
Unanimous Prediction for 100% Precision with Application to
Learning Semantic Mappings

Fereshte Khani
Stanford University

fereshte@cs.stanford.edu

Martin Rinard
MIT

rinard@lcs.mit.edu

Percy Liang
Stanford University

pliang@cs.stanford.edu

Abstract

Can we train a system that, on any new
input, either says “don’t know” or makes
a prediction that is guaranteed to be cor-
rect? We answer the question in the affir-
mative provided our model family is well-
specified. Specifically, we introduce the
unanimity principle: only predict when all
models consistent with the training data
predict the same output. We operational-
ize this principle for semantic parsing,
the task of mapping utterances to logi-
cal forms. We develop a simple, efficient
method that reasons over the infinite set
of all consistent models by only check-
ing two of the models. We prove that our
method obtains 100% precision even with
a modest amount of training data from a
possibly adversarial distribution. Empiri-
cally, we demonstrate the effectiveness of
our approach on the standard GeoQuery
dataset.

1 Introduction

If a user asks a system “How many painkillers
should I take?”, it is better for the system to say
“don’t know” rather than making a costly incor-
rect prediction. When the system is learned from
data, uncertainty pervades, and we must manage
this uncertainty properly to achieve our precision
requirement. It is particularly challenging since
training inputs might not be representative of test
inputs due to limited data, covariate shift (Shi-
modaira, 2000), or adversarial filtering (Nelson et
al., 2009; Mei and Zhu, 2015). In this unforgiving
setting, can we still train a system that is guaran-
teed to either abstain or to make the correct pre-
diction?

Our present work is motivated by the goal of
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Figure 1: Given a set of training examples, we
compute C, the set of all mappings consistent with
the training examples. On an input x, if all map-
pings in C unanimously predict the same output,
we return that output; else we return “don’t know”.

building reliable question answering systems and
natural language interfaces. Our goal is to learn
a semantic mapping from examples of utterance-
logical form pairs (Figure 1). More generally, we
assume the input x is a bag (multiset) of source
atoms (e.g., words {area, of,Ohio}), and the out-
put y is a bag of target atoms (e.g., predicates
{area,OH}). We consider learning mappings M
that decompose according to the multiset sum:
M(x) = ]s∈xM(s) (e.g., M({Ohio}) = {OH},
M({area,of,Ohio}) = {area,OH}). The main
challenge is that an individual training example
(x, y) does not tell us which source atoms map to
which target atoms.1

How can a system be 100% sure about some-
thing if it has seen only a small number of pos-
sibly non-representative examples? Our approach
is based on what we call the unanimity principle
(Section 2.1). LetM be a model family that con-
tains the true mapping from inputs to outputs. Let
C be the subset of mappings that are consistent

1A semantic parser further requires modeling the context
dependence of words and the logical form structure joining
the predicates. Our framework handles these cases with a
different choice of source and target atoms (see Section 4.2).



with the training data. If all mappings M ∈ C
unanimously predict the same output on a test in-
put, then we return that output; else we return
“don’t know” (see Figure 1). The unanimity prin-
ciple provides robustness to the particular input
distribution, so that we can tolerate even adver-
saries (Mei and Zhu, 2015), provided the training
outputs are still mostly correct.

To operationalize the unanimity principle, we
need to be able to efficiently reason about the pre-
dictions of all consistent mappings C. To this end,
we represent a mapping as a matrixM , whereMst

is number of times target atom t (e.g., OH) shows
up for each occurrence of the source atom s (e.g.,
Ohio) in the input. We show that unanimous pre-
diction can be performed by solving two integer
linear programs. With a linear programming re-
laxation (Section 3), we further show that check-
ing unanimity over C can be done very efficiently
without any optimization but rather by check-
ing the predictions of just two random mappings,
while still guaranteeing 100% precision with prob-
ability 1 (Section 3.2).

We further relax the linear program to a linear
system, which gives us a geometric view of the
unanimity: We predict on a new input if it can be
expressed as a “linear combination” of the training
inputs. As an example, suppose we are given train-
ing data consisting of (CI) cities in Iowa, (CO)
cities in Ohio, and (AI) area of Iowa (Figure 1).
We can compute (AO) area of Ohio by analogy:
(AO) = (CO) - (CI) + (AI). Other reasoning pat-
terns fall out from more complex linear combina-
tions.

