
AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 83

Verifying Quantitative Reliability
for Programs that Execute on
Unreliable Hardware
By Michael Carbin, Sasa Misailovic, and Martin C. Rinard

DOI:10.1145/2958738

Abstract
Emerging high-performance architectures are anticipated
to contain unreliable components that may exhibit soft
errors, which silently corrupt the results of computations.
Full detection and masking of soft errors is challenging,
expensive, and, for some applications, unnecessary. For
example, approximate computing applications (such as
multimedia processing, machine learning, and big data
analytics) can often naturally tolerate soft errors.

We present Rely, a programming language that enables
developers to reason about the quantitative reliability of an
application—namely, the probability that it produces the
correct result when executed on unreliable hardware. Rely
allows developers to specify the reliability requirements for
each value that a function produces.

We present a static quantitative reliability analysis that
verifies quantitative requirements on the reliability of an
application, enabling a developer to perform sound and
verified reliability engineering. The analysis takes a Rely pro-
gram with a reliability specification and a hardware speci-
fication that characterizes the reliability of the underlying
hardware components and verifies that the program satisfies
its reliability specification when executed on the underlying
unreliable hardware platform. We demonstrate the applica-
tion of quantitative reliability analysis on six computations
implemented in Rely.

1. INTRODUCTION
Reliability is a major concern in the design of computer sys-
tems. The current goal of delivering systems with negligible
error rates restricts the available design space and imposes
significant engineering costs. And as other goals such as energy
efficiency, circuit scaling, and new features and functional-
ity continue to grow in importance, maintaining even current
error rates will become increasingly difficult.

In response to this situation, researchers have developed
numerous techniques for detecting and masking errors in
both hardware10 and software.9, 23, 24 Because these techniques
typically come at the price of increased execution time,
increased energy consumption, or both, they can substan-
tially hinder or even cripple overall system performance.

Many computations, however, can easily tolerate occasional
errors. An approximate computation (including many multi-
media, financial, machine learning, and big data analytics
applications) can often acceptably tolerate occasional errors
in its execution and/or the data that it manipulates.7, 20, 25
A checkable computation can be augmented with an efficient

checker that verifies either the exact correctness4, 14 or the
approximate acceptability1 of the results that the computa-
tion produces. If the checker does detect an error, it can
re-execute the computation to obtain an acceptable result.

For both approximate and checkable computations, oper-
ating without (or with at most selectively applied) mecha-
nisms that detect and mask errors can produce (1) fast and
energy efficient execution that (2) delivers acceptably accurate
results often enough to satisfy the needs of their users.

1.1. Background
Approximate computations have emerged as a major com-
ponent of many computing environments. Motivated in
part by the observation that approximate computations
can often acceptably tolerate occasional computation and/
or data errors,7, 20, 25 researchers have developed a range of
new mechanisms that forgo exact correctness to optimize
other objectives. Typical goals include maximizing program
performance subject to an accuracy constraint and altering
program execution to recover from otherwise fatal errors.26

Software Techniques: Most software techniques deploy
unsound transformations—transformations that change the
semantics of an original exact program. Proposed mecha-
nisms include skipping tasks,16, 25 loop perforation (skipping
iterations of time-consuming loops),20, 29 sampling reduction
inputs,30 multiple selectable implementations of a given
component or components,2, 3, 12, 30 dynamic knobs (configu-
ration parameters that can be changed as the program
executes)12 and synchronization elimination (forgoing syn-
chronization not required to produce an acceptably accurate
result).16, 18 The results show that aggressive techniques such
as loop perforation can deliver up to a fourfold performance
improvement with acceptable changes in the quality of the
results that the application delivers.

Hardware Techniques: The computer architecture community
has begun to investigate new designs that improve per-
formance by breaking the traditional fully reliable digital
abstraction that computer hardware has traditionally sought
to provide. The goal is to reduce the cost of implement-
ing a reliable abstraction on top of physical materials and
manufacturing methods that are inherently unreliable. For

The original version of this paper appeared in Proceedings
of the 28th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(Indianapolis, IN, Oct. 2013).

http://dx.doi.org/10.1145/2958738

research highlights

84 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

example, researchers are investigating designs that incor-
porate aggressive device and voltage scaling techniques
to provide low-power ALUs and memories. A key aspect of
these components is that they forgo traditional correctness
checks and instead expose timing errors and bitflips with
some non-negligible probability.9, 11, 13, 15, 21, 22, 27

1.2. Reasoning about approximate programs
Approximate computing violates the traditional contract that
the programming system must preserve the standard semantics
of the program. It therefore invalidates standard paradigms
and motivates new, more general, approaches to reasoning
about program behavior, correctness, and acceptability.

One key aspect of approximate applications is that they typi-
cally contain critical regions (which must execute without error)
and approximate regions (which can execute acceptably even in
the presence of occasional errors).7, 25 Existing systems, tools,
and type systems have focused on helping developers iden-
tify, separate, and reason about the binary distinction between
critical and approximate regions.7, 11, 15, 25, 27 However, in practice,
no computation can tolerate an unbounded accumulation of
errors—to execute acceptably, executions of even approximate
regions must satisfy some minimal requirements.

Approximate computing therefore raises a number of fun-
damental new research questions. For example, what is the
probability that an approximate program will produce the
same result as a corresponding original exact program? How
much do the results differ from those produced by the origi-
nal program? And is the resulting program safe and secure?

