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Abstract. This paper presents our integration of efficient resolution-
based theorem provers into the Jahob data structure verification system.
Our experimental results show that this approach enables Jahob to au-
tomatically verify the correctness of a range of complex dynamically
instantiable data structures, such as hash tables and search trees, with-
out the need for interactive theorem proving or techniques tailored to
individual data structures.
Our primary technical results include: (1) a translation from higher-order
logic to first-order logic that enables the application of resolution-based
theorem provers and (2) a proof that eliminating type (sort) information
in formulas is both sound and complete, even in the presence of a generic
equality operator. Our experimental results show that the elimination of
type information often dramatically decreases the time required to prove
the resulting formulas.
These techniques enabled us to verify complex correctness properties
of Java programs such as a mutable set implemented as an imperative
linked list, a finite map implemented as a functional ordered tree, a hash
table with a mutable array, and a simple library system example that
uses these container data structures. Our system verifies (in a matter
of minutes) that data structure operations correctly update the finite
map, that they preserve data structure invariants (such as ordering of
elements, membership in appropriate hash table buckets, or relationships
between sets and relations), and that there are no run-time errors such
as null dereferences or array out of bounds accesses.

1 Introduction

One of the main challenges in the verification of software systems is the analysis
of unbounded data structures with dynamically allocated linked data structures
and arrays. Examples of such data structures are linked lists, trees, and hash
tables. The goal of these data structures is to efficiently implement sets and rela-
tions, with operations such as lookup, insert, and removal. This paper explores



the verification of programs with such data structures using resolution-based
theorem provers for first-order logic with equality. We only summarize the main
ideas here; see [4] for details.

Initial goal and the effectiveness of the approach. The initial motivation
for using first-order provers is the observation that quantifier-free constraints on
sets and relations that represent data structures can be translated to first-order
logic. This approach is suitable for verifying clients of data structures, because
such verification need not deal with transitive closure present in the implemen-
tation of recursive data structures. The context of this work is the Jahob system
for verifying data structure consistency properties [7]. Our initial goal was to in-
corporate first-order theorem provers into Jahob to verify data structure clients.
While we have indeed successfully verified data structure clients, we also discov-
ered that this approach has a wider range of applicability than we had initially
anticipated, in several respects. 1) We were able to apply this technique not only
to data structure clients, but also to data structure implementations, using recur-
sion and ghost variables and, in some cases, confining data structure mutation to
newly allocated objects only. 2) Theorem provers were effective at dealing with
quantified invariants that often arise when reasoning about unbounded numbers
of objects. 3) Using a simple partial axiomatization of linear arithmetic, we were
able to verify not only linking properties traditionally addressed by shape anal-
yses, but also ordering properties in a binary search tree, hash table invariants,
and bounds for all array accesses.

The context of our results. We find our current results encouraging and
attribute them to several factors. Our use of ghost variables eliminated the need
for transitive closure in specifications for our examples. Our use of recursion in
combination with Jahob’s approach to handling procedure calls resulted in more
tractable verification conditions. The semantics of procedure calls that we used
in our examples is based on complete hiding of modifications to encapsulated
objects. This semantics avoids the pessimistic assumption that every object is
modified unless semantically proven otherwise, but currently prevents external
references to encapsulated objects using simple syntactic checks. Finally, for
those of our procedures that were written using loops instead of recursion, we
manually supplied loop invariants.

Key ideas. The complexity of the properties we are checking makes verification
non-trivial even under these assumptions, and we found it necessary to introduce
the following techniques for proving the generated verification conditions.

1. We introduce a translation to first-order logic with equality that avoids the
potential inefficiencies of a general encoding of higher-order logic into first-
order logic by handling the common cases and soundly approximating the
remaining cases.