We can handle noisy data (Section 3.4) by ask-
ing for unanimity over additional slack variables.
We also show how the linear algebraic formulation
enables other extensions such as learning from
denotations (Section 5.1), active learning (Sec-
tion 5.2), and paraphrasing (Section 5.3). We vali-
date our methods in Section 4. On artificial data
generated from an adversarial distribution with
noise, we show that unanimous prediction obtains
100% precision, whereas point estimates fail. On
GeoQuery (Zelle and Mooney, 1996), a standard
semantic parsing dataset, where our model as-
sumptions are violated, we still obtain 100% pre-
cision. We were able to reach 70% recall on recov-
ering predicates and 59% on full logical forms.

source atoms target atoms
{area, of, Iowa} {area, IA}
{cities, in, Ohio} {city, OH}
{cities, in, Iowa} {city, IA}

mapping 1
cities→ {city}
in → {}
of → {}
area → {area}
Iowa → {IA}
Ohio → {OH}

mapping 2
cities→ {}
in → {city}
of → {}
area → {area}
Iowa → {IA}
Ohio → {OH}

mapping 3
cities→ {city}
in → {}
of → {area}
area → {}
Iowa → {IA}
Ohio → {OH}

mapping 4
cities→ {}
in → {city}
of → {area}
area → {}
Iowa → {IA}
Ohio → {OH}

Figure 2: Given the training examples in the top
table, there are exactly four mappings consistent
with these training examples.

2 Setup

We represent an input x (e.g., area of Ohio) as a
bag (multiset) of source atoms and an output y
(e.g., area(OH)) as a bag of target atoms. In
the simplest case, source atoms are words and tar-
get atoms are predicates—see Figure 2(top) for an
example.2 We assume there is a true mapping
M∗ from a source atom s (e.g., Ohio) to a bag
of target atoms t = M∗(s) (e.g., {OH}). Note
that M∗ can also map a source atom s to no tar-
get atoms (M∗(of) = {}) or multiple target atoms
(M∗(grandparent) = {parent,parent}). We
extend M∗ to bag of source atoms via multiset
sum: M∗(x) = ]s∈xM∗(s).

Of course, we do not know M∗ and must
estimate it from training data. Our train-
ing examples are input-output pairs D =
{(x1, y1), . . . , (xn, yn)}. For now, we assume that
there is no noise so that yi =M∗(xi); Section 3.4
shows how to deal with noise. Our goal is to out-
put a mapping M̂ that maps each input x to either
a bag of target atoms or “don’t know.” We say
that M̂ has 100% precision if M̂(x) = M∗(x)
whenever M̂(x) is not “don’t know.” The chief
difficulty is that the source atoms xi and the tar-
get atoms yi are unaligned. While we could try to
infer the alignment, we will show that it is unnec-
essary for obtaining 100% precision.

2.1 Unanimity principle

LetM be the set of mappings (which contains the
true mapping M∗). Let C be the subset of map-

2Our semantic parsing experiments (Section 4.2) use
more complex source and target atoms to capture some con-
text and structure.
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area(IA) 1 0 0 1
city(OH) 0 1 1 0
city(IA) 0 1 0 1

Figure 3: Our training data encodes a system of linear equations SM = T , where the rows of S are
inputs, the rows of T are the corresponding outputs, and M specifies the mapping between source and
target atoms.

pings consistent with the training examples.

C def
= {M ∈M |M(xi) = yi, ∀i = 1, . . . , n}

(1)

Figure 2 shows the four mappings consistent with
the training set in our running example. Let F be
the set of safe inputs, those on which all mappings
in C agree:

F def
= {x : |{M(x) :M ∈ C}| = 1}. (2)

The unanimity principle defines a mapping M̂ that
returns the unanimous output on F and “don’t
know” on its complement. This choice obtains the
following strong guarantee:

Proposition 1. For each safe input x ∈ F , we
have M̂(x) =M∗(x). In other words, M obtains
100% precision.

Furthermore, M̂ obtains the best possible recall
given this model family subject to 100% precision,
since for any x 6∈ F there are at least two possible
outputs generated by consistent mappings, so we
cannot safely guess one of them.