Because traditional correctness properties do not pro-
vide an appropriate conceptual framework for addressing
these kinds of questions, we instead work with acceptability
properties—the minimal requirements that a program must
satisfy for acceptable use in its designated context. We iden-
tify three kinds of acceptability properties and use the fol-
lowing program (which computes the minimum element
min in an N-element array) to illustrate these properties:

int min = INT_MAX ;
for (int i = 0; i < N; ++i)

if (a[i] < min) min = a[i];

Integrity Properties: Integrity properties are properties that
the computation must satisfy to produce a successful result.
Examples include computation-independent properties (no
out of bounds accesses, null dereferences, divide by zero
errors, or other actions that would crash the computation)
and computation-dependent properties (e.g., the computa-
tion must return a result within a given range). One integ-
rity property for our example program is that accesses to the
array a must always be within bounds.

Reliability Properties: Reliability properties characterize the
probability that the produced result is correct. Reliability prop-
erties are often appropriate for approximate computations
executing on unreliable hardware platforms that exhibit occa-
sional nondeterministic errors. A potential reliability property
for our example program is that min must be the minimum
element in a[0]–a[N–1] with probability at least 95%.

Accuracy Properties: Accuracy properties characterize
how accurate the produced result must be. For example, an

accuracy property might state that the transformed program
must produce a result that differs by at most a specified
percentage from the result that a corresponding original
program produces.19, 30 Alternatively, a potential accuracy
property for our example program might require the min to
be within the smallest N/2 elements a[0]–a[N–1]. Such
an accuracy property might be satisfied by, for example, a
loop perforation transformation that skips N/2–1 of the
loop iterations.

In this article we focus on reliability properties for
approximate computations executing on unreliable hard-
ware platforms. In other research, we have developed
techniques for reasoning about integrity properties5, 6
and both worst-case and probabilistic accuracy proper-
ties.5, 19, 30 We have also extended the research presented
in this article to include combinations of reliability and
accuracy properties.17

1.3. Verifying reliability (contributions)
To meet the challenge of reasoning about reliability, we
present a programming language, Rely, and an associated
program analysis that computes the quantitative reliability
of the computation—that is, the probability with which the
computation produces a correct result when parts of the
computation execute on unreliable hardware with soft errors
(independent errors that occur nondeterministically with
some probability). Specifically, given a hardware specification
and a Rely program, the analysis computes, for each value
that the computation produces, a conservative probability
that the value is computed correctly despite the possibility of
soft errors.

Rely supports and is specifically designed to enable parti-
tioning a program into critical regions (which must execute
without error) and approximate regions (which can execute
acceptably even in the presence of occasional errors).7, 25
In contrast to previous approaches, which support only
a binary distinction between critical and approximate
regions, quantitative reliability can provide precise static
probabilistic acceptability guarantees for computations
that execute on unreliable hardware platforms. This article
specifically presents the following contributions:

Quantitative Reliability Specifications: We present quan-
titative reliability specifications, which characterize the
probability that a program executed on unreliable hardware
produces the correct result, as a constructive method for
developing applications. Quantitative reliability specifica-
tions enable developers who build applications for unreli-
able hardware architectures to perform sound and verified
reliability engineering.

Language: We present Rely, a language that enables devel-
opers to specify reliability requirements for programs that
allocate data in unreliable memory regions and use unreli-
able arithmetic/logical operations.

Quantitative Reliability Analysis: We present a program
analysis that verifies that the dynamic semantics of a Rely
program satisfies its quantitative reliability specifications.
For each function in the program, the analysis computes a
symbolic reliability precondition that characterizes the set
of valid specifications for the function. The analysis then

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 85

verifies that the developer-provided specifications are valid
according to the reliability precondition.

Case Studies: We have used the Rely implementation to
develop unreliable versions of six building block compu-
tations for media processing, machine learning, and data
analytics applications. These case studies illustrate how to
use quantitative reliability to develop and reason about both
approximate and checkable computations in a principled way.

2. EXAMPLE
Rely is an imperative language for computations over inte-
gers, floats (not presented), and multidimensional arrays.
To illustrate how a developer can use Rely, Figure 1 presents
a Rely-based implementation of a pixel block search algo-
rithm derived from that in the x264 video encoder.a

The function search_ref searches a region (pblocks) of
a previously encoded video frame to find the block of pixels
that is most similar to a given block of pixels (cblock) in
the current frame. The motion estimation algorithm uses

the results of search_ref to encode cblock as a function
of the identified block.

This is an approximate computation that can trade cor-
rectness for more efficient execution by approximating the
search to find a block. If search_ref returns a block that
is not the most similar, then the encoder may require more
bits to encode cblock, potentially decreasing the video’s
peak signal-to-noise ratio or increasing the video’s encoded
size. However, previous studies on soft error injection9 and
more aggressive transformations like loop perforation20, 29
have demonstrated that the quality of x264’s final result is
only slightly affected by perturbations of this computation.

2.1. Reliability specifications
The function declaration on Line 6 specifies the types
and reliabilities of search_ref’s parameters and return
value. The parameters of the function are pblocks(3), a
three-dimensional array of pixels, and cblock(2), a two-
dimensional array of pixels. In addition to the standard
signature, the function declaration contains reliability
specifications for each result that the function produces.

