGAN, C. AND QADEER, S. 2003. A type and effect system for atomicity. In Proceedings of the
SIGPLAN ’03 Conference on Program Language Design and Implementation (San Diego, Calif.).
ACM, New York.

FRENS, J. AND WISE, D. 1997. Auto-blocking matrix-multiplication or tracking BLAS3 performance
from source code. In Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (Las Vegas, Nev.). ACM, New York.

FRIGO, M., LEISERSON, C., AND RANDALL, K. 1998. The implementation of the CILK-5 multithreaded
language. In Proceedings of the SIGPLAN ’98 Conference on Program Language Design and
Implementation (Montreal, Que., Canada). ACM, New York.

GHIYA, R. AND HENDREN, L. 1996. Is is a tree, a DAG or a cyclic graph? A shape analysis for heap-
directed pointers in C. In Proceedings of the 23rd Annual ACM Symposium on the Principles of
Programming Languages (St. Petersburg Beach, Fla.). ACM, New York.

GOFF, G., KENNEDY, K., AND TSENG, C. 1991. Practical dependence testing. In Proceedings of the
SIGPLAN ’91 Conference on Program Language Design and Implementation (Toronto, Ont.,
Canada). ACM, New York.

GROSSMAN, D., MORRISETT, G., JIM, T., HICKS, M., WANG, Y., AND CHENEY, J. 2002. Region-based
memory management in Cyclone. In Proceedings of the SIGPLAN ’02 Conference on Program
Language Design and Implementation (Berlin, Germany). ACM, New York.

GUPTA, M., MUKHOPADHYAY, S., AND SINHA, N. 1999. Automatic parallelization of recursive proce-
dures. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT ’99) (Newport Beach, Calif.).

GUPTA, R. 1990. A fresh look at optimizing array bound checking. In Proceedings of the SIGPLAN
’90 Conference on Program Language Design and Implementation (White Plains, N.Y.). ACM, New
York.

GUPTA, R. 1993. Optimizing array bound checks using flow analysis. ACM Lett. Prog. Lang.
Syst. 2, 1–4 (Mar.-Dec.), 135–150.

GUSTAVSON, F. 1997. Recursion leads to automatic variable blocking for dense linear-algebra al-
gorithms. IBM J. Res. Devel. 41, 6 (Nov.), 737–755.

HALL, M., AMARASINGHE, S., MURPHY, B., LIAO, S., AND LAM, M. 1995. Detecting coarse-grain par-
allelism using an interprocedural parallelizing compiler. In Proceedings of Supercomputing ’95
(San Diego, Calif.).

HALL, M. W., HIRANANDANI, S., KENNEDY, K., AND TSENG, C. 1992. Interprocedural compilation
of Fortran D for MIMD distributed-memory machines. In Proceedings of Supercomputing ’92
(Minneapolis, Minn.).

HARRISON, W. H. 1977. Compiler analysis of the value ranges for variables. IEEE Trans. Softw.
Eng. SE-3, 3 (May), 243–250.

HAVLAK, P. AND KENNEDY, K. 1991. An implementation of interprocedural bounded regular section
analysis. IEEE Trans. Paral. Distrib. Syst. 2, 3 (July), 350–360.

KOLTE, P. AND WOLFE, M. 1995. Elimination of redundant array subscript range checks. In Pro-
ceedings of the SIGPLAN ’95 Conference on Program Language Design and Implementation (San
Diego, Calif.). ACM, New York.

KONG, X., KLAPPHOLZ, D., AND PSARRIS, K. 1990. The I test: A new test for subscript data de-
pendence. In Proceedings of the 1990 International Conference on Parallel Processing (St.
Charles, Ill.).

LAROCHELLE, D. AND EVANS, D. 2001. Statically detecting likely buffer overflow vulnerabilities. In
Proceedings of the 10th USENIX Security Symposium (Washington, D.C.).

MARKSTEIN, V., COCKE, J., AND MARKSTEIN, P. 1982. Optimization of range checking. In Proceedings
of the SIGPLAN ’82 Symposium on Compiler Construction (Boston, Mass.). ACM, New York.

MAYDAN, D., HENNESSY, J., AND LAM, M. 1991. Efficient and exact data dependence analysis. In
Proceedings of the SIGPLAN ’91 Conference on Program Language Design and Implementation
(Toronto, Ont., Canada). ACM, New York.

MELLOR-CRUMMEY, J. 1991. On-the-fly detection of data races for programs with nested fork-join
parallelism. In Proceedings of Supercomputing ’91 (Albuquerque, N.M.).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

234 • R. Rugina and M. C. Rinard

MEYER, B. 1992. Eiffel: The Language. Prentice-Hall, Englewood Cliffs, N.J.
MIN, S. AND CHOI, J. 1991. Race frontier: Reproducing data races in parallel-program debugging.

In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Williamsburg, Va.). ACM, New York.

NECULA, G. AND LEE, P. 1998. The design and implementation of a certifying compiler. In Pro-
ceedings of the SIGPLAN ’98 Conference on Program Language Design and Implementation
(Montreal, Que., Canada). ACM, New York.

NETZER, R. AND MILLER, B. 1991. Improving the accuracy of data race detection. In Proceed-
ings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Williamsburg, Va.). ACM, New York.