2. We use a translation to first-order logic that ignores information about sorts
that would distinguish integers from objects. The results are smaller proof
obligations and substantially better performance of provers. Moreover, we
prove a somewhat surprising result: omitting such sort information is always
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sound and complete for disjoint sorts of the same cardinality. This avoids the
need to separately check the generated proofs for soundness. Omitting sorts
was essential for obtaining our results. Without it, difficult proof obligations
are impossible to prove or take a substantially larger amount of time.

3. We use heuristics for filtering assumptions from first-order formulas that
reduce the input problem size, speed up the theorem proving process, and
improve the automation of the verification process.

The first two techniques are the main contribution of this paper; the use of the
third technique confirms previous observations about the usefulness of assump-
tion filtering in automatically generated first-order formulas [13].

Verified data structures and properties. Together, these techniques en-
abled us to verify, for example, that binary search trees and hash tables correctly
implement their relational interfaces, including an accurate specification of re-
moval operations. Such postconditions of operations in turn required verifying
representation invariants: in binary search tree, they require proving sortedness
of the tree; in hash table, they require proving that keys belong to the buckets
given by their hash code. To summarize, our technique verifies that

1. representation invariants hold in the initial state;
2. each data structure operation

a) establishes the postcondition specifying the change of a user-specified
abstract variable such as a set or relation; for example, an operation
that updates a key is given by the postcondition

content = (old content \ {(x, y) | x = key}) ∪ {(key, value)};
b) does not modify unintended parts of the state, for example, a mutable

operation on an instantiable data structure preserves the values of all
instances in the heap other than the receiver parameter;

c) preserves the representation invariants; and
d) never causes run-time errors such as null dereference or array bounds

violation.

We were able to prove such properties for an implementation of a hash table, a
mutable list, a functional implementation of an ordered binary search tree, and a
functional association list. All these data structures are instantiable (as opposed
to global), which means that data structure clients can create an unbounded
number of their instances. Jahob verifies that changes to one instance do not
cause changes to other instances. In addition, we verified a simple client, a library
system, that instantiates several set and relation data structures and maintains
object-model like constraints on them in the presence of changes to sets and
relations.

What is remarkable is that we were able to establish these results using a
general-purpose technique and standard logical formalisms, without specializing
our system to particular classes of properties. The fact that we can use continu-
ously improving resolution-based theorem provers with standardized interfaces
suggests that this technique is likely to remain competitive in the future.
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From the theorem proving perspective, we expect the techniques we identify
in this paper to help make future theorem provers even more useful for program
verification tasks. From the program verification perspective, our experience sug-
gests that we will soon have a verified library of linked data structures that we
can use to build and verify larger applications.

public ghost specvar content :: "(int * obj) set" = "{}";

public static FuncTree empty_set()

ensures "result..content = {}"

public static FuncTree add(int k, Object v, FuncTree t)

requires "v ~= null & (ALL y. (k,y) ~: t..content)"

ensures "result..content = t..content + {(k,v)}"

public static FuncTree update(int k, Object v, FuncTree t)

requires "v ~= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k,v)}"

public static Object lookup(int k, FuncTree t)

ensures "(result ~= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ~: t..content))"

public static FuncTree remove(int k, FuncTree t)

ensures "result..content = t..content - {(x,y). x=k}"

Fig. 1. Method contracts for a tree implementation of a map

2 Binary Tree Example

We illustrate our technique using an example of a binary search tree implement-
ing a finite map. Our implementation is written in Java and is persistent, which
means that the data structure operations do not mutate existing objects, only
newly allocated objects. This makes the verification easier and provides a data
structure which is useful in, for example, backtracking algorithms.