3 Linear algebraic formulation

To solve the learning problem laid out in the previ-
ous section, let us recast the problem in linear al-
gebraic terms. Let ns (nt) be the number of source
(target) atom types. First, we can represent the
bag x (y) as a ns-dimensional (nt-dimensional)
row vector of counts; for example, the vector

form of “area of Ohio” is

ar
ea

of O
hi

o

ci
tie

s

in Io
w

a

[ ]1 1 1 0 0 0 .

We represent the mapping M as a non-negative
integer-valued matrix, whereMst is the number of
times target atom t appears in the bag that source
atom s maps to (Figure 3). We also encode the n

training examples as matrices: S is an n× ns ma-
trix where the i-th row is xi; T as an n×nt matrix
where the i-th row is yi. Given these matrices, we
can rewrite the set of consistent mappings (2) as:

C = {M ∈ Zns×nt
≥0 : SM = T}. (3)

See Figure 3 for the matrix formulation of S and
T , along with one possible consistent mapping M
for our running example.

3.1 Integer linear programming
Finding an element of C as defined in (3) corre-
sponds to solving an integer linear program (ILP),
which is NP-hard in the worst case, though there
exist relatively effective off-the-shelf solvers such
as Gurobi. However, one solution is not enough.
To check whether an input x is in the safe set
F (2), we need to check whether all mappings
M ∈ C predict the same output on x; that is, xM
is the same for all M ∈ C.

Our insight is that we can check whether x ∈ F
by solving just two ILPs. Recall that we want to
know if the output vector xM can be different for
different M ∈ C. To do this, we pick a random
vector v ∈ Rnt , and consider the scalar projection
xMv. The first ILP maximizes this scalar and the
second one minimizes it. If both ILPs return the
same value, then with probability 1, we can con-
clude that xM is the same for all mappingsM ∈ C
and thus x ∈ F . The following proposition for-
malizes this:

Proposition 2. Let x be any input. Let v ∼
N (0, Int×nt) be a random vector. Let a =
minM∈C xMv and b = maxM∈C xMv. With
probability 1, a = b iff x ∈ F .

Proof. If x ∈ F , there is only one output xM , so
a = b. If x 6∈ F , there exists two M1,M2 ∈ C
for which xM1 6= xM2. Then w

def
= x(M1 −
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Figure 4: Our goal is to find two points p1, p2 in
the relative interior of a polytope P defined by in-
equalities shown on the right. The inequalities z ≤
0 and −z ≤ 0 are always active. Therefore, P is
a 2-dimensional polytope. One solution to the LP
(6) is α∗ = 1, p∗ = (1, 1, 0), ξ∗> = [0, 0, 1, 1, 1],
which results in p1 = (1, 1, 0) with R = 1/

√
2.

The other point p2 is chosen randomly from the
ball of radius R.

M2) ∈ R1×nt is nonzero. The probability ofwv =
0 is zero because the space orthogonal to w is a
(nt−1)-dimensional space while v is drawn from a
nt-dimensional space. Therefore, with probability
1, xM1v 6= xM2v. Without loss of generality,
a ≤ xM1v < xM2v ≤ b, so a 6= b.

3.2 Linear programming
Proposition 2 requires solving two non-trivial ILPs
per input at test time. A natural step is to relax the
integer constraint so that we solve two LPs instead.

CLP
def
= {M ∈ Rns×nt

≥0 | SM = T} (4)

FLP
def
= {x : |{M(x) :M ∈ CLP}| = 1}. (5)

The set of consistent mappings is larger (CLP ⊇
C), so the set of safe inputs is smaller (FLP ⊆
F). Therefore, if we predict only on FLP, we
still maintain 100% precision, although the recall
could be lower.

Now we will show how to exploit the convex-
ity of CLP (unlike C) to avoid solving any LPs at
test time at all. The basic idea is that if we choose
two mappingsM1,M2 ∈ CLP “randomly enough”,
whether xM1 = xM2 is equivalent to unanimity
over CLP. We could try to sample M1,M2 uni-
formly from CLP, but this is costly. We instead
show that “less random” choice suffices. This is
formalized as follows:

Proposition 3. Let X be a finite set of test inputs.
Let d be the dimension of CLP. LetM1 be any map-
ping in CLP, and let vec(M2) be sampled from a

proper density over a d-dimensional ball lying in
CLP centered at vec(M1). Then, with probability
1, for all x ∈ X , xM1 = xM2 implies x ∈ FLP.