NIELSON, F., NIELSON, H., AND HANKIN, C. 1999. Principles of Program Analysis. Springer-Verlag,
Heidelberg, Germany.

O’CALLAHAN, R. AND CHOI, J.-D. 2003. Hybrid dynamic data race detection. In Proceedings of the
9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego,
Calif.). ACM, New York.

PATTERSON, J. 1995. Accurate static branch prediction by value range propagation. In Proceedings
of the SIGPLAN ’95 Conference on Program Language Design and Implementation (San Diego,
Calif.). ACM, New York.

POZNIANSKY, E. AND SCHUSTER, A. 2003. Efficient on-the-fly data race detection in multihreaded
C++ programs. In Proceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (San Diego, Calif.). ACM, New York.

PRAUN, C. AND GROSS, T. 2001. Object race detection. In Proceedings of the 16th Annual Conference
on Object-Oriented Programming Systems, Languages and Applications (Tampa Bay, Fla.).

PRAUN, C. AND GROSS, T. 2003. Static conflict analysis for multi-threaded object-oriented programs.
In Proceedings of the SIGPLAN ’03 Conference on Program Language Design and Implementation
(San Diego, Calif.). ACM, New York.

PUGH, W. 1991. The Omega test: A fast and practical integer programming algorithm for depen-
dence analysis. In Proceedings of Supercomputing ’91 (Albuquerque, N.M.).

RINARD, M. AND DINIZ, P. 1997. Commutativity analysis: A new analysis technique for parallelizing
compilers. ACM Trans. Prog. Lang. Syst. 19, 6 (Nov.), 941–992.

RUGINA, R. AND RINARD, M. 1999a. Automatic parallelization of divide and conquer algorithms.
In Proceedings of the 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Atlanta, Ga.). ACM, New York.

RUGINA, R. AND RINARD, M. 1999b. Pointer analysis for multithreaded programs. In Proceedings of
the SIGPLAN ’99 Conference on Program Language Design and Implementation (Atlanta, Ga.).
ACM, New York.

SAGIV, M., REPS, T., AND WILHELM, R. 1998. Solving shape-analysis problems in languages with
destructive updating. ACM Trans. Prog. Lang. Syst. 20, 1 (Jan.), 1–50.

SAGIV, M., REPS, T., AND WILHELM, R. 2002. Parametric shape analysis via 3-valued logic. ACM
Trans. Prog. Lang. Syst. 24, 3 (May).

SAVAGE, S., BURROWS, M., NELSON, G., SOLBOVARRO, P., AND ANDERSON, T. 1997. Eraser: A dynamic
race detector for multi-threaded programs. ACM Trans. Comput. Syst. 15, 4, 391–411.

STEELE, G. 1990. Making asynchronous parallelism safe for the world. In Proceedings of the 17th
Annual ACM Symposium on the Principles of Programming Languages (San Francisco, Calif.).
ACM, New York.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd Annual
ACM Symposium on the Principles of Programming Languages (St. Petersburg Beach, Fla.).
ACM, New York.

STEPHENSON, M., BABB, J., AND AMARASINGHE, S. 2000. Bitwidth analysis with application to silicon
compilation. In Proceedings of the SIGPLAN ’00 Conference on Program Language Design and
Implementation (Vancouver, B.C., Canada). ACM, New York.

STERLING, N. 1994. Warlock: A static data race analysis tool. In Proceedings of the 1993 Winter
USENIX Conference (San Diego, Calif.).

SUZUKI, N. AND ISHIHATA, K. 1977. Implementation of an array bound checker. In Conference
Record of the 4th Annual ACM Symposium on the Principles of Programming Languages (Los
Angeles, Calif.). ACM, New York.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

Pointers, Array Indices, and Accessed Memory Regions • 235

TAYLOR, R. N. 1983. A general purpose algorithm for analyzing concurrent programs. Commun.
ACM 26, 5 (May), 362–376.

TRIOLET, R., IRIGOIN, F., AND FEAUTRIER, P. 1986. Direct parallelization of CALL statements. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction (Palo Alto, Calif.). ACM,
New York.

VERBRUGGE, C., CO, P., AND HENDREN, L. 1996. Generalized constant propagation: A study in C. In
Proceedings of the 1996 International Conference on Compiler Construction (Linköping, Sweden).

WAGNER, D., FOSTER, J., BREWER, E., AND AIKEN, A. 2000. A first step towards automated detection
of buffer overrun vulnerabilities. In Network and Distributed System Security Symposium (San
Diego, Calif.).

WILSON, R. AND LAM, M. 1995. Efficient context-sensitive pointer analysis for C programs. In
Proceedings of the SIGPLAN ’95 Conference on Program Language Design and Implementation
(La Jolla, Calif.). ACM, New York.

WOLFE, M. J. 1982. Optimizing supercompilers for supercomputers. Ph.D. dissertation. Dept. of
Computer Science, Univ. of Illinois at Urbana-Champaign.

XI, H. AND PFENNING, F. 1998. Eliminating array bound checking through dependent types. In
Proceedings of the SIGPLAN ’98 Conference on Program Language Design and Implementation
(Montreal, Que., Canada). ACM, New York.

Received February 2001; revised July 2002; accepted June 2004

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.