Figure 1 shows the public interface of our tree data structure. The interface
introduces an abstract specification variable content as a set of (key,value)-
pairs and specifies the contract of each procedure using a precondition (given
by the requires keyword) and postcondition (given by the ensures keyword).
The methods have no modifies clauses, indicating that they only mutate newly
allocated objects. In Jahob, the developer specifies annotations such as proce-
dure contracts in special comments /*: ... */ that begin with a colon. The
formulas in annotations belong to an expressive subset of the language used by
the Isabelle proof assistant [16]. This language supports set comprehensions and
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tuples, which makes the specification of procedure contracts in this example very
natural. Single dot . informally means “such that”, both for quantifiers and set
comprehensions. The notation f x denotes function f applied to argument x.
Jahob models instance fields as functions from objects to values (objects, inte-
gers, or booleans). The operator .. is a variant of function application given by
x..f = f x. Operator : denotes set membership, ~= denotes disequality, Un (or,
overloaded, +) denotes union and \<setminus> (or, overloaded, −) denotes set
difference.

public static Object lookup(int k, FuncTree t)

/*: ensures "(result ~= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ~: t..content))" */

{

if (t == null) return null;

else

if (k == t.key) return t.data;

else if (k < t.key) return lookup(k, t.left);

else return lookup(k, t.right);

}

Fig. 2. Lookup operation for retrieving the element associated with a given key

Figure 2 presents the tree lookup operation. The operation examines the tree
and returns the appropriate element. Note that, to prove that lookup is correct,
one needs to know the relationship between the abstract variable content and
the data structure fields left, right, key, and data. In particular, it is necessary
to conclude that if an element is not found, then it is not in the data structure.
Such conditions refer to private fields, so they cannot be captured by the pub-
lic precondition; they are instead given by representation invariants. Figure 3
presents the representation invariants for our tree data structure. Using these
representation invariants and the precondition, Jahob proves (in 4 seconds) that
the postcondition of the lookup method holds and that the method never per-
forms null dereferences. For example, when analyzing tree traversal in lookup,
Jahob uses the sortedness invariants (leftSmaller, rightBigger) and the def-
inition of tree content contentDefinition to narrow down the search to one of
the subtrees.

Jahob also ensures that the operations preserve the representation invariants.
Jahob reduces the invariants in Figure 3 to global invariants by implicitly quan-
tifying them over all allocated objects of FuncTree type. This approach yields
simple semantics to constraints that involve multiple objects in the heap. When
a method allocates a new object, the set of all allocated objects is extended, so a
proof obligation will require that these newly allocated objects also satisfy their
representation invariants at the end of the method.
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class FuncTree {

private int key;

private Object data;

private FuncTree left, right;

/*:

public ghost specvar content :: "(int * obj) set" = "{}";

invariant nullEmpty: "this = null --> content = {}"

invariant contentDefinition: "this ~= null -->

content = {(key, data)} + left..content + right..content"

invariant noNullData: "this ~= null --> data ~= null"

invariant leftSmaller: "ALL k v. (k,v) : left..content --> k < key"

invariant rightBigger: "ALL k v. (k,v) : right..content --> k > key" */

Fig. 3. Fields and representation invariants for the tree implementation

Figure 4 shows the map update operation in our implementation. The post-
condition of update states that all previous bindings for the given key are absent
in the resulting tree. Note that proving this postcondition requires the sortedness
invariants leftSmaller, rightBigger. Moreover, it is necessary to establish all
representation invariants for the newly allocated FuncTree object.

The specification field content is a ghost field, which means that its value
changes only in response to specification assignment statements, such as the one
in the penultimate line of Figure 4. The use of ghost variables is sound and
can be explained using simulation relations [5]. For example, if the developer
incorrectly specifies specification assignments, Jahob will detect the violation of
the representation invariants such as contentDefinition. If the developer spec-
ifies incorrect representation invariants, Jahob will fail to prove postconditions
of observer operations such as lookup in Figure 2.