Rely’s reliability specifications express the reliability of
a function’s results—when executed on an unreliable hard-
ware platform—as a function of the reliabilities of its inputs.
A reliability specification has the form r ⋅ R(X), where r is a
real number between 0 and 1 and X is a set of variables. For
example, the specification for the reliability of search_
ref’s result is int<0.99*R(pblocks,cblock)>. This
specification states that the return value is an integer with
a reliability that is at least 99% of the joint reliability of the
parameters pblocks and cblock (denoted by R(pblocks,
cblock)). The joint reliability of a set of parameters is the
probability that they all have the correct value when passed
in from the caller. This specification holds for all possible
values of the joint reliability of pblocks and cblock. For
instance, if the contents of the arrays pblocks and cblock
are fully reliable (correct with probability one), then the
return value is correct with probability 0.99.

In Rely, arrays are passed by reference and the execution
of a function can, as a side effect, modify an array’s contents.
The reliability specification of an array therefore allows a
developer to constrain the reliability degradation of its con-
tents. Here pblocks has an output reliability specification
of R(pblocks) (and similarly for cblock), meaning that
all of pblock’s elements are at least as reliable when the
function exits as they were on entry to the function.

Joint reliabilities serve as an abstraction of a function’s
input distribution, which enables Rely’s analysis to be both
modular and oblivious to the exact shape of the distribu-
tions. This is important because (1) such exact shapes can be
difficult for developers to identify and specify and (2) known
tractable classes of probability distributions are not closed
under many operations found in standard programming
languages, which can complicate attempts to develop com-
positional analyses that work with such exact shapes.19, 28

2.2. Unreliable computation
Rely targets hardware architectures that expose both reli-
able operations (which always execute correctly) and more

Figure 1. Rely code for motion estimation computation.

i

1 #define nblocks 20
2 #define height 16
3 #define width 16
4
5 int <0.99*R(pblocks , cblock)>
6 search_ref (
7 int<R(pblocks)> pblocks(3) in urel ,
8 int<R(cblock)> cblock(2) in urel)
9 {
10 int minssd = INT_MAX ,
11 minblock = -1 in urel;
12 int ssd, t, t1, t2 in urel;
13 int i = 0, j, k;
14
15 repeat nblocks {
16 ssd = 0;
17 j = 0;
18 repeat height {
19 k = 0;
20 repeat width {
21 t1 = pblocks[i,j,k];
22 t2 = cblock[j,k];
23 t = t1 -. t2;
24 ssd = ssd +. t *. t;
25 k = k + 1;
26 }
27 j = j + 1;
28 }
29
30 if (ssd <. minssd) {
31 minssd = ssd;
32 minblock = i;
33 }
34
35 i = i + 1;
36 }
37 return minblock;
38 }

a  x264 (http://www.videolan.org/x264.html).

research highlights

86 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

additional checking logic, enabling the unit to execute
more efficiently but also allowing for soft errors that may
occur due to, for example, power variations within the
ALU’s combinatorial circuits or particle strikes.

To prevent the execution from taking control flow
edges that are not in the program’s static control flow
graph, the control unit of the CPU reliably fetches,
decodes, and schedules instructions (as is supported by
existing unreliable processor architectures11, 27). In addi-
tion, given a virtual address in the application, the control
unit correctly computes a physical address and operates
only on that address.

Memory: Rely supports machines with memories that
consist of an arbitrary number of memory partitions (each
potentially of different reliability), but for simplicity Figure 2
partitions memory into two regions: reliable and unreliable.
Unreliable memories can, for example, use decreased DRAM
refresh rates to reduce power consumption at the expense of
increased soft error rates.15, 27

2.4. Hardware reliability specification
Rely’s analysis works with a hardware reliability specifica-
tion that specifies the reliability of arithmetic/logical and
memory operations. Figure 3 presents a hardware reli-
ability specification that is inspired by results from the
existing computer architecture literature.10, 15 Each entry
specifies the reliability—the probability of a correct exe-
cution—of arithmetic operations (e.g., +.) and memory
read/write operations.

For ALU operations, the presented reliability specifi-
cation uses the reliability of an unreliable multiplication
operation from Ref.10, Figure 9. For memory operations, the
specification uses the probability of a bit flip in a memory
cell from Ref.15, Figure 4 with extrapolation to the prob-
ability of a bit flip within a 32-bit word. Note that a memory
region specification includes two reliabilities: the reliability
of a read (rd) and the reliability of a write (wr).

energy-efficient unreliable operations (which execute cor-
rectly with only some probability). Specifically, Rely supports
reasoning about reads and writes of unreliable memory
regions and unreliable arithmetic/logical operations.

Memory Region Specification: Each parameter declaration
specifies the memory region in which the data of the param-
eter is allocated. Memory regions correspond to the physical
partitioning of memory at the hardware level into regions of
varying reliability. Here pblocks and cblock are allocated
in an unreliable memory region named urel.

Lines 10–13 declare the local variables of the function.
By default, variables in Rely are allocated in a fully reliable
memory region. However, a developer can also optionally
specify a memory region for each local variable. For exam-
ple, the variables declared on Lines 10–12 reside in urel.

Unreliable Operations: The operations on Lines 23, 24,
and 30 are unreliable arithmetic/logical operations. In
Rely, every arithmetic/logical operation has an unreliable
counterpart that is denoted by suffixing a period after the
operation symbol. For example, “−.” denotes unreliable
subtraction and “<.” denotes unreliable comparison.