Proof. We will prove the contrapositive. If x 6∈
FLP, then xM is not the same for all M ∈
CLP. Without loss of generality, assume not all
M ∈ CLP agree on the i-th component of xM .
Note that (xM)i = tr(Meix), which is the
inner product of vec(M) and vec(eix). Since
(xM)i is not the same for all M ∈ CLP and CLP
is convex, the projection of CLP onto vec(eix)
must be a one-dimensional polytope. For both
vec(M1) and vec(M2) to have the same projec-
tion on vec(eix), they would have to both lie
in a (d − 1)-dimensional polytope orthogonal to
vec(eix). Since vec(M2) is sampled from a proper
density over a d-dimensional ball, this has proba-
bility 0.

Algorithm. We now provide an algorithm to
find two points p1, p2 inside a general d-
dimensional polytope P = {p : Ap ≤ b} satisfy-
ing the conditions of Proposition 3, where for clar-
ity we have simplified the notation from vec(Mi)
to pi and CLP to P .

We first find a point p1 in the relative interior of
P , which consists of points for which the fewest
number of inequalities j are active (i.e., ajp = bj).
We can achieve this by solving the following LP
from Freund et al. (1985):

max 1>ξ s.t. Ap+ ξ ≤ αb, 0 ≤ ξ ≤ 1, α ≥ 1.
(6)

Here, ξj is a lower bound on the slack of inequal-
ity j, and α scales up the polytope so that all the
ξj that can be positive are exactly 1 in the opti-
mum solution. Importantly, if ξj = 0, constraint
j is always active for all solutions p ∈ P . Let
(p∗, ξ∗, α∗) be an optimal solution to the LP. Then
define A1 as the submatrix of A containing rows j
for which ξ∗j = 1, and A0 consist of the remaining
rows for which ξ∗j = 0.

The above LP gives us p1 = p∗/α∗, which
lies in the relative interior of P (see Fig-
ure 4). To obtain p2, define a radius R

def
=

(αmaxj:ξ∗j=1 ‖aj‖2)−1. Let the columns of ma-
trix N form an orthonormal basis of the null space
of A0. Sample v from a unit d-dimensional ball
centered at 0, and set p2 = p1 +RNv.

To show that p2 ∈ P : First, p2 satisfies the
always-active constraints j, a>j (p1 +RNv) = bj ,



Algorithm 1 Our linear programming approach.
procedure TRAIN

Input: Training examples
Output: Generic mappings (M1,M2)

Define CLP as explained in (4).
Compute M1 and a radius R by solving an LP (6).
Sample M2 from a ball with radius R around M1.
return (M1,M2)

end procedure

procedure TEST

Input: input x, mappings (M1,M2)
Output: A guaranteed correct y or “don’t know”

Compute y1 = xM1 and y2 = xM2.
if y1 = y2 then return y1
else return “don’t know”
end if

end procedure

by definition of null space. For non-active j, the
LP ensures that a>j p1 + α−1 ≤ bj , which implies
a>j (p1 +RNv) ≤ bj .

Algorithm 1 summarizes our overall procedure:
At training time, we solve a single LP (6) and
draw a random vector to obtain M1,M2 satisfy-
ing Proposition 3. At test time, we simply apply
M1 and M2, which scales only linearly with the
number of source atoms in the input.

3.3 Linear system
To obtain additional intuition about the unanimity
principle, let us relax CLP (4) further by remov-
ing the non-negativity constraint, which results in
a linear system. Define the relaxed set of consis-
tent mappings to be all the solutions to the linear
system and the relaxed safe set accordingly:

CLS
def
= {M ∈ Rns×nt | SM = T} (7)

FLS
def
= {x : |{M(x) :M ∈ CLS}| = 1}. (8)

Note that CLS is an affine subspace, so each
M ∈ CLS can be expressed as M0 + BA, where
M0 is an arbitrary solution,B is a basis for the null
space of S and A is an arbitrary matrix. Figure 5
presents the linear system for four training exam-
ples. In the rare case that S has full column rank
(if we have many training examples), then the left
inverse of S exists, and there is exactly one consis-
tent mapping, the true one (M∗ = S†T ), but we
do not require this.

