
Technical Commentary

Martin C. Rinard
MIT EECS and CSAIL
{rinard}@csail.mit.edu

Understanding how to get a computer to perform a given
task is a central question in computer science. For many
years the standard answer to this question has been to use a
programming language to write a program that the computer
will then execute to accomplish the task.

An intriguing alternative, however, is to provide the com-
puter with examples of inputs and corresponding outputs,
then have the computer automatically generalize the exam-
ples to produce a program that performs the desired task
for all inputs. Researchers have worked on this approach for
decades, first in the LISP community [4], then later in the in-
ductive logic programming community [1–3], to name two
prominent examples. Given the relatively modest size of the
programs that the resulting techniques are able to produce,
the field has evolved to focus largely on data mining, con-
cept learning, knowledge discovery, and other applications
(as opposed to mainstream software development).

The present paper focuses on an important emerging area
— end user programming. As information technology has
come to permeate our society, broader and broader classes
of users have developed the need for more sophisticated data
manipulation and processing. While users in the past were
satisfied with relatively simple interactive models of compu-
tation such as spreadsheets and other business applications,
current users are now looking to automate custom data ma-
nipulations such as reformatting, reorganizing, simple calcu-
lations, or data cleaning. While such users may have a good
command of the interactive functionality of their application,
they often lack the expertise, time, or inclination to develop
software specifically for their task.

The present paper shows how to apply example-driven
program synthesis to automate spreadsheet computations. It
is therefore of interest to the millions of people who use
spreadsheets worldwide. The methodology consists of four
basic steps:

• Domain-Specific Language: Develop a domain-specific
language capable of representing the desired set of com-
putations.

• Data Structure: Develop a data structure that can effi-
ciently represent the large set of programs that are con-
sistent with a given input/output example.

• Learn and Intersect: Generate data structures for repre-
senting the programs consistent with each individual in-

put/output example, then intersect the data structures to
obtain a representation of the programs consistent with
all examples.

• Rank: Rank the resulting set of programs, preferring
more general programs over less general programs. Users
can then view the results of the ranked programs on
different inputs to guide the program selection process.

This approach effectively addresses many of the is-
sues that complicate example-driven approaches. Domain-
specific languages help focus the synthesis process by
avoiding the generality of standard programming languages
(which can produce very large program search spaces that
are intractable to manipulate efficiently). Compact program
representations make it possible to manipulate large num-
bers of programs efficiently. An effective ranking algorithm
helps users quickly identify a desirable program (out of the
potentially unbounded number of programs that are consis-
tent with the provided examples). And the interactive pro-
gram evaluation mechanisms (automatic identification of
inputs on which candidate programs produce different out-
puts) help users navigate the space of synthesized programs.

The authors have successfully applied this approach to
three classes of spreadsheet programs: syntactic string ma-
nipulations (such as converting telephone numbers into a
standard format), semantic manipulations that operate on
data stored in relational tables (such as transforming dates
or strings in inventory tables), and table layout computations
(which reorganize data stored in tables). All of these systems
have been successfully integrated with Microsoft Excel and
have been tested on multiple examples from Excel help fo-
rums.

In the future, the need for users to obtain ever more
sophisticated custom behavior will only increase. Given
the significant obstacles that traditional programming ap-
proaches pose for the vast majority of users, we can expect
to see a proliferation of solutions that help non-programmers
accomplish software development tasks that have tradition-
ally been the exclusive domain of software professionals.
Given the difficulty of specifying and implementing large
software systems, these solutions will (at least initially) fo-
cus on the automatic generation of relatively small but still
useful solutions to everyday problems. The present paper
provides an outstanding example of the kinds of useful so-

1



lutions that non-programmers can now automatically obtain
and demonstrates the kind of sophisticated implementation
techniques that will make such automatic program synthesis
systems feasible for a variety of problem domains.

References
[1] Nada Lavrac and Saso Dzeroski. Inductive Logic Programming

— Techniques and Applications. Ellis Horwood, New York,
1994.

[2] Stephen Muggleton and Luc De Raedt. Inductive logic pro-
gramming: theory and methods. Journal of Logic Program-
ming, 19/20:629–679, 1994.

[3] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko,
Peter A. Flach, Katsumi Inoue, and Ashwin Srinivasan. ILP
turns 20 - biography and future challenges. Machine Learning,
86(1):3–23, 2012.

[4] Douglas R. Smith. The synthesis of LISP programs from ex-
amples: a survey. In A.W. Biermann, G. Guiho, and Y. Ko-
dratoff, editors, Automatic Program Construction Techniques,
pages 307–324. Macmillan, 1984.

2