Using these operations, search_ref’s implementa-
tion approximately computes the index (minblock) of the
most similar block, that is, the block with the minimum
distance from cblock. The repeat statement on line 15,
iterates a constant nblock number of times, enumerating
over all previously encoded blocks. For each encoded block,
the repeat statements on lines 18 and 20 iterate over the
height * width pixels of the block and compute
the sum of the squared differences (ssd) between each
pixel value and the corresponding pixel value in the cur-
rent block cblock. Finally, the computation on lines 30
through 33 selects the block that is—approximately—the
most similar to cblock.

2.3. Hardware semantics
Figure 2 illustrates the conceptual machine model behind
Rely’s reliable and unreliable operations; the model con-
sists of a CPU and a memory.

CPU: The CPU consists of (1) a register file, (2) arithmetic
logical units that perform operations on data in registers,
and (3) a control unit that manages the program’s execution.

The arithmetic-logical unit can execute reliably or unre-
liably. Figure 2 presents physically separate reliable and
unreliable functional units, but this distinction can be
achieved through other mechanisms, such as dual-volt-
age architectures.11 Unreliable functional units may omit

Figure 2. Machine model. Orange boxes represent unreliable
components.

Registers

ALU

Cache

Exact Approximate

MemoryCPU

Figure 3. Hardware reliability specification.

reliability spec {
operator (+.) = 1 - 10^-7;
operator (-.) = 1 - 10^-7;
operator (*.) = 1 - 10^-7;
operator (<.) = 1 - 10^-7;
memory rel {rd = 1, wr = 1};
memory urel {rd = 1 - 10^-7, wr = 1};

}

Figure 4. Rely analysis overview.

Rely
Program

Hardware
Specification

Precondition
Checker

Verified
Yes/No

Precondition
Generator

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 87

2.5. Reliability analysis
Given a Rely program, Rely’s reliability analysis verifies that
the each function in the program satisfies its reliability
specification when executed on unreliable hardware. Figure 4
presents an overview of Rely’s analysis. The analysis con-
sists of two components: the precondition generator and the
precondition checker.

Precondition Generator: Given a Rely program and a hard-
ware reliability specification, the precondition generator
generates a symbolic reliability precondition for each func-
tion. A reliability precondition is a set of constraints that
is sufficient to ensure that a function satisfies its reliability
specification when executed on the underlying unreliable
hardware platform. The reliability precondition is a con-
junction of predicates of the form Aout ≤ r ⋅ R (X), where Aout
is a placeholder for a developer-provided reliability specifi-
cation for an output named out, r is a real number between
0 and 1, and the term R (X) is the joint reliability of a set of
parameters X.

Conceptually, each predicate specifies that the reliability
given in the specification (given by Aout) should be less than
or equal to the reliability of a path that the program may take
to compute the result (given by r ⋅ R(X) ). The analysis com-
putes the reliability of a path from the probability that all
operations along the path execute reliably.

The specification is valid if the probabilities for all paths
to computing a result exceed that of the result’s specifica-
tion. To avoid the inherent intractability of considering
all possible paths, Rely uses a simplification procedure to
reduce the precondition to one that characterizes the least
reliable path(s) through the function.

Precondition Checker: Rely verifies that the function’s
specifications are consistent with its reliability precondi-
tion. Because reliability specifications are also of the form
r ⋅R(X), the final precondition is a conjunction of predicates
of the form r1 ⋅R(X1) ≤ r2 ⋅R(X2), where r1 ⋅R(X1) is a reliability
specification and r2 ⋅R(X2) is a path reliability. If these predi-
cates are valid, then the reliability of each computed output
is greater than that given by its specification.

The validity problem for these predicates has a sound
mapping to the conjunction of two simple constraint valid-
ity problems: inequalities between real numbers (r1 ≤ r2) and
set inclusion constraints over finite sets (X2 ⊆ X1). Checking
the validity of a reliability precondition is therefore decid-
able and efficiently checkable.

Design: As a key design point, the analysis generates
preconditions according to a conservative approximation
of the semantics of the function. Specifically, it character-
izes the reliability of a function’s result according to the
probability that the function computes that result fully
reliably.

To illustrate the intuition behind this design point, con-
sider the evaluation of an integer expression e. The reliabil-
ity of e is the probability that it evaluates to the same value n
in an unreliable evaluation as in the fully reliable evaluation.
There are two ways that an unreliable evaluation can return
n: (1) the unreliable evaluation of e encounters no faults and
(2) the unreliable evaluation possibly encounters faults, but
still returns n by chance.

Rely’s analysis conservatively approximates the reliabil-
ity of a computation by only considering the first scenario.
This design point simplifies the reasoning to the task of
computing the probability that a result is reliably computed
as opposed to reasoning about a computation’s input distri-
bution and the probabilities of all executions that produce
the correct result. As a consequence, the analysis requires
as input only a hardware reliability specification that gives
the probability with which each arithmetic/logical opera-
tion and memory operation executes correctly. The analysis
is therefore oblivious to a computation’s input distribution
and does not require a full model of how soft errors affect
its result.

Precondition generator. For each function, Rely’s analy-
sis generates a reliability precondition that conservatively
bounds the set of valid specifications for the function. The
analysis produces this precondition by starting at the end of
the function from a postcondition that must be true when
the function returns and then working backward to produce
a precondition such that if the precondition holds before
execution of the function, then the postcondition holds at
the end of the function.

Postcondition: The postcondition for a function is the con-
straint that the reliability of each array argument exceeds
that given in its specification. For search_ref, the post-
condition Q0 is

which specifies that the reliability of the arrays pblocks
and cblock—R(pblocks) and R(cblock)—should be at
least that specified by the developer—A

pblocks
 and A

cblock
.