Jahob verifies (in 10 seconds) that the update operation establishes the post-
condition, correctly maintains all invariants, and performs no null dereferences.
Jahob establishes such conditions by first converting the Java program into a
loop-free guarded-command language using user-provided or automatically in-
ferred loop invariants (the examples in this paper mostly use recursion instead of
loops). A verification condition generator then computes a formula whose valid-
ity entails the correctness of the program with respect to its explicitly supplied
specifications (such as invariants and procedure contracts) as well as the absence
of run-time exceptions (such as null pointer dereferences, failing type casts, and
array out of bounds accesses). The specification language and the generated ver-
ification conditions in Jahob are expressed in higher-order logic [16]. In the rest
of this paper we show how we translate such verification conditions to first-order
logic and prove them using theorem provers such as SPASS [22] and E [20].
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public static FuncTree update(int k, Object v, FuncTree t)

/*: requires "v ~= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k,v)}" */

{

FuncTree new_left, new_right; Object new_data; int new_key;

if (t==null) {

new_data = v; new_key = k;

new_left = null; new_right = null;

} else {

if (k < t.key) {

new_left = update(k, v, t.left);

new_right = t.right;

new_key = t.key; new_data = t.data;

} else if (t.key < k) {

new_left = t.left;

new_right = update(k, v, t.right);

new_key = t.key; new_data = t.data;

} else {

new_data = v; new_key = k;

new_left = t.left; new_right = t.right;

}

}

FuncTree r = new FuncTree();

r.left = new_left; r.right = new_right;

r.data = new_data; r.key = new_key;

//: "r..content" := "t..content - {(x,y). x=k} + {(k,v)}";

return r;

}

Fig. 4. Map update implementation for functional tree

3 Translation to First-Order Logic

This section presents our translation from an expressive subset of Isabelle formu-
las (the input language) to first-order unsorted logic with equality (the language
accepted by first-order resolution-based theorem provers). The soundness of the
translation is given by the condition that, if the output formula is valid, so is
the input formula. The details of the translation are in [4].

Input language. The input language allows constructs such as lambda expres-
sions, function update, sets, tuples, quantifiers, cardinality operators, and set
comprehensions. The translation first performs type reconstruction. It uses the
type information to disambiguate operations such as equality, whose translation
depends on the type of the operands.

Splitting into sequents. Generated proof obligations can be represented as
conjunctions of multiple statements, because they represent all possible paths
in the verified procedure, the validity of multiple invariants and postcondition
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conjuncts, and the absence of run-time errors at multiple program points. The
first step in the translation splits formulas into these individual conjuncts to
prove each of them independently. This process does not lose completeness, yet
it improves the effectiveness of the theorem proving process because the resulting
formulas are smaller than the starting formula. Moreover, splitting enables Jahob
to prove different conjuncts using different techniques, allowing the translation
described in this paper to be combined with other translations [8, 23]. After
splitting, the resulting formulas have the form of implications A1∧ . . .∧An ⇒ G,
which we call sequents. We call A1, . . . , An the assumptions and G the goal of
the sequent. The assumptions typically encode a path in the procedure being
verified, the precondition, class invariants that hold at procedure entry, as well as
properties of our semantic model of memory and the relationships between sets
representing Java types. During splitting, Jahob also performs syntactic checks
that eliminate some simple valid sequents such as the ones where the goal G of
the sequent is equal to one of the assumptions Ai.

Definition substitution and function unfolding. When one of the assump-
tions is a variable definition, the translation substitutes its content in the rest of
the formula. This approach supports definitions of variables that have complex
and higher-order types, but are used simply as shorthands, and avoids the full
encoding of lambda abstraction in first-order logic. When the definitions of vari-
ables are lambda abstractions, the substitution enables beta reduction, which
is done subsequently. In addition to beta reduction, this phase also expands
the equality between functions using the extensionality rule (f = g becomes
∀x.f x = g x).

Cardinality constraints. Constant cardinality constraints express natural
generalizations of quantifiers. For example, the statement “there exists at most
one element satisfying P” is given by card {x. P x} ≤ 1. Our translation reduces
constant cardinality constraints to constructs in first-order logic with equality.