Let’s try to explore the linear algebraic structure
in the problem. Intuitively, if we know area of
Ohio maps to area(OH) and Ohio maps to OH,
then we should conclude area of maps to area by
subtracting the second example from the first. The
following proposition formalizes and generalizes
this intuition by characterizing the relaxed safe set:

Proposition 4. The vector x is in row space of S
iff x ∈ FLS.

S︷ ︸︸ ︷
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area of Iowa 1 1 0 0 0 1 +1
cities in Ohio 0 0 1 1 1 0 +1
cities in Iowa 0 0 0 1 1 1 −1

[ ]area of Ohio 1 1 1 0 0 0
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area(IA) 1 0 0 1 +1
city(OH) 0 1 1 0 +1
city(IA) 0 1 0 1 −1

[ ]area(OH) 1 0 1 0

Figure 6: Under the linear system relaxation, we
can predict the target atoms for the new input area
of Ohio by adding and subtracting training exam-
ples (rows of S and T ).

Proof. If x is in the row space of S, we can write x
as a linear combination of S for some coefficients
α ∈ Rn: x = α>S. Then for all M ∈ CLS, we
have SM = T , so xM = α>SM = α>T , which
is the unique output3 (See Figure 6). If x ∈ FLS
is safe, then there exists a y such that for all M ∈
CLS, xM = y. Recall that each element of CLS can
be decomposed into M0 +BA. For x(M0 +BA)
to be the same for each A, x should be orthogonal
to each column of B, a basis for the null space of
S. This means that x is in the row space of S.

Intuitively, this proposition says that stitching
new inputs together by adding and subtracting ex-
isting training examples (rows of S) gives you ex-
actly the relaxed safe set FLS.

Note that relaxations increases the set of con-
sistent mappings (CLS ⊇ CLP ⊇ C), which has
the contravariant effect of shrinking the safe set
(FLS ⊆ FLP ⊆ F). Therefore, using the relax-
ation (predicting when x ∈ FLS) still preserves
100% precision.

3.4 Handling noise

So far, we have assumed that our training exam-
ples are noiseless, so that we can directly add the

3There might be more than one set of coefficients (α1, α2)
for writing x. However, they result to a same output: α>1 S =
α>2 S =⇒ α>1 SM = α>2 SM =⇒ α>1 T = α>2 T .



S︷ ︸︸ ︷
area of Ohio cities in Iowa


1 1 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
1 1 1 1 1 0

×M =

T︷ ︸︸ ︷
area city OH IA


1 0 0 1
0 1 1 0
0 1 0 1
1 1 1 0

=⇒ M =

M0︷ ︸︸ ︷
area city OH IA


area 1 0 0 0
of 0 0 0 0

Ohio 0 0 1 0
cities 0 1 0 0

in 0 0 0 0
Iowa 0 0 0 1

+

B︷ ︸︸ ︷

−1 0
1 0
0 0
0 −1
0 1
0 0

×
A︷ ︸︸ ︷[

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4

]

Figure 5: Under the linear system relaxation, all solutions M to SM = T can be expressed as M =
M0 + BA, where B is the basis for the null space of S and A is arbitrary. Rows s of B which are zero
(Ohio and Iowa) correspond to the safe source atoms (though not the only safe inputs).

constraint SM = T . Now assume that an adver-
sary has made at most nmistakes additions to and
deletions of target atoms across the examples in
T , but of course we do not know which examples
have been tainted. Can we still guarantee 100%
precision?

The answer is yes for the ILP formulation: we
simply replace the exact match condition (SM =
T ) with a weaker one: ‖SM−T‖1 ≤ nmistakes (*).
The result is still an ILP, so the techniques from
Section 3.1 readily apply. Note that as nmistakes
increases, the set of candidate mappings grows,
which means that the safe set shrinks.