Precondition Generation: The analysis of the body of the
search_ref function starts at the return statement.
Given the postcondition Q0, the analysis creates a new pre-
condition Q1 by conjoining to Q0 a predicate that states that
the reliability of the return value (r0 ⋅R(minblock) ) is at
least that of its specification (Aret):

The reliability of the return value comes from the design prin-
ciple for reliability approximation. Specifically, this reliability
is the probability of correctly reading minblock from unreli-
able memory—which is r0 = 1 − 10−7 according to the hardware
reliability specification—multiplied by R(minblock), the
probability that the preceding computation correctly com-
puted and stored minblock.

Loops: The statement that precedes the return state-
ment is the repeat statement on Line 15. A key difficulty
with reasoning about the reliability of variables modified
within a loop is that if a variable is updated unreliably and
has a loop-carried dependence then its reliability mono-
tonically decreases as a function of the number of loop
iterations. Because the reliability of such variables can,
in principle, decrease arbitrarily in an unbounded loop,
Rely provides both an unbounded loop statement (with an
associated analysis) and an alternative bounded loop state-
ment that lets a developer specify a compile-time bound

research highlights

88 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

Step 3: In the final step, the analysis leaves the scope of
the conditional and conjoins the two preconditions for its
branches after transforming them to include the direct
dependence of the control flow variable on the reliability of
the if statement’s condition expression.

The reliability of the if statement’s expression is greater
than or equal to the product of (1) the reliability of the <. oper-
ator (r0), (2) the reliability of reading both ssd and minssd
from unreliable memory (r 2

0), and (3) the reliability of the
computation that produced ssd and minssd (R(ssd,
minssd) ). The analysis therefore transforms each predicate
that contains the variable 30, by multiplying the right-hand
side of the inequality with r 3

0 and replacing the variable 30
with ssd and minssd.

This produces the precondition Q2:

Simplification: After unrolling a single iteration of the loop
that begins at Line 15, the analysis produces
R(pblocks, cblock, i, ssd, minssd) as the precondition for
a single iteration of the loop’s body. The constant 2564 rep-
resents the number of unreliable operations within a single
loop iteration.

Note that there is one less predicate in this precondition
than in Q2. As the analysis works backwards through the
program, it uses a simplification technique that identifies
that a predicate Aret ≤ r1 ⋅R(X1) subsumes another predicate
Aret ≤ r2 ⋅ R(X2). Specifically, the analysis identifies that
r1 ≤ r2 and X2 ⊆ X1, which together mean that the sec-
ond predicate is a weaker constraint on Aret than the first
and can therefore be removed. This follows from the fact
that the joint reliability of a set of variables is less than
or equal to the joint reliability of any subset of the vari-
ables—regardless of the distribution of their values.

This simplification is how Rely’s analysis achieves scal-
ability when there are multiple paths in the program; specifi-
cally a simplified precondition characterizes the least reliable
path(s) through the program.

Final Precondition: When the analysis reaches the begin-
ning of the function after fully unrolling the loop on Line 15, it
has a precondition that bounds the set of valid specifications
as a function of the reliability of the parameters of the func-
tion. For search_ref, the analysis generates the precondition

Precondition checker. The final precondition is a con-
junction of predicates of the form Aout ≤ r ⋅R(X), where
Aout is a placeholder for the reliability specification of an
output. Because reliability specifications are all of the
form r ⋅R(X), each predicate in the final precondition
(where each Aout is replaced with its specification) is of
the form form r1 ⋅R(X1) ≤ r2 ⋅R(X2), where r1 ⋅R(X1) is a
reliability specification and r2 ⋅R(X2) is computed by the
analysis. Similar to the analysis’s simplifier (see Precon-

on the maximum number of its iterations that therefore
bounds the reliability degradation of modified variables.
The loop on Line 15 iterates nblocks times and therefore
decreases the reliability of any modified variables nblocks
times. Because the reliability degradation is bounded, Rely’s
analysis uses unrolling to reason about the effects of a
bounded loop.

Conditionals: The analysis of the body of the loop on Line
15 encounters the if statement on Line 30.b This if statement
uses an unreliable comparison operation on ssd and
minssd, both of which reside in unreliable memory. The
reliability of minblock when modified on Line 32 therefore
also depends on the reliability of this expression because
faults may force the execution down a different path.

Figure 5 presents a Hoare logic style presentation of the
analysis of the conditional statement. The analysis works in
three steps; the preconditions generated by each step are
numbered with the corresponding step.

Step 1: To capture the implicit dependence of a variable
on an unreliable condition, Rely’s analysis first uses latent
control flow variables to make these dependencies explicit.
A control flow variable is a unique program variable (one for
each statement) that records whether the conditional evalu-
ated to true or false. We denote the control flow variable for
the if statement on Line 30 by 30.

To make the control flow dependence explicit, the analy-
sis adds the control flow variable to all joint reliability terms
in Q1 that contain variables modified within the body of the
if conditional (minssd and minblock).

Step 2: The analysis next recursively analyzes both the
“then” and “else” branches of the conditional, produc-
ing one precondition for each branch. As in a standard
precondition generator (e.g., weakest-preconditions)
the assignment of i to minblock in the “then” branch
replaces minblock with i in the precondition. Because
reads from i and writes to minblock are reliable (accord-
ing to the specification) the analysis does not introduce
any new r0 factors.