Set expressions. Our translation uses universal quantification to expand set
operations into their set-theoretic definitions in terms of the set membership op-
erator. This process also eliminates set comprehensions by replacing x ∈ {y |ϕ}
with ϕ[y 7→ x]. These transformations ensure that the only set expressions in
formulas are either set variables or set-valued fields occurring on the right-hand
side of the membership operator.

Our translation maps set variables to unary predicates: x ∈ S becomes S(x),
where S is a predicate in first-order logic. This translation is applicable when S
is universally quantified at the top level of the sequent (so it can be skolemized),
which is indeed the case for the proof obligations in this paper. Fields of type
object or integer become uninterpreted function symbols: y = x.f translates as
y = f(x). Set-valued fields become binary predicates: x ∈ y.f becomes F (y, x)
where F is a binary predicate.

Function update. Function update expressions (encoded as functions
fieldWrite and arrayWrite in our input language) translate using case analysis.
If applied to arbitrary expressions, such case analysis would duplicate complex
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subterms, potentially leading to an exponential expansion. To avoid this prob-
lem, the translation first flattens expressions by introducing fresh variables and
then duplicates only variables and not complex expressions, keeping the size of
the translated formula polynomial.

Flattening. Flattening introduces fresh quantified variables, which could in
principle create additional quantifier alternations, making the proof process more
difficult. However, each variable can be introduced using either existential or
universal quantifier because ∃x.x=a ∧ ϕ is equivalent to ∀x.x=a ⇒ ϕ. Our
translation therefore chooses the quantifier kind that corresponds to the most
recently bound variable in a given scope (taking into account the polarity),
preserving the number of quantifier alternations. The starting quantifier kind at
the top level of the formula is ∀, ensuring that freshly introduced variables for
quantifier-free expressions become skolem constants.

Arithmetic. Resolution-based first-order provers do not have built-in arith-
metic operations. Our translation therefore introduces axioms that provide a
partial axiomatization of integer operations +, <,≤. In addition, the translation
supplies axioms for the ordering relation between all numeric constants appear-
ing in the input formula. Although incomplete, these axioms are sufficient to
verify our examples.

Tuples. Tuples in the input language are useful, for example, as elements of sets
representing relations, such as the content ghost field in Figure 3. Our trans-
lation eliminates tuples by transforming them into individual components. The
translation maps a variable x denoting an n-tuple into n individual variables
x1, . . . , xn bound in the same way as x. A tuple equality becomes a conjunc-
tion of equalities of components. The arity of functions changes to accommo-
date all components, so a function taking an n-tuple and an m-tuple becomes
a function symbol of arity n + m. The translation handles sets as functions
from elements to booleans. For example, a relation-valued field content of type
obj => (int * obj) set is viewed as a function obj => int => obj => bool and
therefore becomes a ternary predicate symbol.

Approximation. Our translation maps higher-order formulas into first-order
logic without encoding lambda calculus or set theory, so there are constructs
that it cannot translate exactly. Examples include transitive closure (which other
Jahob components can translate into monadic second-order logic [23]) and sym-
bolic cardinality constraints (as in BAPA [8]). Our first-order translation ap-
proximates such subformulas in a sound way, by replacing them with True or
False depending on the polarity of the subformula occurrence. The result of the
approximation is a stronger formula whose validity implies the validity of the
original formula.

4 From Multisorted to Unsorted Logic

This section discusses our approach for handling type and sort information in
the translation to first-order logic with equality. This approach proved essential
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for making verification of our examples feasible. The key insight is that omitting
sort information 1) improves the performance of the theorem proving effort, and
2) is guaranteed to be sound in our context.