Unfortunately, this procedure is degenerate for
linear programs. If the constraint (*) is not tight,
thenM+E also satisfies the constraint for any ma-
trix E of small enough norm. This means that the
consistent mappings CLP will be full-dimensional
and certainly not be unanimous on any input.

Another strategy is to remove examples from
the dataset if they could be potentially noisy. For
each training example i, we run the ILP (*) on all
but the i-th example. If the i-th example is not
in the resulting safe set (2), we remove it. This
procedure produces a noiseless dataset, on which
we can apply the noiseless linear program or linear
system from the previous sections.

4 Experiments

4.1 Artificial data

We generated a true mapping M∗ from 50 source
atoms to 20 target atoms so that each source atom
maps to 0–2 target atoms. We then created 120
training examples and 50 test examples, where the
length of every input is between 5 and 10. The
source atoms are divided into 10 clusters, and each
input only contains source atoms from one cluster.

Figure 7a shows the results for F (integer lin-
ear programming), FLP (linear programming), and

FLS (linear system). All methods attain 100% pre-
cision, and as expected, relaxations lead to lower
recall, though they all can reach 100% recall given
enough data.

Comparison with point estimation. Recall that
the unanimity principle M̂ reasons over the en-
tire set of consistent mappings, which allows us to
be robust to changes in the input distribution, e.g.,
from training set attacks (Mei and Zhu, 2015). As
an alternative, consider computing the point esti-
mateMp that minimizes ‖SM−T‖22 (the solution
is given by Mp = S†T ). The point estimate, by
minimizing the average loss, implicitly assumes
i.i.d. examples. To generate output for input x we
compute y = xMp and round each coordinate yt
to the closest integer. To obtain a precision-recall
tradeoff, we set a threshold ε and if for all target
atoms t, the interval [yt− ε, yt+ ε) contains an in-
teger, we set yt to that integer; otherwise we report
“don’t know” for input x.

To compare unanimous prediction M̂ and point
estimation Mp, for each f ∈ {0.2, 0.5, 0.7}, we
randomly generate 100 subsampled datasets con-
sisting of an f fraction of the training examples.
For Mp, we sweep ε across {0.0, 0.1, . . . , 0.5}
to obtain a ROC curve. In Figure 7c(left/right),
we select the distribution that results in the max-
imum/minimum difference between F1(M̂) and
F1(Mp) respectively. As shown, M̂ has always
100% precision, while Mp can obtain less 100%
precision over its full ROC curve. An adversary
can only hurt the recall of unanimous prediction.

Noise. As stated in Section 3.4, our algorithm
has the ability to guarantee 100% precision even
when the adversary can modify the outputs.
As we increase the number of predicate addi-
tions/deletions (nmistakes), Figure 7b shows that
precision remains at 100%, while recall naturally
decreases in response to being less confident about
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the training outputs.

4.2 Semantic parsing on GeoQuery

We now evaluate our approach on the standard
GeoQuery dataset (Zelle and Mooney, 1996),
which contains 880 utterances and their corre-
sponding logical forms. The utterances are ques-
tions related to the US geography, such as: “what
river runs through the most states”. We use the
standard 600/280 train/test split (Zettlemoyer and
Collins, 2005). After replacing entity names by
their types4 based on the standard entity lexicon,
there are 172 different words and 57 different
predicates in this dataset.

Handling context. Some words are polysemous
in that they map to two predicates: in “largest
river” and “largest city”, the word largest maps
to longest and biggest, respectively. There-
fore, instead of using words as source atoms, we

4If an entity name has more than one type we replace it
by concatenating all of its possible types.

use bigrams, so that each source atom always
maps to the same target atoms.

Reconstructing the logical form. We define
target atoms to include more information than just
the predicates, which enables us to reconstruct
logical forms from the predicates. We use the
variable-free functional logical forms (Kate et al.,
2005), in which each target atom is a predicate
conjoined with its argument order (e.g., loc 1 or
loc 2). Table 1 shows two different choices of
target atoms. At test time, we search over all possi-
ble “compatible” ways of combining target atoms
into logical forms. If there is exactly one, then we
return that logical form and abstain otherwise. We
call a predicate combination “compatible” if it ap-
pears in the training set.