(3) {Q0 ∧ Aret ≤ r4
0 · R(i, ssd, minssd)

∧ Aret ≤ r4
0 · R(minblock, ssd, minssd)}

if (ssd <. minssd) {
(2) {Q0 ∧ Aret ≤ r0 · R(i, �30)}

minssd = ssd;
{Q0 ∧ Aret ≤ r0 · R(i, �30)}
minblock = i;
{Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

} else {
(2) {Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

skip;
{Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

}
(1) {Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

Figure 5. if statement analysis in the last loop iteration.

b  This happens after encountering the increment of i on Line 35, which
does not modify the current precondition because it does not reference i.

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 89

dition checker section), the precondition checker verifies
the validity of each predicate by checking that (1) r1 is
less than r2 and (2) X2 ⊆ X1.

For search_ref, the analysis computes the following
predicates:

Because these predicates are valid according to the check-
ing procedure, search_ref satisfies its reliability specifi-
cation when executed on the specified unreliable hardware.

3. CASE STUDIES
We have used Rely to build unreliable versions of six build-
ing block computations for media processing, machine
learning, and data analytics applications. These case stud-
ies illustrate how quantitative reliability enables a developer
to use principled reasoning to relax the semantics of both
approximate computations and checkable computations.

Benchmarks: We analyze the following six computations:

•	 newton: This computation searches for a root of a uni-
variate function using Newton’s Method.

•	 bisect: This computation searches for a root of a uni-
variate function using the Bisection Method.

•	 coord: This computation calculates the Cartesian coor-
dinates from the polar coordinates passed as the input.

•	 search_ref: This computation performs a simple
motion estimation. We presented this computation in
Section 2.

•	 mat_vec: This computation multiplies a matrix and a
vector and stores the result in another vector.

•	 hadamard: This computation takes as input two blocks
of 4 × 4 pixels and computes the sum of differences
between the pixels in the frequency domain.

3.1. Deriving reliability specification
A developer’s choice of reliability specifications is typi-
cally influenced by the perceived effect that the unreliable
execution of the computation may have on the accuracy of
the full program’s result and its execution time and energy
consumption. We present two strategies for how developers
can use Rely to reason about the trade-offs between accuracy
and performance that are available for checkable computa-
tions and approximate computations.

Checkable Computations: Checkable computations can
be augmented with an efficient checker that dynamically
verifies the correctness of the computation’s result. If the
checker detects an error, then it re-executes the computa-
tion or executes an alternative reliable implementation.
For instance, a Newton’s method computation searches for
value of input x for which a function f(x) is 0. Once this com-
putation finds a zero of the function, x0, it is typically much
less expensive to compute f(x0) and check if it equals 0.

Quantitative reliability enables a developer to model the
performance of this checked implementation of the compu-
tation. We will use Tpass to denote the expected time required
to compute the correct value of the computation and per-
form the check and Tfail to denote the expected time required
to compute an incorrect result, perform the check, and then
rerun the reliable version of the computation (that produces
the correct result).

If r denotes the reliability of the computation, then the
expected execution time of the checked computation as a
whole is T′ = r ⋅ Tpass + (1 − r) ⋅ Tfail. This time can be compared
with the time to always perform a reliable version of the
computation. Therefore, this reasoning allows a developer
to find the reliability r that meets the developer’s perfor-
mance improvement goal and can be analogously applied
for alternative resource usage measures, such as energy con-
sumption and throughput.

Approximate Computations: For computations that are
inherently approximate, we can perform reliability profiling
to relate the errors in the approximate computational ker-
nels to the full application’s errors.

To estimate the error of the computation, a developer
can provide a sensitivity testing procedure, that specifies how
the noise can be injected in the application. For instance, to
estimate the error of the function search_ref from Figure 1,
a profiler can modify the program to produce the correct
minimum distance block with probability r and produce
the maximum distance block with probability 1 − r. This
modification provides a conservative estimate of the
bound on search_ref’s accuracy loss given the reliabil-
ity r (when the computation’s inputs are reliable) and the
assumption that a fault causes search_ref to return the
worst-case result.

The profiler can then run the application on represen-
tative inputs, for different values of r. The profiler then
compares the outputs of the original and modified pro-
gram by computing a developer-provided application
level quality-loss-metric. The profiler estimates the rela-
tionship between computation-level error, controlled by
r, and application-level quality loss. Based on this esti-
mate, the developer can select an appropriate value of r.
In our example, if the developer is willing to accept 1%
loss in the video’s peak-signal-to-noise ratio (the quality-
loss metric for the video encoder), then this procedure
can help the developer select r to be 0.98.

Benchmark analysis summary.

Predicates

Benchmark Type LOC Time (ms) N S

newton Checkable 21 8 82 1
bisect Checkable 30 7 16,356 2
coord Checkable 36 19 20 1
search_ref Approximate 37 348 36,205 3
matvec Approximate 32 110 1061 4
hadamard Approximate 87 18 3 3

research highlights

90 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

desirable to reason about the accuracy of the result that the
computation produces. Dynamic techniques observe the
accuracy impact of program transformations, for exam-
ple, Refs.,2, 3, 16, 20, 25, 29 or injected soft errors, for example,
Refs.9, 15, 27 Researchers have developed static techniques
that use probabilistic reasoning to characterize the accu-
racy impact of various sources of uncertainty.8, 19, 30 And of
course, the accuracy impact of the floating point approxi-
mation to real arithmetic has been extensively studied in
numerical analysis.