To understand our setup, note that the verification condition generator in Ja-
hob produces proof obligations in higher-order logic notation whose type system
essentially corresponds to simply typed lambda calculus [2] (we allow some sim-
ple forms of parametric polymorphism but expect each occurrence of a symbol to
have a ground type). The type system in our proof obligations therefore has no
subtyping, so all Java objects have type obj. The verification-condition generator
encodes Java classes as immutable sets of type obj set. It encodes primitive Java
integers as mathematical integers of type int (which is disjoint from obj). The
result of the translation in Section 3 is a formula in multisorted first-order logic
with equality and two disjoint sorts, obj and int.4 On the other side, the stan-
dardized input language for first-order theorem provers is untyped first-order
logic with equality. The key question is the following: How should we encode

multisorted first-order logic into untyped first-order logic?

The standard approach [11, Chapter 6, Section 8] is to introduce a unary
predicate Ps for each sort s and replace ∃x::s.F (x) with ∃x.Ps(x) ∧ F (x) and
replace ∀x::s.F (x) with ∀x.Ps(x) ⇒ F (x) (where x :: s in multisorted logic
denotes that the variable x has the sort s). In addition, for each function symbol
f of sort s1 × . . . sn → s, introduce a Horn clause ∀x1, . . . , xn. Ps1

(x1) ∧ . . . ∧
Psn

(xn) ⇒ Ps(f(x1, . . . , xn)).
The standard approach is sound and complete. However, it makes formulas

larger, often substantially slowing down the automated theorem prover. What if
we omitted the sort information given by unary sort predicates Ps, representing,
for example, ∀x::s.F (x) simply as ∀x.F (x)? For potentially overlapping sorts,
this approach is unsound. As an example, take the conjunction of two formulas
∀x::Node.F (x) and ∃x::Object.¬F (x) for distinct sorts Object and Node where
Node is a subsort of Object. These assumptions are consistent in multisorted
logic. However, their unsorted version ∀x.F (x)∧∃x.¬F (x) is contradictory, and
would allow a verification system to unsoundly prove arbitrary claims.

In our case, however, the two sorts considered (int and obj) are disjoint and
have the same cardinality. Moreover, there is no overloading of predicate or
function symbols other than equality. Under these assumptions, we have the
following result. Let ϕ∗ denote the result of omitting all sort information from
a multisorted formula ϕ and representing the equality (regardless of the sort of
arguments) using the built-in equality symbol.

Theorem 1. There exists a function mapping each multisorted structure I into

an unsorted structure I∗ and each multisorted environment ρ to an unsorted

environment ρ∗, such that the following holds: for each formula ϕ, structure I,

and a well-sorted environment ρ,

Jϕ∗KI
∗

ρ∗ if and only if JϕKIρ

4 The resulting multisorted logic has no sort corresponding to booleans (as in [11,
Chapter 6]). Instead, propositional operations are part of the logic itself.
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The proof of Theorem 1 is in [4, Appendix F]. It constructs I∗ by taking a new
set S of same cardinality as the sort interpretations S1, . . . , Sn in I, and defining
the interpretation of symbols in I∗ by composing the interpretation in I with
bijections fi : Si → S. Theorem 1 implies that if a formula (¬ψ)∗ is unsatisfiable,
then so is ¬ψ. Therefore, if ψ∗ is valid, so is ψ.

A resolution theorem prover with paramodulation rules can derive ill-sorted
clauses as consequences of ϕ∗. However, Theorem 1 implies that the existence of
a refutation of ϕ∗ implies that ϕ is also unsatisfiable, guaranteeing the soundness
of the approach. This approach is also complete. Namely, notice that stripping
sorts only increases the set of resolution steps that can be performed on a set of
clauses. Therefore, we can show that if there exists a proof for ϕ, there exists a
proof of ϕ∗. Moreover, the shortest proof for the unsorted case is no longer than

any proof in multisorted case. As a result, any advantage of preserving sorts
comes from the reduction of the branching factor in the search, as opposed to
the reduction in proof length.