We put a “null” word at the end of each sen-
tence, and collapsed the loc and traverse
predicates. To deal with noise, we minimized
‖SM − T‖1 over real-valued mappings and re-
moved any example (row) with non-zero residual.
We perform all experiments using the linear sys-
tem relaxation. Training takes under 30 seconds.

Figure 8 shows precision and recall as a func-
tion of the number of the training examples. We
obtain 70% recall over predicates on the test ex-
amples. 84% of these have a unique compatible
way of combining target atoms into a logical form,
which results in a 59% recall on logical forms.

Though our modeling assumptions are incor-
rect for real data, we were still able to get 100%
precision for all training examples. Interestingly,
the linear system (which allows negative map-
pings) helps model GeoQuery dataset better than
the linear program (which has a non-negativity
constraint). There exists a predicate all:e in
GeoQuery that is in every sentence unless the ut-



utterances logical form (A) target atoms (A) logical form (B) target atoms (B)
cities traversed by the Columbia city(x),loc(x,Columbia) city,loc,Columbia city(loc 1(Columbia)) city,loc 1,Columbia

cities of Texas city(x),loc(Texas,x) city,loc,Texas city(loc 2(Texas)) city,loc 2,Texas

Table 1: Two different choices of target atoms: (A) shows predicates and (B) shows predicates conjoined
with their argument position. (A) is sufficient for simply recovering the predicates, whereas (B) allows
for logical form reconstruction.

terance contains a proper noun. With negative
mappings, null maps to all:e, while each proper
noun maps to its proper predicate minus all:e.

There is a lot of work in semantic parsing that
tackles the GeoQuery dataset (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Wong and
Mooney, 2007; Kwiatkowski et al., 2010; Liang
et al., 2011), and the state-of-the-art is 91.1% pre-
cision and recall (Liang et al., 2011). However,
none of these methods can guarantee 100% pre-
cision, and they perform more feature engineer-
ing, so these numbers are not quite comparable. In
practice, one could use our unanimous prediction
approach in conjunction with others: For example,
one could run a classic semantic parser and simply
certify 59% of the examples to be correct with our
approach. In critical applications, one could use
our approach as a first-pass filter, and fall back to
humans for the abstentions.

5 Extensions

5.1 Learning from denotations

Up until now, we have assumed that we have
input-output pairs. For semantic parsing, this
means annotating sentences with logical forms
(e.g., area of Ohio to area(OH)) which is
very expensive. This has motivated previous
work to learn from question-answer pairs (e.g.,
area of Ohio to 44825) (Liang et al., 2011).
This provides weaker supervision: For example,
44825 is the area of Ohio (in squared miles),
but it is also the zip code of Chatfield. So,
the true output could be either area(OH) or
zipcode(Chatfield).

In this section, we show how to handle this form
of weak supervision by asking for unanimity over
additional selection variables. Formally, we have
D = {(x1, Y1), . . . , (xn, Yn)} as a set of training
examples, here each Yi consists of ki candidate
outputs for xi. In this case, the unknowns are the
mappingM as before along with a selection vector
πi, which specifies which of the ki outputs in Yi is
equal to xiM . To implement the unanimity prin-
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Figure 9: When we choose examples to be linearly
independent, we only need half the number of ex-
amples to achieve the same performance.

ciple, we need to consider the set of all consistent
solutions (M,π).

We construct an integer linear program as fol-
lows: Each training example adds a constraint that
the output of it should be exactly one of its candi-
date output. For the i-th example, we form a ma-
trix Ti ∈ Rki×nt with all the ki candidate outputs.
Formally we want xiM = πiTi. The entire ILP is:

∀i, xiM = πiTi
∀i,

∑
j πij = 1

π,M ≥ 0

Given a new input x, we return the same output
if xM is same for all consistent solutions (M,π).
Note that we can effectively “marginalize out” π.
We can also relax this ILP into an linear program
following Section 3.2.

5.2 Active learning
A side benefit of the linear system relaxation (Sec-
tion 3.3) is that it suggests an active learning pro-
cedure. The setting is that we are given a set of
inputs (the matrix S), and we want to (adaptively)
choose which inputs (rows of S) to obtain the out-
put (corresponding row of T ) for.