More recently, we developed the Chisel optimization
system to automate the placement of approximate opera-
tions and data.17 Chisel extends the Rely reliability specifi-
cations (that capture acceptable frequency of errors) with
absolute error specifications (that also capture accept-
able magnitude of errors). Chisel formulates an integer
optimization problem to automatically navigate the trad-
eoff space and generate an approximate computation that
provides maximum energy savings (for the given model of
approximate hardware) while satisfying the developer’s
reliability and absolute error specifications.

Fault Tolerance and Resilience: Researchers have devel-
oped various software, hardware, or mixed approaches for
detection and recovery from specific types of soft errors
that guarantee a reliable program execution, for example,
Refs.9, 23, 24 For example, Reis et al.24 present a compiler
that replicates a computation to detect and recover from
single event upsets. These techniques are complemen-
tary to Rely in that each can provide implementations of
operations that need to be reliable, as either specified by
the developer or as required by Rely, to preserve memory
safety and control flow integrity.

5. CONCLUSION
Driven by hardware technology trends, future computa-
tional platforms are projected to contain unreliable hard-
ware components. To safely exploit the benefits (such as
reduced energy consumption) that such unreliable compo-
nents may provide, developers need to understand the effect
that these components may have on the overall reliability of
the approximate computations that execute on them.

We present a language, Rely, for exploiting unreliable
hardware and an associated analysis that provides probabi-
listic reliability guarantees for Rely computations executing
on unreliable hardware. By enabling developers to bet-
ter understand the probabilities with which this hardware
enables approximate computations to produce correct
results, these guarantees can help developers safely exploit
the benefits that unreliable hardware platforms offer.

Acknowledgments
We thank Deokhwan Kim, Hank Hoffmann, Vladimir
Kiriansky, Stelios Sidiroglou, and Rishabh Singh for their
insightful comments.

This research was supported in part by the National
Science Foundation (Grants CCF-0905244, CCF-1036241,
CCF-1138967, CCF-1138967, and IIS-0835652), the United
States Department of Energy (Grant DE-SC0008923), and
DARPA (Grants FA8650-11-C-7192, FA8750-12-2-0110).�

3.2. Analysis summary
The table here presents Rely’s analysis results on the bench-
mark computations. For each benchmark, the table presents
the type of the computation (checkable or approximate), its
length in lines of code (LOC), the execution time of the anal-
ysis, and the number of inequality predicates in the final
precondition produced by the precondition generator both
without and with our simplification strategy.

Analysis Time: The analysis times for all benchmarks are
under one second when executed on an Intel Xeon E5520
machine with 16 GB of main memory.

Number of Predicates: We used Rely with the hardware reli-
ability specification from Figure 3 to generate a reliability
precondition for each benchmark. The second to last column
(labeled N) presents the number of predicates in the precon-
dition when using a naïve strategy that does not include our
simplification procedure. The rightmost column (labeled S)
presents the number of predicates in each precondition
when Rely employs our simplification procedure.

When Rely uses simplification, the size of each precondi-
tion is small (all consisting of less than five predicates). The
difference in size between the naïvely generated precondi-
tions and those generated via simplification demonstrates
that simplification reduces the size of preconditions by
multiple orders of magnitude. Simplification achieves these
results by identifying that many of the additional predicates
introduced by the reasoning required for conditionals can
be removed. These additional predicates are often sub-
sumed by another predicate.

4. RELATED WORK
In this section, we present an overview of the other work that
intersects with Rely and its contributions to modeling and
analysis of approximate computations, and computation
fault tolerance.

Integrity: Almost all approximate computations have
critical regions that must execute without error for the
computation as a whole to execute acceptably. Dynamic
criticality analyses automatically change different
regions of the computation or internal data structures,
and observe how the change affects the program’s out-
put, for example, Refs.7, 20, 25 In addition, specification-
based static criticality analyses let the developer identify
and separate critical and approximate program regions,
for example, Refs.15, 27 Carbin et al.5 present a verification
system for relaxed approximate programs based on a rela-
tional Hoare logic. The system enables rigorous reason-
ing about the integrity and worst-case accuracy properties
of a program’s approximate regions.

In contrast to the prior static analyses that focus on the
binary distinction between reliable and approximate com-
putations, Rely allows a developer to specify and verify that
even approximate computations produce the correct result
most of the time. Overall, this additional information can
help developers better understand the effects of deploying
their computations on unreliable hardware and exploit the
benefits that unreliable hardware offers.

Accuracy: In addition to reasoning about how often a
computation may produce a correct result, it may also be

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 91

References
	 1.	 Achour, S., Rinard, M. Approximate

checkers for approximate
computations in topaz. In OOPSLA
(2015).

	 2. 	 Ansel, J., Wong, Y., Chan, C.,
Olszewski, M., Edelman, A.,
Amarasinghe, S. Language and
compiler support for auto-tuning
variable-accuracy algorithms. In CGO
(2011).

	 3. 	 Baek, W., Chilimbi, T.M. Green: A
framework for supporting energy-
conscious programming using
controlled approximation. In PLDI
(2010).

	 4. 	 Blum, M., Kanna, S. Designing
programs that check their work. In
STOC (1989).

	 5. 	 Carbin, M., Kim, D., Misailovic, S.,
Rinard, M. Proving acceptability
properties of relaxed nondeterministic
approximate programs. In PLDI
(2012).

	 6. 	 Carbin, M., Kim, D., Misailovic, S.,
Rinard, M. Verified integrity
properties for safe approximate
program transformations. In PEPM
(2013).