Impact of omitting sort information. Figure 5 shows the effect of omitting
sorts on some of the most problematic formulas that arise in our benchmarks.
They are the formulas that take more than one second to prove using SPASS
with sorts, in the two hardest methods of our Tree implementation. The figure
shows that omitting sorts usually yields a speed-up of one order of magnitude,
and sometimes more. In our examples, the converse situation, where omitting
sorts substantially slows down the theorem proving process, is rare.

Time (s) Proof length Generated clauses
Benchmark

SPASS E SPASS SPASS E
w/o w. w/o w. w/o w. w/o w. w/o w.

1.1 5.3 30.0 349.0 155 799 9425 18376 122508 794860
0.3 3.6 10.4 42.0 309 1781 1917 19601 73399 108910
4.9 9.8 15.7 18.0 174 1781 27108 33868 100846 256550

FuncTree.Remove
0.5 8.1 12.5 45.9 301 1611 3922 31892 85164 263104
4.7 8.1 17.9 19.3 371 1773 28170 37244 109032 176597
0.3 7.9 10.6 41.8 308 1391 3394 41354 65700 287253

0.22 +∞ 59.0 76.5 97 - 1075 - 872566 953451
FuncTree.RemoveMax 6.8 78.9 14.9 297.6 1159 2655 19527 177755 137711 1512828

0.8 34.8 38.1 0.7 597 4062 5305 115713 389334 7595

Fig. 5. Verification time, and proof data using the provers SPASS and E, on the hardest
formulas from our examples.

5 Experimental Results

We implemented our translation to first-order logic and the interfaces to the first-
order provers E [20] (using the TPTP format for first-order formulas [21]) and
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SPASS [22] (using its native format). We also implemented filtering described
in [4, Appendix A] to automate the selection of assumptions in proof obligations.
We evaluated our approach by implementing several data structures, using the
system during their development. In addition to the implementation of a relation
as a functional tree presented in Section 2, we ran our system on dynamically
instantiable sets and relations implemented as a functional singly-linked list, an
imperative linked list, and a hash table. We also verified operations of a data
structure client that instantiates a relation and two sets and maintains invariants
between them.

Table 6 illustrates the benchmarks we ran through our system and shows
their verification times. Lines of code and of specifications are counted without
blank lines or comments. 5

Our system accepts as command-line parameters timeouts, percentage of
retained assumptions in filtering, and two flags that indicate desired sets of
arithmetic axioms. For each module, we used a fixed set of command line options
to verify all the procedures in that module. Some methods can be verified faster
(in times shown in parentheses) by choosing a more fine-tuned set of options.
Jahob allows specifying a cascade of provers to be tried in sequence; when we
used multiple provers we give the time spent in each prover and the number of
formulas proved by each of them.

The values in the “entire class” row for each module are not the sum of all
the other rows, but the time actually spent in the verification of the entire class,
including some methods not shown and the verification that the invariants hold
initially. Running time of first-order provers dominates the verification time, the
remaining time is mostly spent in our simple implementation of polymorphic
type inference for higher-order logic formulas.

Verification experience. The time we spent to verify these benchmarks
went down as we improved the system and gained experience using it. It took
approximately one week to code and verify the ordered trees implementation.
However, it took only half a day to write and verify a simple version of the hash
table. It took another few days to verify an augmented version with a rehash
function that can dynamically resize its array when its filling ratio is too high.

6 Related Work

We are not aware of any other system capable of verifying, without interactive
theorem proving, such strong properties of operations on data structures that
use arrays, recursive memory cells, and integer keys.