Proposition 4 states that under the linear system
formulation, the set of safe inputs FLS is exactly
the same as the row space of S. Therefore, if we
ask for an input that is already in the row space
of S, this will not affect FLS at all. The algo-



rithm is then simple: go through our training in-
puts x1, . . . , xn one by one and ask for the output
only if it is not in the row space of the previously-
added inputs x1, . . . , xi−1.

Figure 9 shows the recall when we choose ex-
amples to be linearly independent in this way in
comparison to when we choose examples ran-
domly. The active learning scheme requires half
as many labeled examples as the passive scheme
to reach the same recall. In general, it takes
rank(S) ≤ n examples to obtain the same recall
as having labeled all n examples. Of course, the
precision of both systems is 100%.

5.3 Paraphrasing
Another side benefit of the linear system relax-
ation (Section 3.3) is that we can easily parti-
tion the safe set FLS (8) into subsets of utterances
which are paraphrases of each other. Two utter-
ances are paraphrase of each other if both map to
the same logical form, e.g., “Texas’s capital” and
“capital of Texas”. Given a sentence x ∈ FLS, our
goal is to find all of its paraphrases in FLS.

As explained in Section 3.3, we can represent
each input x as a linear combination of S for some
coefficients α ∈ Rn: x = α>S. We want to find
all x′ ∈ FLS such that x′ is guaranteed to map to
the same output as x. We can represent x′ = β>S
for some coefficients β ∈ Rn. The outputs for x
and x′ are thus α>T and β>T , respectively. Thus
we are interested in β’s such that α>T = β>T , or
in other words, α − β is in the null space of T>.
Let B be a basis for the null space of T>. We can
then write α− β = Bv for some v. Therefore, the
set of paraphrases of x ∈ FLS are:

Paraphrases(x) def
= {(α−Bv)>S : v ∈ Rn}.

(9)

6 Discussion and related work

Our work is motivated by the semantic parsing
task (though it can be applied to any set-to-set pre-
diction task). Over the last decade, there has been
much work on semantic parsing, mostly focusing
on learning from weaker supervision (Liang et al.,
2011; Goldwasser et al., 2011; Artzi and Zettle-
moyer, 2011; Artzi and Zettlemoyer, 2013), scal-
ing up beyond small databases (Cai and Yates,
2013; Berant et al., 2013; Pasupat and Liang,
2015), and applying semantic parsing to other
tasks (Matuszek et al., 2012; Kushman and Barzi-
lay, 2013; Artzi and Zettlemoyer, 2013). How-

ever, only Popescu et al. (2003) focuses on preci-
sion. They also obtain 100% precision, but with a
hand-crafted system, whereas we learn a semantic
mapping.

The idea of computing consistent hypotheses
appears in the classic theory of version spaces for
binary classification (Mitchell, 1977) and has been
extended to more structured settings (Vanlehn and
Ball, 1987; Lau et al., 2000). Our version space is
used in the context of the unanimity principle, and
we explore a novel linear algebraic structure. Our
“safe set” of inputs appears in the literature as the
complement of the disagreement region (Hanneke,
2007). They use this notion for active learning,
whereas we use it to support unanimous predic-
tion.

There is classic work on learning classifiers that
can abstain (Chow, 1970; Tortorella, 2000; Bal-
subramani, 2016). This work, however, focuses on
the classification setting, whereas we considered
more structured output settings (e.g., for semantic
parsing). Another difference is that we operate in
a more adversarial setting by leaning on the una-
nimity principle.

Another avenue for providing user confidence
is probabilistic calibration (Platt, 1999), which has
been explored more recently for structured predic-
tion (Kuleshov and Liang, 2015). However, these
methods do not guarantee precision for any train-
ing set and test input.

In summary, we have presented the unanimity
principle for guaranteeing 100% precision. For
the task of learning semantic mappings, we lever-
aged the linear algebraic structure in our prob-
lem to make unanimous prediction efficient. We
view our work as a first step in learning reli-
able semantic parsers. A natural next step is to
explore our framework with additional modeling
improvements—especially in dealing with con-
text, structure, and noise.

Reproducibility. All code, data, and
experiments for this paper are avail-
able on the CodaLab platform at https:

//worksheets.codalab.org/worksheets/

0x593676a278fc4e5abe2d8bac1e3df486/.
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