	 7. 	 Carbin, M., Rinard, M. Automatically
identifying critical input regions and
code in applications. In ISSTA (2010).

	 8. 	 Chaudhuri, S., Gulwani, S.,
Lublinerman, R., Navidpour, S. Proving
programs robust. In FSE (2011).

	 9. 	 de Kruijf, M., Nomura, S.,
Sankaralingam, K. Relax: An
architectural framework for software
recovery of hardware faults. In ISCA
(2010).

	10. 	 Ernst, D., Kim, N.S., Das, S., Pant, S.,
Rao, R., Pham, T., Ziesler, C., Blaauw, D.,
Austin, T., Flautner, K., Mudge, T.
Razor: A low-power pipeline based on
circuit-level timing speculation.
In MICRO (2003).

	11. 	 Esmaeilzadeh, H., Sampson, A.,
Ceze, L., Burger, D. Architecture
support for disciplined approximate
programming. In ASPLOS (2012).

	12. 	 Hoffman, H., Sidiroglou, S., Carbin, M.,
Misailovic, S., Agarwal, A., Rinard, M.
Dynamic knobs for responsive
power-aware computing. In ASPLOS
(2011).

	13. 	 Leem, L., Cho, H., Bau, J., Jacobson, Q.,
Mitra, S. Ersa: Error resilient system
architecture for probabilistic
applications. In DATE (2010).

	14. 	 Leveson, N., Cha, S., Knight, J.C.,
Shimeall, T. The use of self checks
and voting in software error detection:
An empirical study. In IEEE TSE
(1990).

	15. 	 Liu, S., Pattabiraman, K., Moscibroda, T.,
Zorn, B. Flikker: Saving dram
refresh-power through critical data

partitioning. In ASPLOS (2011).
	16. 	 Meng, J., Chakradhar, S.,

Raghunathan, A. Best-effort parallel
execution framework for recognition
and mining applications. In IPDPS
(2009).

	17. 	 Misailovic, S., Carbin, M., Achour, S.,
Qi, Z., Rinard, M. Chisel: Reliability-
and accuracy-aware optimization of
approximate computational kernels.
In OOPSLA (2014).

	18. 	 Misailovic, S., Kim, D., Rinard, M.
Parallelizing sequential programs
with statistical accuracy tests. ACM
TECS Special Iss. Prob. Embedded
Comput. (2013).

	19. 	 Misailovic, S., Roy, D., Rinard, M.
Probabilistically accurate program
transformations. In SAS (2011).

	20. 	 Misailovic, S., Sidiroglou, S.,
Hoffmann, H., Rinard, M. Quality of
service profiling. In ICSE (2010).

	21. 	 Narayanan, S., Sartori, J., Kumar, R.,
Jones, D. Scalable stochastic
processors. In DATE (2010).

	22. 	 Palem, K. Energy aware computing
through probabilistic switching: A
study of limits. IEEE Trans. Comput.
(2005).

	23. 	 Perry, F., Mackey, L., Reis, G., Ligatti, J.,
August, D., Walker, D. Fault-tolerant
typed assembly language. In PLDI
(2007).

	24. 	 Reis, G., Chang, J., Vachharajani, N.,
Rangan, R., August, D. Swift: Software
implemented fault tolerance. In CGO
(2005).

	25. 	 Rinard, M. Probabilistic accuracy
bounds for fault-tolerant
computations that discard tasks. In
ICS (2006).

	26. 	 Rinard, M., Cadar, C., Dumitran, D.,
Roy, D., Leu, T., Beebee, W. Jr.
Enhancing server availability and
security through failure-oblivious
computing. In OSDI (2004).

	27. 	 Sampson, A., Dietl, W., Fortuna, E.,
Gnanapragasam, D., Ceze, L.,
Grossman, D. EnerJ: Approximate
data types for safe and general
low-power computation. In PLDI
(2011).

	28. 	 Sankaranarayanan, S., Chakarov, A.,
Gulwani, S. Static analysis for
probabilistic programs: Inferring
whole program properties from
finitely many paths. In PLDI
(2013).

	29. 	 Sidiroglou, S., Misailovic, S.,
Hoffmann, H., Rinard, M. Managing
performance vs. accuracy trade-offs
with loop perforation. In FSE (2011).

30. 	 Zhu, Z., Misailovic, S., Kelner, J.,
Rinard, M. Randomized accuracy-
aware program transformations for
efficient approximate computations.
In POPL (2012).

Copyright held by authors.

Michael Carbin, Sasa Misailovic, and
Martin C. Rinard, Computer Science
and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA.

&CM
Association for
Computing Machinery CM&

Morgan & Claypool
Publishers

For more info please visit
http://books.acm.org

ACM Books.

In-depth.
Innovative.
Insightful.
The VR Book: Human-Centered
Design for Virtual Reality
By Jason Jerald, PhD
Good VR design requires strong communication between
human and machine, indicating what interactions are
possible, what is currently occurring, and what is about to
occur. A human-centered design principle, like lean
methods, is to avoid completely defining the problem at
the start and to iterate upon repeated approximations and
modifications through rapid tests of ideas with real users.
Thus, The VR Book is intended as a foundation for anyone
and everyone involved in creating VR experiences
including: designers, managers, programmers, artists,
psychologists, engineers, students, educators, and user
experience professionals.

Available in hardcover, paperback and eBook. 
DOI: 10.1145/2792790