5 We ran the verification on a single-core 3.2 GHz Pentium 4 machine with 3GB
of memory, running GNU/Linux. As first-order theorem provers we used SPASS
and E in their automatic settings. The E version we used comes from the CASC-J3
(Summer 2006) system archive and calls itself v0.99pre2 “Singtom”. We used SPASS
v2.2, which comes from its official web page.
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Benchmark lines of code lines of specification number of methods

Relation as functional list 76 26 9
Relation as functional Tree 186 38 10
Set as imperative list 60 24 9
Library system 97 63 9
Relation as hash table 69 53 10

Benchmark Prover method
Verification
time (sec)

decision
procedures (sec)

formulas
proved

cons 0.9 0.8 9
remove all 1.7 1.1 5
remove 3.9 2.6 7

AssocList E lookup 0.7 0.4 3
image 1.3 0.6 4
inverseImage 1.2 0.6 4
domain 0.9 0.5 3
entire class 11.8 7.3 44

add 7.2 5.7 24
update 9.0 7.4 28
lookup 1.2 0.6 7
min 7.2 6.6 21

FuncTree SPASS + E max 7.2 6.5 22
removeMax 106.5 (12.7) 46.6+59.3 9+11
remove 17.0 8.2 26
entire class 178.4 96.0+65.7 147+16

add 1.5 1.2 9
member 0.6 0.3 7

Imperative
List

SPASS getOne 0.1 0.1 2

remove 11.4 9.9 48
entire class 17.9 14.9 74

currentReader 1.0 0.9 5
checkOutBook 2.3 1.7 6

Library E returnBook 2.7 2.1 7
decommissionBook 3.0 2.2 7
entire class 20.0 17.6 73

init 25.5 (3.8) 25.2 (3.4) 12
add 2.7 1.6 7
add1 22.7 22.7 14

HashTable SPASS lookup 20.8 20.3 9
remove 57.1 56.3 12
update 1.4 0.8 2
entire class 119 113.8 75

Fig. 6. Benchmarks Characteristics and Verification Times
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Verification systems. Boogie [3] is a sound verification system for the Spec#
language, which extends C# with specification constructs and introduces a par-
ticular methodology for ensuring sound modular reasoning in the presence of
aliasing and object-oriented features. Specification variables are present in Boo-
gie [9] under the name model fields. We are not aware of any results on non-
interactive verification that data structures such as trees and hash tables meet
their specifications expressed in terms of model fields.

Abstract interpretation. Shape analyses [18,19] typically verify weaker prop-
erties than in our examples. In [10] the authors use the TVLA system to verify
insertion sort and bubble sort. In [17, Page 35], the author uses TVLA to ver-
ify implementations of insertion and removal operations on sets implemented as
mutable lists and binary search trees. The approach [17] uses manually supplied
predicates and transfer functions and axioms for the analysis, but is able to infer
loop invariants in an imperative implementation of trees. Our implementation
of trees is functional and uses recursion, which simplifies the verification and re-
sults in much smaller running times. The analysis we describe in this paper does
not infer loop invariants, but does not require transfer functions to be specified
either. The only information that the data structure user needs to trust is that
procedure contracts correctly formalize the desired behavior of data structure
operations; if the developer incorrectly specifies an invariant or an update to a
specification variable, the system will detect an error.

Translation from higher-order to first-order logic. In [6, 12, 14] the au-
thors also address the process of proving higher-order formulas using first-order
theorem provers. Our work differs in that we do not aim to provide automation
to a general-purpose higher-order interactive theorem prover. Therefore, we were
able to avoid using general encoding of lambda calculus into first-order logic and
we believe that this made our translation more effective. The authors in [6, 14]
also observe that encoding the full type information slows down the proof pro-
cess. The authors therefore omit type information and then check the resulting
proofs for soundness. A similar approach was adopted to encoding multi-sorted
logic in the Athena theorem proving framework [1]. In contrast, we were able
to prove that omitting sort information preserves soundness and completeness
when sorts are disjoint and have the same cardinality.

Type systems and separation logic. Recently, researchers have developed a
promising approach [15] that can verify shape and content properties of imper-
ative recursive data structures (although it has not been applied to hash tables
yet). Our approach uses standard higher-order and first-order logic and seems
conceptually simpler, but generates proof obligations that have potentially more
quantifiers and case analyses.
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